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Abstract

Image classification has advanced significantly in re-

cent years with the availability of large-scale image sets.

However, fine-grained classification remains a major chal-

lenge due to the annotation cost of large numbers of fine-

grained categories. This project shows that compelling

classification performance can be achieved on such cate-

gories even without labeled training data. Given image

and class embeddings, we learn a compatibility function

such that matching embeddings are assigned a higher score

than mismatching ones; zero-shot classification of an im-

age proceeds by finding the label yielding the highest joint

compatibility score. We use state-of-the-art image features

and focus on different supervised attributes and unsuper-

vised output embeddings either derived from hierarchies or

learned from unlabeled text corpora. We establish a sub-

stantially improved state-of-the-art on the Animals with At-

tributes and Caltech-UCSD Birds datasets. Most encourag-

ingly, we demonstrate that purely unsupervised output em-

beddings (learned from Wikipedia and improved with fine-

grained text) achieve compelling results, even outperform-

ing the previous supervised state-of-the-art. By combining

different output embeddings, we further improve results.

1. Introduction

The image classification problem has been redefined by

the emergence of large scale datasets such as ImageNet [7].

Since deep learning methods [27] dominated recent Large-

Scale Visual Recognition Challenges (ILSVRC12-14), the

attention of the computer vision community has been drawn

to Convolutional Neural Networks (CNN) [31]. Training

CNNs requires massive amounts of labeled data; but, in

fine-grained image collections, where the categories are vi-

sually very similar, the data population decreases signifi-

cantly. We are interested in the most extreme case of learn-

ing with a limited amount of labeled data, zero-shot learn-

ing, in which no labeled data is available for some classes.

Without labels, we need alternative sources of informa-

tion that relate object classes. Attributes [15, 14, 29], which

Figure 1. Structured Joint Embedding leverages images (xi) and

labels (yi) by learning parameters W of a function F (xi, yi,W )
that measures the compatibility between input (θ(xi)) and output

embeddings (ϕ(yi)). It is a general framework that can be applied

to any learning problem with more than one modality.

describe well-known common characteristics of objects, are

an appealing source of information, and they can be easily

obtained through crowd-sourcing techniques [8, 41]. How-

ever, fine-grained concepts present a special challenge: due

to the high degree of similarity among categories, a large

number of attributes are required to effectively model these

subtle differences. This increases the cost of attribute anno-

tation. One aim of this work is to move towards eliminating

the human labeling component from zero-shot learning, e.g.

by using alternative sources of information.

On the other hand, large-margin support vector machines

(SVM) operate with labeled training images, so a lack of la-

bels limits their use for this task. Inspired by previous work

on label embedding [56, 3, 1] and structured SVMs [52, 38],

we propose to use a Structured Joint Embedding (SJE)

framework (Fig. 1) that relates input embeddings (i.e. im-

age features) and output embeddings (i.e. side information)

through a compatibility function, therefore taking advan-

tage of a structure in the output space. The SJE framework

separates the subspace learning problem from the specific

input and output features used in a given application. As a

general framework, it can be applied to any learning prob-

lem where more than one modality is provided for an object.

Our contributions are: (1) We demonstrate that unsuper-
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vised class embeddings trained from large unlabeled text

corpora are competitive to previously published results that

use human supervision. (2) Using the most recent deep

architectures as input embeddings, we significantly im-

prove the state-of-the-art (SoA). (3) We extensively evaluate

several unsupervised output embeddings for fine-grained

classification in a zero-shot setting on three challenging

datasets. (4) By combining different output embeddings we

obtain best results, surpassing the SoA by a large margin.

(5) We propose a novel weakly-supervised Word2Vec vari-

ant that improves the accuracy when combined with other

output embeddings.

The rest of the paper is organized as follows. Section 2

provides a review of the relevant literature; Sec. 3 details the

SJE method; Sec. 4 explains the output embeddings that we

analyze; Sec. 5 presents our experimental evaluation; Sec. 6

presents the discussion and our conclusions.

2. Related Work

Learning to classify in the absence of labeled data (zero-

shot learning) [58, 45, 25, 29, 2, 37, 34, 17] is a challenging

problem, and achieving better-than-chance performance re-

quires structure in the output space. Attributes [15, 13, 29]

provide one such space; they relate different classes through

well-known and shared characteristics of objects.

Attributes, which are often collected manually [25, 41,

12], have shown promising results in various applications,

i.e. caption generation [28, 39], face recognition [48, 6], im-

age retrieval [49, 11], action recognition [33, 57] and image

classification [29, 2]. The main challenge of attribute-based

zero-shot learning arises on more challenging fine-grained

data collections [55, 26], in which categories may visually

differ only subtly. Therefore, generic attributes fail at mod-

eling small intra-class variance between objects. Improved

performance requires a large number of specific attributes

which increases the cost of data gathering.

