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Abstract—We consider the problem of detecting robotic grasps
in an RGB-D view of a scene containing objects. In this work,
we apply a deep learning approach to solve this problem, which
avoids time-consuming hand-design of features. This presents two
main challenges. First, we need to evaluate a huge number of
candidate grasps. In order to make detection fast and robust,
we present a two-step cascaded system with two deep networks,
where the top detections from the first are re-evaluated by
the second. The first network has fewer features, is faster to
run, and can effectively prune out unlikely candidate grasps.
The second, with more features, is slower but has to run
only on the top few detections. Second, we need to handle
multimodal inputs effectively, for which we present a method
that applies structured regularization on the weights based on
multimodal group regularization. We show that our method
improves performance on an RGBD robotic grasping dataset,
and can be used to successfully execute grasps on two different
robotic platforms. 1
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I. INTRODUCTION

Robotic grasping is a challenging problem involving percep-

tion, planning, and control. Some recent works [54, 56, 28, 67]

address the perception aspect of this problem by converting it

into a detection problem in which, given a noisy, partial view

of the object from a camera, the goal is to infer the top loca-

tions where a robotic gripper could be placed (see Figure 1).

Unlike generic vision problems based on static images, such

robotic perception problems are often used in closed loop with

controllers, so there are stringent requirements on performance

and computational speed. In the past, hand-designing features

has been the most popular method for several robotic tasks

[40, 32]. However, this is cumbersome and time-consuming,

especially when we must incorporate new input modalities

such as RGB-D cameras.

Recent methods based on deep learning [1] have demon-

strated state-of-the-art performance in a wide variety of tasks,

including visual recognition [35, 60], audio recognition [39,

41], and natural language processing [12]. These techniques

are especially powerful because they are capable of learning

useful features directly from both unlabeled and labeled data,

avoiding the need for hand-engineering.

1Parts of this work were presented at ICLR 2013 as a workshop paper,
and at RSS 2013 as a conference paper. This version includes significantly
extended related work, algorithmic descriptions, and extensive robotic exper-
iments which were not present in previous versions.

However, most work in deep learning has been applied in

the context of recognition. Grasping is inherently a detection

problem, and previous applications of deep learning to detec-

tion have typically focused on specific vision applications such

as face detection [45] and pedestrian detection [57]. Our goal

is not only to infer a viable grasp, but to infer the optimal grasp

for a given object that maximizes the chance of successfully

grasping it, which differs significantly from the problem of

object detection. Thus, the first major contribution of our work

is to apply deep learning to the problem of robotic grasping, in

a fashion which could generalize to similar detection problems.

The second major contribution of our work is to propose

a new method for handling multimodal data in the context

of feature learning. The use of RGB-D data, as opposed

to simple 2D image data, has been shown to significantly

improve grasp detection results [28, 14, 56]. In this work, we

present a multimodal feature learning algorithm which adds a

structured regularization penalty to the objective function to

be optimized during learning. As opposed to previous works

in deep learning, which either ignore modality information at

the first layer (i.e., encourage all features to use all modalities)

[59] or train separate first-layer features for each modality

[43, 61], our approach allows for a middle-ground in which

each feature is encouraged to use only a subset of the input

modalities, but is not forced to use only particular ones.

We also propose a two-stage cascaded detection system

based on deep learning. Here, we use fewer features for the

first pass, providing faster, but only approximately accurate

detections. The second pass uses more features, giving more

accurate detections. In our experiments, we found that the

first deep network, with fewer features, was better at avoiding

overfitting but less accurate. We feed the top-ranked rectangles

from the first layer into the second layer, leading to robust

early rejection of false positives. Unlike manually designed

two-step features as in [28], our method uses deep learning,

which allows us to learn detectors that not only give higher

performance, but are also computationally efficient.

We test our approach on a challenging dataset, where

we show that our algorithm improves both recognition and

detection performance for grasping rectangle data. We also

show that our two-stage approach is not only able to match

the performance of a single-stage system, but, in fact, improves

results while significantly reducing the computational time

needed for detection.

In summary, the contributions of this paper are:

• We present a deep learning algorithm for detecting



Fig. 1: Detecting robotic grasps: Left: A cluttered lab scene labeled with rectangles corresponding to robotic grasps for objects in the
scene. Green lines correspond to robotic gripper plates. We use a two-stage system based on deep learning to learn features and perform
detection for robotic grasping. Center: Our Baxter robot “Yogi” successfully executing a grasp detected by our algorithm. Right: The grasp
detected for this case, in the RGB (top) and depth (bottom) images obtained from Kinect.

robotic grasps. To the best of our knowledge, this is the

first work to do so.

• In order to handle multimodal inputs, we present a new

way to apply structured regularization to the weights to

these inputs based on multimodal group regularization.

• We present a multi-step cascaded system for detection,

significantly reducing its computational cost.

• Our method outperforms the state-of-the-art for rectangle-

based grasp detection, as well as previous deep learning

algorithms.

• We implement our algorithm on both a Baxter and a

PR2 robot, and show success rates of 84% and 89%,

respectively, for executing grasps on a highly varied set

of objects.