As an alternative to manual annotation, side information

can be collected automatically from text corpora. Bag-of-

words [19] is an example where class embeddings corre-

spond to histograms of vocabulary words extracted auto-

matically from unlabeled text. Another example is using

taxonomical order of classes [52] as structured output em-

beddings. Such a taxonomy can be built automatically from

a pre-defined ontology such as WordNet [36, 46, 1] . In this

case, the distance between nodes is measured using seman-

tic similarity metrics [24, 30, 32, 44]. Finally, distributed

text representations [35, 42] learned from large unsuper-

vised text corpora can be employed as structured embed-

dings. We compare several representatives of these methods

(and their combinations) in our evaluation.

Embedding labels in an Euclidean space is an effec-

tive tool to model latent relationships between classes [3].

These relationships can be collected separately from the

data [21, 9], learned from the data [56, 20] or derived

from side information [15, 16, 1, 37]. In order to col-

lect relationships independently of data, compressed sens-

ing [21] uses random projections whereas Error Correcting

Output Codes [9] builds embeddings inspired from infor-

mation theory. WSABIE [56] uses images with their cor-

responding labels to learn an embedding of the labels, and

CCA [20] maximizes the correlation between two different

data modalities. DeViSE [16] employs a ranking formula-

tion for zero-shot learning using images and distributed text

representations. The ALE [1] method employs an approx-

imate ranking formulation for the same using images and

attributes. ConSe [37] uses the probabilities of a softmax-

output layer to weigh the semantic vectors of all the classes.

In this work, we use the multiclass objective to learn struc-

tured output embeddings obtained from various sources.

Among the closest related work, ALE [1] uses Fisher

Vectors (FV [43]) as input and binary attributes / hierar-

chies as output embeddings. Similarly, DeviSe [16] uses

CNN [27] features as input and Word2Vec [35] represen-

tations as output embeddings. In this work, we benefit

from both ideas: (1) We use SoA image features, i.e. FV

and CNN, (2) among others, we also use attributes and

Word2Vec as output embeddings. Our work differs from

[16] w.r.t. two aspects: (1) We propose and evaluate sev-

eral output embedding methods specifically built for fine-

grained classification. (2) We show how some of these out-

put embeddings complement each other for zero-shot learn-

ing on general and fine-grained datasets. The reader should

be aware of [2].

3. Structured Joint Embeddings

In this work, we aim to leverage input and output embed-

dings in a joint framework by learning a compatibility be-

tween these embeddings. We are interested in the problem

of zero-shot learning for image classification where training

and test images belong to two disjoint sets of classes.

Following [1], given input/output xn ∈ X and yn ∈ Y
from S = {(xn, yn), n = 1 . . . N}, Structured Joint Em-

bedding (SJE) learns f : X → Y by minimizing the em-

pirical risk 1
N

∑N

n=1 ∆(yn, f(xn)) where ∆ : Y × Y → R

defines the cost of predicting f(x) when the true label is y.

Here, we use the 0/1 loss.

3.1. Model

We define a compatibility function F : X × Y → R

between an input space X and a structured output space Y .

Given a specific input embedding, we derive a prediction by

maximizing the compatibility F over SJE as follows:

f(x;w) = argmax
y∈Y

F (x, y;w).



The parameter vector w can be written as a D×E matrix W
with D being the input embedding dimension and E being

the output embedding dimension. This leads to the bi-linear

form of the compatibility function:

F (x, y;W ) = θ(x)⊤Wϕ(y). (1)

Here, the input embedding is denoted by θ(x) and the out-

put embedding by ϕ(y). The matrix W is learned by en-

forcing the correct label to be ranked higher than any of the

other labels (Sec. 3.2), i.e. multiclass objective. This formu-

lation is closely related to [1, 16, 56]. Within the label em-

bedding framework, ALE [1] and DeViSe [16] use pairwise

ranking objective, WSABIE [56] learns both ϕ(y) and W
through ranking, whereas we use multiclass objective. Sim-

ilarly, [40, 50] use the regression objective and CCA [20]

maximizes the correlation of input and output embeddings.

3.2. Parameter Learning

According to the unregularized structured SVM formu-

lation [52], the objective is:

1

N

N∑

n=1

max
y∈Y

{0, ℓ(xn, yn, y)}. (2)

where the misclassification loss ℓ(xn, yn, y) takes the form:

∆(yn, y) + θ(xn)
⊤Wϕ(y)− θ(xn)

⊤Wϕ(yn) (3)

For the zero-shot learning scenario, the training and test

classes are disjoint. Therefore, we fix ϕ to the output em-

beddings of training classes and learn W . For prediction,

we project a test image onto the W and search for the near-

est output embedding vector (using the dot product similar-

ity) that corresponds to one of the test classes.