The rest of the paper is organized as follows: We discuss

related work in Section II. We present our two-step cascaded

detection system in Section III, and some additional details

in Section IV. We then describe our feature learning algo-

rithm and structured regularization method in Section V. We

present our experiments in Section VI, and discuss results in

Section VII. We then present experiments on both Baxter and

PR2 robots in Section VIII. We present several interesting

directions for future work in Section IX, then conclude in

Section X.

II. RELATED WORK

A. Robotic Grasping

In this section, we will focus on perception- and learning-

based approaches for robotic grasping. For a more complete

review of the field, we refer the reader to review papers by

Bohg et al. [4], Sahbani et al. [53], Bicchi and Kumar [2] and

Shimoga [58].

Most works define a “grasp” as an end-effector config-

uration which achieves partial or complete form- or force-

closure of a given object. This is a challenging problem

because it depends on the pose and configuration of the robotic

gripper as well as the shape and physical properties of the

object to be grasped, and typically requires a search over a

large number of possible gripper configurations. Early works

[34, 44, 49] focused on testing for form- and force-closure,

and synthesizing grasps fulfilling these properties according to

some hand-designed “quality score” [17]. More recent works

have refined these definitions [50]. These works assumed full

knowledge of object shape and physical properties.

Grasping Given 3D Model: Fast synthesis of grasps for

known 3D models remains an active research topic [14, 20,

65], with recent methods using advanced physical simulation

to find optimal grasps. Gallegos et al. [18] performed opti-

mization of grasps given both a 3D model of the object to be

grasped and the desired contact points for the robotic gripper.

Pokorny et al. [48] define spaces of graspable objects, then

map new objects to these spaces to discover grasps. However,

these works are only applicable when the full 3D model of

the object is exactly known, which may not be the case when

a robot is interacting with a new environment. We note that

some of these physics-based approaches might be combined

with our approach in a multi-pass system, discussed further in

Sec. IX.

Sensing for Grasping: In a real-world robotic setting, a robot

will not have full knowledge of the 3D model and pose of an

object to be grasped, but rather only incomplete information

from some set of sensors such as color or depth cameras,

tactile sensors, etc. This makes the problem of grasping

significantly more challenging [4], as the algorithm must use

more limited and potentially noisier information to detect a

good grasp. While some works [10, 46] simply attempt to

estimate the poses of known objects and then apply full-model

grasping algorithms based on these results, others avoid this

assumption, functioning on novel objects which the algorithm

has not seen before.

Such works often made use of other simplifying assump-

tions, such as assuming that objects belong to one of a

set of primitive shapes [47, 6], or are planar [42]. Other

works produced impressive results for specific cases, such as

grasping the corners of towels [40]. While such works escape

the assumption of a fully-known object model, hand-coded

grasping rules have a hard time dealing with the wide range

of objects seen in real-world human environments, and are



difficult and time-consuming to create.

Learning for Grasping: Machine learning methods have

proven effective for a wide range of perception problems

[64, 22, 38, 59, 3], allowing a perception system to learn

a mapping from some feature set to various visual proper-

ties. Early work by Kamon et al. [31] showed that learning

approaches could also be applied to the problem of grasping

from vision, introducing a learning component to grasp quality

scores.

Recent works have employed richer features and learning

methods, allowing robots to grasp known objects which might

be partially occluded [27] or in an unknown pose [13] as

well as fully novel objects which the system has not seen

before [54]. Here, we will address the latter case. Earlier

work focused on detecting only a single grasping point from

2D partial-view data, using heuristic methods to determine

a gripper pose based on this point. [55]. The use of 3D

data was shown to significantly improve these results [56]

thanks to giving direct physical information about the object

in question. With the advent of low-cost RGB-D sensors such

as the Kinect, the use of depth data for robotic grasping has

become ubiquitous.

Several other works attempted to use the learning algorithm

to more fully constrain the detected grasps. Ekvall and Kragic

[15] and Huebner and Kragic [23] used shape-based approxi-

mations as bases for learning algorithms which directly gave

an approach vector. Le et al. [36] treated grasp detection as a

ranking problem over sets of contact points in image space.

Jiang et al. [28] represented a grasp as a 2D oriented rectangle

in image space, with two edges corresponding to the gripper

plates, using surface normals to determine the grasp approach

vector. These approaches allow the detection algorithm to

detect more exactly the gripper pose which should be used

for grasping. In this work, we will follow the rectangle-based

method.

Learning-based approaches have shown impressive results

in grasping novel objects, showing that learning some param-

eters of the detection system can outperform human tuning.

However, these approaches still require a significant degree of

hand-engineering in the form of designing good input features.

Other Applications with RGBD Data. Due to the avail-

ability of inexpensive depth sensors, RGB-D data has been a

significant research focus in recent years for various robotics

applications. For example, Jiang et al. [30] consider robotic

placement of objects, while Teuliere and Marchand [63] used

RGB-D data for visual servoing. Several works, including

those of Endres et al. [16] and Whelan et al. [66] have ex-

tended and improved Simultaneous Localization and Mapping

(SLAM) for RGB-D data. Object detection and recognition

has been a major focus in research on RGB-D data [11, 33, 7].

Most such works use hand-engineered features such as [52].