We use Stochastic Gradient Descent (SGD) for op-

timization which consists in sampling (xn, yn) at each

step and searching for the highest ranked class y. If

argmaxy∈Y ℓ(xn, yn, y) 6= yn, we update W as follows:

W (t) = W (t−1) + ηtθ(xn)[ϕ(yn)− ϕ(y)]⊤ (4)

where ηt is the learning step-size used at iteration t. We

use a constant step size chosen by cross-validation and we

perform regularization through early stopping.

3.3. Learning Combined Embeddings

For some classification tasks, there may be multiple out-

put embeddings available, each capturing a different aspect

of the structure of the output space. Each may also have

a different signal-to-noise ratio. Since each output embed-

ding possibly offers non-redundant information about the

output space, as also shown in [45, 2], we can learn a bet-

ter joint embedding by combining them together. We model

the resulting compatibility score as

F (x, y; {W}1..K) =
∑

k

αkθ(x)
⊤Wkϕk(y) (5)

s.t.
∑

k

αk = 1

where W1, ...,WK are the joint embedding weight matri-

ces corresponding to the K output embeddings (ϕk). In our

experiments, we first train each Wk independently, then per-

form a grid search over αk on a validation set. Interestingly,

we found that the optimal αk for previously-seen classes is

often different from the one for unseen classes. Therefore,

it is critical to cross-validate αk on the zero-shot setting.

Note that if we take αk = 1/K, ∀k, Equation 5 is equiv-

alent to simply concatenating the ϕk. This corresponds to

stacking the Wk into a single matrix W and computing the

standard compatibility as in Equation 1. However, such a

stacking learns a large W where a high dimensional ϕ bi-

ases the final prediction. In contrast, α eliminates the bias,

leading to better predictions. Thus, αk can be thought of as

the confidence associated with ϕk whose contribution we

can control. We show in Sec. 5.2 that finding an appropriate

αk can yield improved accuracy compared to any single ϕ.

4. Output Embeddings

In this section, we describe three types of output embed-

dings: human-annotated attributes, unsupervised word em-

beddings learned from large text corpora, and hierarchical

embeddings derived from WordNet.

4.1. Embedding by Human Annotation: Attributes

Annotating images with class labels is a laborious pro-

cess when the objects represent fine-grained concepts that

are not common in our daily lives. Attributes provide a

means to describe such fine-grained concepts. They model

shared characteristics of objects such as color and texture

which are easily annotated by humans and converted to

machine-readable vector format. The set of descriptive at-

tributes may be determined by language experts [29] or by

fine-grained object experts [55]. The association between

an attribute and a category can be a binary value depicting

the presence/absence of an attribute (ϕ0,1 [29, 1, 45]) or a

continuous value that defines the confidence level of an at-

tribute (ϕA [29, 2, 47]) for each class. We write per-class

attributes as:

ϕ(y) = [ρy,1, . . . , ρy,E ]
⊤

where ρy,i can be {0, 1} or a real number that associates a

class with an attribute, y denotes the associated class and

E is the number of attributes. Potentially, ϕA encodes

more information than ϕ0,1. For instance, for classes rat,

monkey, whale and the attribute big, ϕ0,1 = [0, 0, 1] im-



plies that in terms of size rat = monkey < whale, whereas

ϕA = [2, 10, 90] can be interpreted as rat < monkey <<
whale which is more accurate. We empirically show the

benefit of ϕA over ϕ0,1 in Sec. 5.2. In practice, our output

embeddings use a per-class vector form, but they can vary

in dimensionality (E). For the rest of the section we denote

the output embeddings as ϕ for brevity.

4.2. Learning Label Embeddings from Text

In this section, we describe unsupervised and weakly-

supervised label embeddings mined from text. With these

label embeddings, we can (1) avoid dependence on costly

manual annotation of attributes and (2) combine the em-

beddings with attributes, where available, to achieve better

performance.

Word2Vec (ϕW ). In Word2Vec [35], a two-layer neural

network is trained to predict a set of target words from a

set of context words. Words in the vocabulary are assigned

with one-shot encoding so that the first layer acts as a look-

up table to retrieve the embedding for any word in the vo-

cabulary. The second layer predicts the target word(s) via

hierarchical soft-max. Word2Vec has two main formula-

tions for the target prediction: skip-gram (SG) and contin-

uous bag-of-words (CBOW). In SG, words within a local

context window are predicted from the centering word. In

CBOW, the center word of a context window is predicted

from the surrounding words. Embeddings are obtained by

back-propagating the prediction error gradient over a train-

ing set of context windows sampled from the text corpus.

GloVe (ϕG). GloVe [42] incorporates co-occurrence statis-

tics of words that frequently appear together within the

document. Intuitively, the co-occurrence statistics encode

meaning since semantically similar words such as “ice” and

“water” occur together more frequently than semantically

dissimilar words such as “ice” and “fashion.” The train-

ing objective is to learn word vectors such that their dot

product equals the co-occurrence probability of these two

words. This approach has recently been shown to outper-

form Word2Vec on the word analogy prediction task [42].