The few works that perform feature learning for RGB-D data

[59, 3] largely ignore the multimodal nature of the data, not

distinguishing the color and depth channels. Here, we present

a structured regularization approach which allows us to learn

more robust features for RGB-D and other multimodal data.

B. Deep Learning

Deep learning approaches have demonstrated the ability to

learn useful features directly from data for a wide variety of

tasks. Early work by Hinton and Salakhutdinov [22] showed

that a deep network trained on images of hand-written digits

will learn features corresponding to pen-strokes. Later work

using localized convolutional features [38] showed that these

networks learn features corresponding to object parts when

trained on natural images. This demonstrates that even the

basic features learned by these systems will adapt to the data

given. In fact, these approaches are not restricted to the visual

domain, but rather have been shown to learn useful features for

a wide range of domains, such as audio [39, 41] and natural

language data [12].

Deep Learning for Detection: However, the vast majority

of work in deep learning focuses on classification problems.

Only a handful of previous works have applied these methods

to detection problems [45, 37, 9]. For example, Osadchy et al.

[45] and LeCun et al. [37] applied a deep energy-based model

to the problem of face detection, Sermanet et al. [57] applied

a convolutional neural network for pedestrian detection, and

Coates et al. [9] used a deep learning approach to detect text in

images. Girshick et al. [19] used learned convolutional features

over image regions for object detection, while Szegedy et al.

[62] used a multi-scale approach based on deep networks for

the same task.

All these approaches focused on object detection and similar

problems, in which the goal is to find a bounding box

which tightly contains the item to be detected, and for each

item, all valid bounding boxes will be similar. However, in

robotic grasp detection, there may be several valid grasps for

an object in different regions, making it more important to

select the one with the highest chance success. In addition,

orientation matters much more to robotic grasp detection, as

most grasps will only be viable for a small subset of the

possible gripper orientations. Our approach to grasp detection

will also generalize across object classes, and even to classes

never seen before by the system, as opposed to the class-

specific nature of object detection.

Multimodal Deep Learning: Recent works in deep learning

have extended these methods to handle multiple modalities

of input data, such as audio and video [43], text and image

data [61], and even RGB-D data [59, 3]. However, all of these

approaches have fallen into two camps - either learning com-

pletely separate low-level features for each modality [43, 61],

or simply concatenating the modalities [59, 3]. The former

approaches have proven effective for data where the basic

modalities differ significantly, such as the aforementioned case

of text and images, while the latter is more effective in cases

where the modalities are more similar, such as RGB-D data.

For some new combinations of modalities and tasks, it

may not be clear which of these approaches will give better

performance. In fact, in the ideal feature set, different features



Fig. 2: Detecting and executing grasps: From left to right: Our system obtains an RGB-D image from a Kinect mounted on the robot,
and searches over a large space of possible grasps, for which some candidates are shown. For each of these, it extracts a set of raw features
corresponding to the color and depth images and surface normals, then uses these as inputs to a deep network which scores each rectangle.
Finally, the top-ranked rectangle is selected and the corresponding grasp is executed using the parameters of the detected rectangle and the
surface normal at its center. Red and green lines correspond to gripper plates, blue in RGB-D features indicates masked-out pixels.

may use different subsets of the modalities. In this work, we

will give a structured regularization method which guides the

learning algorithm to select such subsets, without imposing

hard constraints on network structure.

Structured Learning and Structured Regularization: Sev-

eral approaches have been proposed which attempt to use a

specially-designed regularization function to impose structure

on a set of learned parameters without directly enforcing it.

Jalali et al. [26] used a group regularization function in the

multitask learning setting, where one set of features is used for

multiple tasks. This function applies high-order regularization

separately to particular groups of parameters. Their function

regularized the number of features used for each task in a set of

multi-class classification tasks solved by softmax regression.

Intuitively, this encodes the belief that only some subset of

the input features will be useful for each task, but this set of

useful features might vary between tasks.

A few works have also explored the use of structured

regularization in deep learning. The Topographic ICA algo-

rithm [24] is a feature-learning approach that applies a similar

penalty term to feature activations, but not to the weights

themselves. Coates and Ng [8] investigate the problem of

selecting receptive fields, i.e., subsets of the input features

to be used together in a higher-level feature. The structure

of the network is learned first, then fixed before learning the

parameters of the network.

III. DEEP LEARNING FOR GRASP DETECTION:

SYSTEM AND MODEL

In this work, we will present an algorithm for robotic grasp

detection from a single RGB-D view. Our approach will be

based on machine learning, but distinguish itself from previous

approaches by learning not only the weights used to rank

prospective grasps, but also the features used to rank them,

which were previously hand-engineered.

We will do this using deep learning methods, learning a

set of RGB-D features which will be extracted from each

candidate grasp, then used to score that grasp. Our approach

will include a structured multimodal regularization method

which improves the quality of the features learned from

RGB-D data without constraining network structure.

In our system for robotic grasping, as shown in Fig. 2, the

robot first obtains an RGB-D image of the scene containing

objects to be grasped. A small deep network is used to score

potential grasps in this image, and a small candidate set of the

top-ranked grasps is provided to a larger deep network, which

yields a single best-ranked grasp.