Weakly-supervised Word2Vec (ϕWws ). The standard

Word2Vec [35] scans the entire document using each word

within a sample window as the target for prediction. How-

ever, if we know the global context, i.e. the topic of the

document, we can use that topic as our target. For instance,

in Wikipedia, the entire article is related to the same topic.

Therefore, we can sample our context windows from any

location within the article rather than searching for context

windows where the topic explicitly appears in the text. We

consider this method as a weak form of supervision.

We achieve the best results in our experiments using our

novel variant of the CBOW formulation. Here, we pre-

train the first layer weights using standard Word2Vec on

Wikipedia, and fine-tune the second layer weights using a

ρjcn = 2 ∗ IC(mscs(u, v))− (IC(u) + IC(v))

ρlin =
2 ∗ IC(mscs(u, v))

IC(u) + IC(v)

ρpath = min
p∈pth(u,v)

len(p)

Table 1. Notations [5]: mscs (most specific common subsumer),

pth (set of paths between two nodes), len (path length), IC (Infor-

mation Content, defined as the log of the probability of finding a

word in a text corpus independent of the hierarchy).

negative-sampling objective [18] only on the fine-grained

text corpus. These weights correspond to the final output

embedding. The negative sampling objective is formulated

as follows:

L =
∑

w,c∈D+

log σ(vTc vw) +
∑

w′,c∈D−

log σ(−vTc vw′) (6)

vc =
∑

i∈context(w)

vi/|context(w)|

where vw and vw′ are the label embeddings we seek to learn,

and vc is the average of word embeddings vi within a con-

text window around word w. D+ consists of context vc and

matching targets vw, and D− consists of the same vc and

mismatching vw′ . To find the vi (which are the columns of

the first-layer network weights), we take them from a stan-

dard unsupervised Word2Vec model trained on Wikipedia.

During SGD, the vi are fixed and we update each sam-

pled vw and vw′ at each iteration. Intuitively, we seek to

maximize the similarity between context and target vectors

for matching pairs, and minimize it for mismatching pairs.

Bag-of-Words (ϕB). BoW [19] builds a “bag” of word

frequencies by counting the occurrence of each vocabulary

word that appears within a document. It does not preserve

the order in which words appear in a document, so it disre-

gards the grammar. We collect Wikipedia articles that cor-

respond to each object class and build a vocabulary of most

frequently occurring words. We then build histograms of

these words to vectorize our classes.

4.3. Hierarchical Embeddings

Semantic similarity measures how closely related two

word senses are according to their meaning. Such a simi-

larity can be estimated by measuring the distance between

terms in an ontology. WordNet1, a large-scale hierarchical

database of over 100,000 words for English, provides us a

means of building our class hierarchy. To measure similar-

ity, we use Jiang-Conrath [24] (ϕjcn), Lin [32] (ϕlin) and

path (ϕpath) similarities formulated in Table 1. We denote

our whole family of hierarchical embeddings as ϕH. For a

more detailed survey, the reader may refer to [5].

1http://wordnetweb.princeton.edu/



5. Experiments

While our main contribution is a detailed analysis of out-

put embeddings, good image representations are crucial to

obtain good classification performance. In Sec. 5.1 we de-

tail datasets, input and output embeddings used in our ex-

periments and in Sec. 5.2 we present our results.

5.1. Experimental Setting

We evaluate SJE on three datasets: Caltech UCSD

Birds (CUB) [54] and Stanford Dogs (Dogs)2 [26] are fine-

grained, and Animals With Attributes (AWA) [29] is a stan-

dard attribute dataset for zero-shot classification. CUB con-

tains 11,788 images of 200 bird species, Dogs contains

19,501 images of 113 dog breeds and AWA contains 30,475

images of 50 different animals. We use a truly zero-shot

setting where the train, val, and test sets belong to mutu-

ally exclusive classes. We employ train and val, i.e. disjoint

subsets of training set, for cross-validation. We report aver-

age per-class top-1 accuracy on the test set. For CUB, we

use the same zero-shot split as [1] with 150 classes for the

train+val set and 50 disjoint classes for the test set. AWA

has a predefined split for 40 train+val and 10 test classes.

For Dogs, we use approximately the same ratio of classes

for train+val/test as CUB, i.e. 85 classes for train+val and

28 classes for test. This is the first attempt to perform zero-

shot learning on the Dogs dataset.

Input Embeddings. We use Fisher Vectors (FV) and Deep

CNN Features (CNN). FV [43] aggregates per image statis-

tics computed from local image patches into a fixed-length

local image descriptor. We extract 128-dim SIFT from reg-

ular grids at multiple scales, reduce them to 64-dim using

PCA, build a visual vocabulary with 256 Gaussians [53] and

finally reduce the FVs to 4,096. As an alternative, we ex-

tract features from a deep convolutional network. Features

that are typically obtained from the activations of the fully

connected layers have been shown to induce semantic simi-

larities. We resize each image to 224×224 and feed into the

network which was pre-trained following the model archi-

tecture of either AlexNet [27] or GoogLeNet [51, 22]. For

AlexNet (denoted as CNN) we use the 4,096-dim top-layer

hidden unit activations (fc7) as features, and for GoogLeNet

(denoted as GOOG) we use the 1,024-dim top-layer pool-

ing units. For both networks, we used the publicly-available

BVLC implementations [23]. We do not perform any task-

specific pre-processing, such as cropping foreground ob-

jects or detecting parts.