In this work, we will represent potential grasps using

oriented rectangles in the image plane as seen on the left in

Fig. 2, with one pair of parallel edges corresponding to the

robotic gripper [28]. Each rectangle is thus parameterized by

the X and Y coordinates of its upper-left corner, its width,

height, and orientation in the image plane, giving a five-

dimensional search space for potential grasps. Grasps will be

ranked based on features extracted from the RGB-D image

region contained inside their corresponding rectangle, aligned

to the gripper plates, as seen in the center of Fig. 2.

To translate a rectangle such as that shown on the right in

Fig. 2 into a gripper pose for grasping we find the point with

the minimum depth inside the central third (horizontally) of

the rectangle. We then use the averaged surface normal around

this point to determine the approach vector for the gripper.

The orientation of the detected rectangle is translated to a

rotation around this vector to orient the gripper. We use the

X-Y coordinates of the rectangle center along with the depth

of the closest point to determine a grasping point in the robot’s

coordinate frame. We compute a pre-grasp position by shifting

10 cm back from the grasping point along this approach vector

and position the gripper at this point. We then approach the

object along the approach vector and grasp it.

Using a standard feature learning approach such as sparse

auto-encoder [21], a deep network can be trained for the

problem of grasping rectangle recognition (i.e., does a given

rectangle in image space correspond to a valid robotic grasp?).



Fig. 3: Illustration of our two-stage detection process: Given an image of an object to grasp, a small deep network is used to exhaustively
search potential rectangles, producing a small set of top-ranked rectangles. A larger deep network is then used to find the top-ranked rectangle
from these candidates, producing a single optimal grasp for the given object.

Fig. 4: Deep network and auto-encoder: Left: A deep network
with two hidden layers, which transform the input representation,
and a logistic classifier at the top layer, which uses the features
from the second hidden layer to predict the probability of a grasp
being feasible. Right: An auto-encoder, used for pretraining. A set of
weights projects input features to a hidden layer. The same weights
are then used to project these hidden unit outputs to a reconstruction
of the inputs. In the sparse auto-encoder (SAE) algorithm, the hidden
unit activations are also penalized.

However, in a real-world robotic setting, our system needs to

perform detection (i.e., given an image containing an object,

how should the robot grasp it?). This task is significantly more

challenging than simple recognition.

Two-stage Cascaded Detection: In order to perform detec-

tion, one naive approach could be to consider each possible

oriented rectangle in the image (perhaps discretized to some

level), and evaluate each rectangle with a deep network

trained for recognition. However, such near-exhaustive search

of possible rectangles (based on positions, sizes, and orienta-

tions) can be quite expensive in practice for real-time robotic

grasping.

Motivated by multi-step cascaded approaches in previous

work [28, 64], we instead take a two-stage approach to

detection: First, we use a reduced feature set to determine

a set of top candidates. Then, we use a larger, more robust

feature set to rank these candidates.

However, these approaches require the design of two sepa-

rate sets of features. In particular, it can be difficult to manually

design a small set of first-stage features which is both quick to

compute and robust enough to produce a good set of candidate

detections for the second stage. Using deep learning allows us

to circumvent the costly manual design of features by simply

training networks of two different sizes, using the smaller for

the exhaustive first pass, and the larger to re-rank the candidate

detection results.

Model: To detect robotic grasps from the rectangle repre-

sentation, we model the probability of a rectangle G(t), with

features x(t) ∈ R
N being graspable, using a random variable

ŷ(t) ∈ {0, 1} which indicates whether or not we predict G(t) to

be graspable. We use a deep network, as shown in Fig. 4-left,

with two layers of sigmoidal hidden units h[1] and h[2], with

K1 and K2 units per layer, respectively. A logistic classifier

over the outputs of the second-layer hidden units then predicts

P (ŷ(t)|x(t); Θ), so chosen because ground-truth graspability is

represented as binary. Each layer ℓ will have a set of weights

W [ℓ] mapping from its inputs to its hidden units, so the param-

eters of our model are Θ = {W [1],W [2],W [3]}. Each hidden

unit forms output by a sigmoid σ(a) = 1/(1+exp(−a)) over

its weighted input:

h
[1](t)
j = σ

(

N
∑

i=1

x
(t)
i W

[1]
i,j

)

h
[2](t)
j = σ

(

K1
∑

i=1

h
[1](t)
i W

[2]
i,j

)

P (ŷ(t) = 1|x(t); Θ) = σ

(

K2
∑

i=1

h
[2](t)
i W

[3]
i

)

(1)

A. Inference and Learning

During inference, our goal is to find the single grasping

rectangle with the maximum probability of being graspable for

some new object. With G representing a particular grasping

rectangle position, orientation, and size, we find this best

rectangle as:

G∗ = arg max
G

P (ŷ(t) = 1|φ(G); Θ) (2)

Here, the function φ extracts the appropriate input representa-

tion for rectangle G.

During learning, our goal is to learn the parameters Θ that

optimize the recognition accuracy of our system. Here, input

data is given as a set of pairs of features x(t) ∈ R
N and



ground-truth labels y(t) ∈ {0, 1} for t = 1, . . . ,M . As in most

deep learning works, we use a two-phase learning approach.