Output Embeddings. AWA classes have 85 binary and

continuous attributes. CUB classes have 312 continuous at-

tributes and the continuous values are thresholded around

the mean to obtain binary attributes. The Dogs dataset does

2We use 113 classes that appear in the Federation Cynologique Inter-

nationale (FCI) database of dog breeds.

AWA CUB

ϕ0,1 ϕA ϕ0,1 ϕA

Ours

FV (4K) 36.6 42.3 15.2 19.0

CNN (4K) 45.9 61.9 30.0 40.3

GOOG (1K) 52.0 66.7 37.8 50.1

SoA ALE [2] (64K) 44.6 48.5 22.3 26.9

Table 2. Discrete (ϕ0,1) and continuous (ϕA) attributes with SJE

vs SoA. For AWA (CUB) [2] achieves 49.4% (27.3%) by combin-

ing ϕA and binary hierarchies.

not have human-annotated attributes available.

We train Word2Vec (ϕW ) and GloVe (ϕG) on the

English-language Wikipedia from 13.02.2014. We first

pre-process it by replacing the class-names, i.e. black-

footed albatross, with alternative unique names, i.e. sci-

entific name, phoebastrianigripes. We cross-validate the

skip-window size and embedding dimensions. For our pro-

posed weakly-supervised Word2Vec (ϕWws ), we use the

same embedding dimensions as the plain Word2Vec (ϕW ).

For BoW, we download the Wikipedia articles that cor-

respond to each class and build the vocabulary by omit-

ting least- and most-frequently occurring words. We cross-

validate the vocabulary size. ϕB is a histogram of the vo-

cabulary words as they appear in the respective document.

For hierarchical embeddings (ϕH), we use the WordNet

hierarchy spanning our classes and their ancestors up to the

root of the tree. We employ the widely used NLTK library3

for building the hierarchy and measuring the similarity be-

tween nodes. Therefore, each ϕH vector is populated with

similarity measures of the class to all other classes.

Combination of output embeddings. We explore combi-

nations of five types of output embeddings: supervised at-

tributes ϕA, unsupervised Word2Vec ϕW , GloVe ϕG , BoW

ϕB and WordNet-derived similarity embeddings ϕH. We

either concatenate (cnc) or combine (cmb) different em-

beddings. In cnc, for instance in AWA, 85-dim ϕA and

400-dim ϕW would be merged to 485-dim output embed-

dings. In this case, if we use 1,024-dim GOOG as input

embeddings, we learn a single 1,024×485-dim W . In cmb,

we first learn 1,024×85-dim WA and 1,024×400-dim WW

and then cross-validate the α coefficients to determine the

amount each embedding contributes to the final score.

5.2. Experimental Results

In this section, we evaluate several output embeddings

on the CUB, AWA and Dogs datasets.

Discrete vs Continuous Attributes. Attribute representa-

tions are defined as a vector per class, or a column of the

(class × attribute) matrix. These vectors (85-dim for AWA,

312-dim for CUB) can either model the presence/absence

(ϕ0,1) or the confidence level (ϕA) of each attribute. We

3http://www.nltk.org/



supervision source ϕ AWA CUB Dogs

unsupervised

text ϕW 51.2 28.4 19.6

text ϕG 58.8 24.2 17.8

text ϕB 44.9 22.1 33.0

WordNet ϕH 51.2 20.6 24.3

supervised
human ϕ0,1 52.0 37.8 -

human ϕA 66.7 50.1 -

Table 3. Summary of zero-shot learning results with SJE w.r.t. su-

pervised and unsupervised output embeddings (Input embeddings:

1K-GOOG).

show that continuous attributes indeed encode more seman-

tics than binary attributes by observing a substantial im-

provement with ϕA over ϕ0,1 with deep features (Tab. 2).

Overall, CNN outperforms FV, while GOOG gives the best

performing results; therefore in the following, we comment

only on our results obtained using GOOG.

On CUB, i.e. a fine-grained dataset, ϕ0,1 obtains 37.8%

accuracy, which is significantly above the SoA (26.9% [2]).

Moreover, ϕA achieves an impressive 50.1% accuracy; out-

performing the SoA by a large margin. We observe the

same trend for AWA, which is a benchmark dataset for zero-

shot learning. On AWA, ϕ0,1 obtains 52.0% accuracy and

ϕA improves the accuracy substantially to 66.7%, signifi-

cantly outperforming the SoA (48.5% [2]). To summarize,

we have shown that ϕA improves the performance of ϕ0,1

using deep features, which indicates that with ϕA, the SJE

method learns a matrix W that better approximates the com-

patibility of images and side information than ϕ0,1.