In the first phase, we will use unsupervised feature learning

to initialize the hidden-layer weights W [1] and W [2]. Pre-

training weights this way is critical to avoid overfitting. We

will use a variant of a sparse auto-encoder (SAE) [21], as

illustrated in Fig. 4-right. We define g(h) as a sparsity penalty

function over hidden unit activations, with λ controlling its

weight. With f(W ) as a regularization function, weighted

by β, and x̂(t) as the reconstruction of x(t), SAE solves the

following to initialize hidden-layer weights:

W ∗ = arg min
W

M
∑

t=1

(||x̂(t) − x(t)||22 + λ

K
∑

j=1

g(h
(t)
j )) + βf(W )

h
(t)
j = σ(

N
∑

i=1

x
(t)
i Wi,j)

x̂
(t)
i =

K
∑

j=1

h
(t)
j Wi,j (3)

We first use this algorithm to initialize W [1] to reconstruct x.

We then fix W [1] and learn W [2] to reconstruct h[1].
During the supervised phase of the learning algorithm, we

then jointly learn classifier weights W [3] and fine-tune hidden

layer weights W [1] and W [2] for recognition. We maximize the

log-likelihood of the data along with regularization penalties

on hidden layer weights:

Θ∗ = arg max
Θ

M
∑

t=1

logP (ŷ(t) = y(t)|x(t); Θ)

− β1f(W
[1])− β2f(W

[2]) (4)

Two-stage Detection Model: During inference for two-stage

detection, we will first use a smaller network to produce a set

of the top T rectangles with the highest probability of being

graspable according to network parameters Θ1. We will then

use a larger network with a separate set of parameters Θ2 to

re-rank these T rectangles and obtain a single best one. The

only change to learning for the two-stage model is that these

two sets of parameters are learned separately, using the same

approach.

IV. SYSTEM DETAILS

In this section, we will define the set of raw features which

our system will use, forming x in the equations above, and how

they are extracted from an RGB-D image. Some examples of

these features are shown in Fig 2.

Our algorithm uses only local information - specifically, we

extract the RGB-D sub-image contained within each rectangle,

and use this to generate features for that rectangle. This image

is rotated so that its left and right edges correspond to the

gripper plates, and then re-scaled to fit inside the network’s

receptive field.

From this 24x24 pixel image, seven channels’ worth of

features are extracted, giving 24x24x7 = 4032 input features.

Fig. 5: Preserving aspect ratio: Left: a pair of sunglasses with
a potential grasping rectangle. Red edges indicate gripper plates.
Center: image taken from the rectangle and rescaled to fit a square
aspect ratio. Right: same image, padded and centered in the receptive
field. Blue areas indicate masked-out padding. When rescaled, the
rectangle incorrectly appears graspable. Preserving aspect ratio and
padding allows the rectangle to correctly appear non-graspable.

Fig. 6: Improvement from mask-based scaling: Left: Result with-
out mask-based scaling. Right: Result with mask-based scaling.

The first three channels are the image in YUV color space,

used because it represents image intensity and color separately.

The next is simply the depth channel of the image. The last

three are the X, Y, and Z components of surface normals

computed based on the depth channel. These are computed

after the image is aligned to the gripper so that they are always

relative to the gripper plates.

A. Data Pre-Processing

Whitening data is critical for deep learning approaches to

work well, especially in cases such as multimodal data where

the statistics of the input data may vary greatly. While PCA-

based approaches have been shown to be effective [25], they

are difficult to apply in cases such as ours where large portions

of the data may be masked out.

Depth data, in particular, can be difficult to whiten because

the range of values may be very different for different patches

in the image. Thus, we first whiten each depth patch indi-

vidually, subtracting the patch-wise mean and dividing by the

patch-wise standard deviation, down to some minimum.

For multimodal data, the statistics of the data for each

modality should match as closely as possible, to avoid learning

features which are biased towards or away from using partic-

ular modes. This is particularly important when regularizing

each modality separately, as in our approach. Thus, we drop

mean values for each feature separately, but scale the data for

each channel by dividing by the standard deviation of all its

features combined.

B. Preserving Aspect Ratio.

It is important for to preserve aspect ratio when feeding

features into the network. This is because distorting image fea-

tures may cause non-graspable rectangles to appear graspable,

as shown in Fig. 5. However, padding with zeros can cause

rectangles with less padding to receive higher graspability



Fig. 7: Three possible models for multimodal deep learning: Left: fully dense model—all visible features are concatenated and modality
information is ignored. Middle: modality-specific sparse model - separate first layer features are trained for each modality. Right: group-sparse
model—a structured regularization term encourages features to use only a subset of the input modes.

scores, as the network will have more nonzero inputs. It is

important to account for this because in many cases the ideal

grasp for an object might be represented by a thin rectangle

which would thus contain many zero values in its receptive

field from padding.

To address this problem, we scale up the magnitude of the

available input for each rectangle based on the fraction of

the rectangle which is masked out. In particular, we define a

multiplicative scaling factor for the inputs from each modality,

based on the fraction of each mode which is masked out, since

each mode may have a different mask.