Learned Embeddings from Text. As the visual similar-

ity between objects in different classes increases, e.g. in

fine-grained datasets, the cost of collecting attributes also

increases. Therefore, we aim to extract class similarities

automatically from unlabeled online textual resources. We

evaluate three methods, Word2Vec (ϕW ), GloVe (ϕG) and

the historically most commonly-used method BoW (ϕB).

We build ϕW and ϕG on the entire English Wikipedia dump.

Note that the plain Word2Vec [35] was used in [2]; however,

rather than using Word2Vec in an averaging mechanism, we

pre-process the Wikipedia as described in Sec 4.2 so that

our class names are directly present in the Word2Vec vo-

cabulary. This leads to a significant accuracy improvement.

For ϕB we use a subset of Wikipedia populated only with

articles that correspond to our classes.

On CUB (Tab. 3), the best accuracy is observed with

ϕW (28.4%) improving the supervised SoA (26.9% [2],

Tab. 2). This is promising and impressive since ϕW does

not use any human supervision. On AWA (Tab. 3), the

best accuracy is observed with ϕG (58.8%) followed by ϕW

(51.2%), improving the supervised SoA (48.5% [2]) signifi-

cantly. On Dogs (Tab. 3), the best accuracy is obtained with

ϕB (33.0%). On the other hand, using ϕW (19.6%) and

ϕG (17.8%) leads to significantly lower accuracies. Unlike

ϕG ϕW ϕW (W) +

B W B+W B W B+W ϕWws (B)

FV 10.5 13.3 13.2 16.0 16.0 16.5 17.1

CNN 13.4 20.6 20.6 20.0 24.1 21.4 25.1

GOOG 13.7 24.2 26.1 22.5 28.4 27.5 29.7

Table 4. Comparison of Word2Vec (ϕW ) and GloVe (ϕG) learned

from a bird specific corpus (B), Wikipedia (W) and their combi-

nation (B + W), evaluated on CUB (Input embeddings: 4K-FV,

4K-CNN and 1K-GOOG).

birds, different dog breeds belong to the same species and

thus they share a common scientific name. As a result, our

method of cleanly pre-processing Wikipedia by replacing

the occurrences of bird names with a unique scientific name

was not possible for Dogs. This may lead to vectors ob-

tained from Wikipedia for dogs that are vulnerable to vari-

ation in nomenclature. In summary, our results indicate no

winner among ϕW , ϕG and ϕB. These embeddings may be

task specific and complement each other. We investigate the

complementarity of embeddings in the following sections.

Effect of Text Corpus. For ϕW and ϕG , we analyze the

effects of three text corpora (B, W, B+W) with varying

size and specificity. We build our specialized bird cor-

pus (B) by collecting bird-related information from various

online resources, i.e. audubon.org, birdweb.org,

allaboutbirds.org and BNA4. In combination, this

corresponds to 50MB of bird-related text. We use the

English-language Wikipedia from 13.02.2014 as our

large and general corpus (W) which is 40GB of text. Fi-

nally, we combine B and W to build a large-scale text corpus

enriched with bird specific text (B+W). On W and B+W, a

small window size (10 for ϕW and 20 for ϕG); on B, a large

window size (35 for ϕW and 50 for ϕG) is required. We

choose parameters after a grid search. Increased specificity

of the text corpus implies semantic consistency through-

out the text. Therefore, large context windows capture se-

mantics well in our bird specific (B) corpus. On the other

hand, W is organized alphabetically w.r.t. the document ti-

tle; hence, a large sampling window can include content

from another article that is adjacent to the target word al-

phabetically. Here, small windows capture semantics better

by looking at the text locally. We report our results in Tab. 4.

Using ϕG , B+W (26.1%) gives the highest accuracy, fol-

lowed by W (24.2%). One possible reason is that when the

semantic similarity is modeled with cooccurrence statistics,

output embeddings become more informative with the in-

creasing corpus size, since the probability of cooccurrence

of similar concepts increases.

Using ϕW , the accuracy obtained with B (22.5%) is al-

ready higher than the ϕ0,1-based SoA (22.3%), illustrat-

ing the benefit of using fine-grained text for fine-grained

tasks. Another advantage of using B is that, since it is short,

4http://bna.birds.cornell.edu/bna/
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Figure 2. Comparison of WordNet similarity measures: ϕjcn, ϕlin

and ϕpath. We use ϕH as a general name for hierarchical output

embedding. (Input embedding: 1K-GOOG).

building ϕW is efficient. Moreover, building ϕW with B

does not require any annotation effort. Building ϕW us-

ing W (28.4%) gives the highest accuracy, followed by W

+ B (27.5%) which improves the supervised SoA (26.9%).

We speculate that since Word2Vec is a variant of the Feed-

forward Neural Network Language Model (FNNLM) [4], a

deep architecture, it may learn more from negative data than

positives. This was also observed for CNN features learned

with a large number of unlabeled surrogate classes [10].

Additionally, we propose a weakly-supervised alterna-

tive to Word2Vec framework (ϕWws , Sec. 4.2). The weak-

supervision comes from using the specialized B corpus to

fine-tune the weights of the network and model the bird-

related information. With ϕWws alone, we obtain 21.0%

accuracy. However, when it is combined with ϕW (28.4%),

the accuracy improves to 29.7%. Compared to the results

in Tab. 4, 29.7% is the highest accuracy obtained using un-

supervised embeddings. We regard these results as a very

encouraging evidence that Word2Vec representations can

indeed be made more discriminative for fine-grained zero-

shot learning by integrating a fine-grained text corpus di-

rectly to the output embedding learning problem.

Hierarchical Embeddings. The hierarchical organization

of concepts typically embodies a fair amount of hidden in-

formation about language, such as synonymy, semantic re-

lations, etc. Therefore, semantic relatedness defined by hi-

erarchical distance between classes can form numerical vec-

tors to be used as output embeddings for zero-shot learn-

ing. We build ontological relationships between our classes

using the WordNet [36] taxonomy. Due to its large size,

WordNet encapsulates all of our AWA and Dog classes. For

CUB, the high level bird species, i.e. albatross, appear as

synsets in WordNet, but the specific bird names, i.e. black-

footed albatross, are not always present. Therefore we take

the hierarchy up to high level bird species as-is and we as-

sume the specific bird classes are all at the bottom of the

hierarchy located with the same distance to their immedi-

ate ancestors. The WordNet hierarchy contains 319 nodes

for CUB (200 classes), 104 nodes for AWA (50 classes) and

163 nodes for Dogs (113 classes). We measure the distance

between classes using the similarity measures from Sec 4.1.

While as shown in Fig. 2 different hierarchical similar-

ity measures have very different behaviors on each dataset.

The best performing ϕH obtains 51.2% (Tab. 3) accuracy

AWA CUB Dogs

ϕA ϕW ϕG ϕB ϕH cnc cmb cnc cmb cnc cmb

X X 53.9 55.5 28.2 29.4 23.5 26.6

X X 60.1 59.5 28.5 29.9 23.5 26.7

X X 49.4 49.2 26.4 27.7 35.1 28.2

X X X 71.3 73.5 45.1 51.0 - -

X X X 73.3 73.9 42.2 51.7 - -

X X X 69.4 71.1 40.9 51.5 - -

Table 5. Attribute ensemble results for all datasets. ϕH: lin for

CUB, path for AWA and Dogs. Top part shows combination re-

sults of unsupervised embeddings and bottom part integrates su-

pervised embeddings to the rest (Input embeddings: 1K-GOOG).

on AWA which reaches our ϕ0,1 (52.0%) and improves ϕB

(44.9%) significantly. On CUB, ϕH obtains 20.6% (Tab. 3)

which remain below our ϕ0,1 (37.8%) and approaches ϕB

(22.1%). On the other hand, on Dogs ϕH obtains 24.3%

(Tab. 3) which is significantly higher than the unsupervised

text embeddings ϕW (19.6%) and ϕG (17.8%).

Combining Output Embeddings. In this section, we com-

bine output embeddings obtained through human annota-

tion (ϕA), from text (ϕW,G,B) and from hierarchies (ϕH).5

As a reference, Tab. 3 summarizes the results obtained us-

ing one output embedding at a time. Our intuition is that be-

cause the different embeddings attempt to encapsulate dif-

ferent information, accuracy should improve when multiple

embeddings are combined. We can observe this comple-

mentarity either by simple concatenation (cnc) or system-

atically combining (cmb) output embeddings (Sec.3.3) also

known as early/late fusion [2]. For cnc, we perform full

SJE training and cross-validation on the concatenated out-

put embeddings. For cmb, we learn joint embeddings Wk

for each output separately (which is trivially parallelized),

and find ensemble weights αk via cross-validation. In con-

trast to the cnc method, no additional joint training is used,

although it can improve performance in practice. We ob-

serve (Tab. 5) in almost all cases cmb outperforms cnc.