In the multimodal setting, we assume that the input data x is

known to come from R distinct modalities, for example audio

and video data, or depth and RGB data. We define the modality

matrix S as an RxN binary matrix, where each element Sr,i

indicates membership of visible unit xi in a particular modality

r, such as depth or image intensity. The scaling factor for mode

r is then defined as: Ψ
(t)
r =

∑N
i=1 Sr,i/

(

∑N
i=1 Sr,iµ

(t)
i

)

,

where µ
(t)
i is 1 if x

(t)
i is masked in, 0 otherwise. The scaling

factor for case i is: ψ
(t)
i =

∑R
r=1 Sr,iΨ

(t)
r .

We could simply scale up each value of x by its correspond-

ing scale factor when training our model, as x′
(t)
i = ψ

(t)
i x

(t)
i .

However, since our sparse autoencoder penalizes squared error,

scaling x linearly will scale the error for the corresponding

cases quadratically, causing the learning algorithm to lend

increased significance to cases where more data is masked out.

Instead, we can use the scaled x′ as input to the network, but

penalize reconstruction based on the original x, only scaling

after the squared error has been computed:

W ∗ = arg min
W

M
∑

t=1





N
∑

i=1

ψ
(t)
i (x̂

(t)
i − x

(t)
i )2 + λ

K
∑

j=1

g(h
(t)
j )





(5)

We redefine the hidden units to use the scaled visible input:

h
(t)
j = σ

(

N
∑

i=1

x′
(t)
i Wi,j

)

(6)

This approach is equivalent to adding additional, potentially

fractional, ‘virtual’ visible units to the model based on the

scaling factor for each mode. In practice, we found it necessary

to limit the scaling factor to a maximum of some value c, as

Ψ′(t)
r = min(Ψ

(t)
r , c).

As shown in Table III our mask-based scaling technique at

the visible layer improves grasping results by over 25% for

both metrics. As seen in Figure 6, it removes the network’s

inherent bias towards square rectangles, exhibiting a much

wider range of aspect ratios that more closely matches that

of the ground-truth data.

V. STRUCTURED REGULARIZATION FOR

FEATURE LEARNING

A naive way of applying feature learning to multimodal

data is to simply take x (as a concatenated vector) as input

to the model described above, ignoring information about

specific modalities, as seen on the lefthand side of Figure 7.

This approach may either 1) prematurely learn features which

include all modalities, which can lead to overfitting, or 2) fail

to learn associations between modalities with very different

underlying statistics.

Instead of concatenating multimodal input as a vector,

Ngiam et al. [43] proposed training a first layer representation

for each modality separately, as shown in Figure 7-middle.

This approach makes the assumption that the ideal low-level

features for each modality are purely unimodal, while higher-

layer features are purely multimodal. This approach may work

better for some problems where the modalities have very

different basic representations, such as the video and audio

data (as used in [43]), so that separate first layer features

may give better performance. However, for modalities such

as RGB-D data, where the input modes represent different

channels of an image, learning low-level correlations can lead

to more robust features – our experiments in Section VI show

that simply concatenating the input modalities significantly

outperforms training separate first-layer features for robotic

grasp detection from RGB-D data.

For many problems, it may be difficult to tell which of these

approaches will perform better, and time-consuming to tune

and comparatively evaluate multiple algorithms. In addition,

the ideal feature set for some problems may contain features



(a) Features corresponding to positive grasps. (b) Features corresponding to negative grasps.

Fig. 8: Features learned from grasping data: Each feature contains seven channels - from left to right, depth, Y, U, and V image channels,
and X, Y, and Z surface normal components. Vertical edges correspond to gripper plates. Left: eight features with the strong positive
correlations to rectangle graspability. Right: similar, but negative correlations. Group regularization eliminates many modalities from many
of these features, making them more robust.

which use some, but not all, of the input modalities, a case

which neither of these approaches are designed to handle.

To solve these problems, we propose a new algorithm for

feature learning for multimodal data. Our approach incorpo-

rates a structured penalty term into the optimization problem

to be solved during learning. This technique allows the model

to learn correlated features between multiple input modalities,

but regularizes the number of modalities used per feature

(hidden unit), discouraging the model from learning weak

correlations between modalities. With this regularization term,

the algorithm can specify how mode-sparse or mode-dense the

features should be, representing a continuum between the two

extremes outlined above.

Regularization in Deep Learning: In a typical deep learn-

ing model, L2 regularization (i.e., f(W ) = ||W ||22) or L1

regularization (i.e., f(W ) = ||W ||1) are commonly used in

training (e.g., as specified in Equations (3) and (4)). These are

often called a “weight cost” (or “weight decay”), and are left

implicit in many works.

Applying regularization is well known to improve the gen-

eralization performance of feature learning algorithms. One

might expect that a simple L1 penalty would eliminate weak

correlations in multimodal features, leading to features which

use only a subset of the modes each. However, we found that in

practice, a value of β large enough to cause this also degraded

the quality of features for the remaining modes and lead to

decreased task performance.