We analyze the combination of unsupervised embed-

dings (ϕW,G,B,H). On AWA, ϕG (58.8%, Tab. 3) com-

bined with ϕH (51.2%, Tab. 3), we achieve 60.1% (Tab. 5)

which improves the SoA (48.5%, Tab. 2) by a large mar-

gin. On CUB, combining ϕG (24.2%, Tab. 3) with ϕH

(20.6%, Tab. 3), we get 29.9% (Tab. 5) and improve the

supervised-SoA (26.9%, Tab. 2). Supporting our initial

claim, unsupervised output embeddings obtained from dif-

ferent sources, i.e. text vs hierarchy, seem to be comple-

mentary to each other. In some cases, cmb performs worse

than cnc; e.g. 28.2% versus 35.1% when using ϕB with

ϕH on Dogs. In most other cases cmb performs equivalent

or better. Combining supervised (ϕA) and unsupervised

5We empirically found that the hierarchical embeddings ϕ
H consis-

tently improved performance when combined or concatenated with other

embeddings. Therefore, we report results using ϕ
H by default.
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Figure 3. Highest ranked 5 images for chimpanzee, leopard and seal (AWA) using ϕA, ϕG and ϕG+A. For chimpanzee, ϕA ranks

chimpanzees on trees at the top, whereas ϕG models the social nature of the animal ranking a group of chimpanzees highest, ϕG+A

synthesizes both aspects. For leopard ϕA puts an emphasis on the head, ϕG seems to place the animal in the wild. In case of seal, ϕA

retrieves images related to water, whereas ϕG adds more context by placing seals in the icy natural environment and ϕG+A combines both.

supervision method AWA CUB Dogs

unsupervised SJE (best from Tab. 5) 60.1 29.9 35.1

supervised
SJE (best from Tab. 5) 73.9 51.7 –

AHLE [2] 49.4 27.3 –

Table 6. Summary of best zero-shot learning results with SJE with

or without supervision along with SoA.

embeddings (ϕW,G,B,H) shows a similar trend. On AWA,

combining ϕA (66.7%, Tab. 3) with ϕG and ϕH leads to

73.9% (Tab. 5) which significantly exceeds the SoA (48.5%,

Tab. 2). On CUB, combining ϕA with ϕG and ϕH leads

to 51.7% (Tab. 5), improving both the results we obtained

with ϕA (50.1%, Tab. 3) and the supervised-SoA (26.9%,

Tab. 2). We have shown with these experiments that output

embeddings obtained through human annotation can also be

complemented with unsupervised output embeddings using

the SJE framework.

Qualitative Results. Fig. 3 shows top-5 highest ranked im-

ages for classes chimpanzee, leopard and seal that are se-

lected from 10 test classes of AWA. We use GOOG as in-

put embeddings and as output embeddings we use super-

vised ϕA, the best performing unsupervised embedding on

AWA (ϕG), and the combination of the two (ϕG+A). For the

class chimpanzee, ϕA emphasizes that chimpanzees live on

trees, which is among the list of attributes. On the other

hand, ϕG models the social nature of the animal, ranking

a group of chimpanzees interacting with each other at the

highest. Indeed this information can easily be retrieved

from Wikipedia. ϕG+A synthesizes both aspects. Simi-

larly, for leopard ϕA puts an emphasis on the head where

we can observe several of the attributes, i.e. color, spotted,

whereas ϕG seems to place the animal in the wild. ϕG+A

combines both aspects. In case of class seal, ϕA retrieves

images related to water and ranks whales and seals high-

est, whereas ϕG adds more context by placing seals in the

icy natural environment and within groups. Finally, ϕG+A

ranks seal-shaped animals on ice, close to water and within

groups the highest. We find these qualitative results interest-

ing as they depict how (1) unsupervised embeddings capture

nameable semantics about objects and (2) different output

embeddings are semantically complementary for zero-shot

learning.

6. Conclusion

We evaluated the Structured Joint Embedding (SJE)

framework on supervised attributes and unsupervised out-

put embeddings obtained from hierarchies and unlabeled

text corpora. We proposed a novel weakly-supervised la-

bel embedding technique. By combining multiple output

embeddings (cmb), we established a new SoA on AWA

(73.9%, Tab. 6) and CUB (51.7%, Tab. 6). Moreover, we

showed that unsupervised zero-shot learning with SJE im-

proves the SoA, to 60.1% on AWA and 29.9% on CUB, and

obtains 35.1% on Dogs (Tab. 6).

We emphasize the following take-home points: (1) Un-

supervised label embeddings learned from text corpora

yield compelling zero-shot results, outperforming previous

supervised SoA on AWA and CUB (Tab. 2 and 3). (2)

Integrating specialized text corpora helps due to incorpo-

rating more fine-grained information to output embeddings

(Tab. 4). (3) Combining unsupervised output embeddings

improve the zero-shot performance, suggesting that they

provide complementary information (Tab. 5). (4) There

is still a large gap between the performance of unsuper-

vised output embeddings and human-annotated attributes

on AWA and CUB, suggesting that better methods are

needed for learning discriminative output embeddings from

text. (5) Finally, supporting [2, 47], encoding continuous

nature of attributes significantly improve upon binary at-

tributes for zero-shot classification (Tab. 2).

As future work, we plan to investigate other methods

to combine multiple output embeddings and to improve

the discriminative power of unsupervised and weakly-

supervised label embeddings for fine-grained classification.
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