Multimodal Regularization: Structured regularization, such

as in [26], takes a set of groups of weights, and applies

some regularization function (typically high-order) separately

to each group. In our structured multimodal regularization

algorithm, each modality will be used as a regularization group

separately for each hidden unit. For example, a group-wise p-

norm would be applied as:

f(W ) =

K
∑

j=1

R
∑

r=1

(

N
∑

i=1

Sr,i|W
p
i,j |

)1/p

(7)

where Sr,i is 1 if feature i belongs to group r and 0 otherwise.

Using a high value of p allows us to penalize higher-valued

weights from each mode to each feature more strongly than

lower-valued ones. This also means that forming a high-valued

weight in a group with other high-valued weights will accrue

a lower additional penalty than doing so for a group with

only low-valued weights. At the limit (p → ∞), this group

regularization becomes equivalent to the infinity (or max)

norm:

f(W ) =
K
∑

j=1

R
∑

r=1

max
i
Sr,i|Wi,j | (8)

which penalizes only the maximum weight from each mode to

each feature. In practice, the infinity norm is not differentiable

and therefore is difficult to apply gradient-based optimization

methods; in this paper, we use the log-sum-exponential as a

differentiable approximation to the max norm.

In experiments, this regularization function produces first-

layer weights concentrated in fewer modes per feature. How-

ever, we found that at values of β sufficient to induce the

desired mode-wise sparsity patterns, penalizing the maximum

also had the undesirable side-effect of causing many of the

weights for other modes to saturate at their mode’s maximum,

suggesting that the features were overly constrained. In some

cases, constraining the weights in this manner also caused

the algorithm to learn duplicate (or redundant) features, in

effect scaling up the feature’s contribution to reconstruction to

compensate for its constrained maximum. This is obviously an

undesirable effect, as it reduces the effective size (or diversity)

of the learned feature set.

This suggests that the max-norm may be overly con-

straining. A more desirable sparsity function would penalize

nonzero weight maxima for each mode for each feature

without additional penalty for larger values of these maxima.

We can achieve this effect by applying the L0 norm, which

takes a value of 0 for an input of 0, and 1 otherwise, on top

of the max-norm from above:

f(W ) =

K
∑

j=1

R
∑

r=1

I{(max
i
Sr,i|Wi,j |) > 0} (9)

where I is the indicator function, which takes a value of 1

if its argument is true, 0 otherwise. Again, for a gradient-

based method, we used an approximation to the L0 norm,

such as log(1+x2). This regularization function now encodes



Fig. 9: Example objects from the Cornell grasping dataset: [28].
This dataset contains objects from a large variety of categories.

a direct penalty on the number of modes used for each

weight, without further constraining the weights of modes with

nonzero maxima.

Figure 8 shows features learned from the unsupervised stage

of our group-regularized deep learning algorithm. We discuss

these features, and their implications for robotic grasping, in

Section VII.

VI. EXPERIMENTS

A. Dataset

We used the extended version of the Cornell grasping

dataset for our experiments. This dataset, along with code for

this paper, is available at http://pr.cs.cornell.edu/

deepgrasping. We note that this is an updated version

of the dataset used in [28], containing several more complex

objects, and thus results for their algorithms will be different

from those in [28]. This dataset contains 1035 images of

280 graspable objects, several of which are shown in Fig. 9.

Each image is annotated with several ground-truth positive

and negative grasping rectangles. While the vast majority of

possible rectangles for most objects will be non-graspable, the

dataset contains roughly equal numbers of graspable and non-

graspable rectangles. We will show that this is useful for an

unsupervised learning algorithm, as it allows learning a good

representation for graspable rectangles even from unlabeled

data.

We performed five-fold cross-validation, and present results

for splits on per image (i.e., the training set and the validation

set do not share the same image) and per object (i.e., the

training set and the validation set do not share any images

from the same object) basis. Hyper-parameters were selected

by validating performance on a separate set of 300 grasps not

used in any of the cross-validation splits.

We take seven 24x24 pixel channels as described in Sec-

tion IV as input, giving 4032 input features to each network.

We trained a deep network with 200 hidden units each at

the first and second layers using our learning algorithm as

described in Sections III and V. Training this network took

roughly 30 minutes. For trials involving our two-pass system,

we trained a second network with 50 hidden units at each

layer in the same manner. During inference we performed an

TABLE I: Recognition results for Cornell grasping dataset.

Algorithm Accuracy (%)

Chance 50
Jiang et al. [28] 84.7
Jiang et al. [28] + FPFH 89.6
Sparse AE, separate layer-1 feat. 92.8
Sparse AE 93.7

Sparse AE, group reg. 93.7

exhaustive search using this network, then used the 200-unit

network to re-rank the 100 highest-ranked rectangles found by

the 50-unit network.

B. Baselines

We compare our recognition results in the Cornell grasping

dataset with the features from [28], as well as the combination

of these features and Fast Point Feature Histogram (FPFH)

features [51]. We used a linear SVM for classification, which

gave the best results among all other kernels. We also report

chance performance, obtained by randomly selecting a label

in the recognition case, and randomly assigning scores to

rectangles in the detection case.

We also compare our algorithm to other deep learning

approaches. We compare to a network trained only with

standard L1 regularization, and a network trained in a manner

similar to [43], where three separate sets of first layer features

are learned for the depth channel, the combination of the Y,

U, and V channels, and the combination of the X, Y, and Z

surface normal components.

C. Metrics for Detection

For detection, we compare the top-ranked rectangle for

each method with the set of ground-truth rectangles for each

image. We present results using two metrics, the “point” and

“rectangle” metric.

For the point metric, similar to Saxena et al. [55], we com-

pute the center point of the predicted rectangle, and consider

the grasp a success if it is within some distance from at least

one ground-truth rectangle center. We note that this metric

ignores grasp orientation, and therefore might overestimate the

performance of an algorithm for robotic applications.

For the rectangle metric, similar to Jiang et al. [28], let G be

the top-ranked grasping rectangle predicted by the algorithm,

and G∗ be a ground-truth rectangle. Any rectangles with

an orientation error of more than 30o from G are rejected.

From the remaining set, we use the common bounding box

evaluation metric of intersection divided by union - i.e.

Area(G∩G∗)/Area(G∪G∗). Since a ground-truth rectangle

can define a large space of graspable rectangles (e.g., covering

the entire length of a pen), we consider a prediction to be

correct if it scores at least 25% by this metric.

VII. RESULTS AND DISCUSSION

A. Deep Learning for Robotic Grasp Detection

Figure 8 shows the features learned by the unsupervised

phase of our algorithm which have a high correlation to

http://pr.cs.cornell.edu/deepgrasping
http://pr.cs.cornell.edu/deepgrasping
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Fig. 10: Learned 3D depth features: 3D meshes for depth channels of the four features with strongest positive (top) and negative(bottom)
correlations to rectangle graspability. Here X and Y coordinates corresponds to positions in the deep network’s receptive field, and Z
coordinates corresponds to weight values to the depth channel for each location. Feature shapes clearly correspond to graspable and non-
graspable structures, respectively.

positive and negative grasping cases. Many of these features

show non-zero weights to the depth channel, indicating that

it learns the correlation of depths to graspability. We can see

that weights to many of the modalities for these features have

been eliminated by our structured regularization approach. In

particular, many of these features lack weights to the U and V

(3rd and 4th) channels, which correspond to color, allowing

the system to be more robust to different-colored objects.

Figure 10 shows 3D meshes for the depth channels of

the four features with the strongest positive and negative

correlations to valid grasps. Even without any supervised infor-

mation, our algorithm was able to learn several features which

correlate strongly to graspable cases and non-graspable cases.

The first two positive-correlated features represent handles,

or other cases with a raised region in the center, while the

second two represent circular rims or handles. The negatively-

correlated features represent obviously non-graspable cases,

such as ridges perpendicular to the gripper plane and “valleys”

between the gripper plates. From these features, we can see

that even during unsupervised feature learning, our approach

is able to learn a representation useful for the task at hand,

thanks purely to the fact that the data used is composed of

half graspable and half non-graspable cases.

From Table I, we see that the recognition performance is

significantly improved with deep learning methods, improving

9% over the features from [28] and 4.1% over those features

combined with FPFH features. Both L1 and group regulariza-

tion performed similarly for recognition, but training separate

first layer features decreased performance slightly. This shows

that learned features, in addition to avoiding hand-design, are

able to improve performance significantly over the state of

the art. It demonstrates that a deep network is able to learn

the concept of “graspability” in a way that generalizes to new

objects it hasn’t seen before.

Table II shows that even using any one of the three input

modalities (RGB, depth, or surface normals), our algorithm

is able to learn features which outperform hand-engineered

ones for recognition. Depth gives the highest performance

of any single-mode network. Combining depth and normal

TABLE II: Recognition results for different modalities, for a deep
network pre-trained using SAE.

Modes Accuracy (%)

Chance 50
RGB 90.3
Depth 92.4
Surf. Normals 90.3
Depth + Surf. Normals 92.8
RGB + Depth + Surf. Normals 93.7

information improves results over either alone, indicating that

they give non-redundant information.

The highest accuracy is still obtained by using all the

input modalities. This shows that combining depth and color

information leads to a system which is more robust than

either modality alone. This is due to the fact that some

graspable cases (rims of monochromatic objects, etc.) can only

be detected using depth information, while in others, the depth

channel may be extremely noisy, requiring the use of color

information. From this, we can see that integrating multimodal

information, a major focus of this work, is important in

recognizing good robotic grasps.

Table III shows that the performance gains from deep learn-

ing for recognition carry over to detection, as well. Once mask-

based scaling has been applied, all deep learning approaches

except for training separate first-layer features outperform the

hand-engineered features from [28] by up to 13% for the point

metric and 17% for the rectangle metric, while also avoiding

the need to design task-specific features. Without mask-based

scaling, the system performs poorly, due to the bias illustrated

in Fig. 6. Separate first-layer features also give weak detection

performance, indicating that the relative scores assigned by

this form of network are less robust than those learned using

our structured regularization approach.

Using structured multimodal regularization also improves

results over standard L1regularization by up to 1.8%, showing

that our method also learns more robust features than standard

approaches which ignore modality information. Even though

using the first-pass network alone underperforms the second-



TABLE III: Detection results for point and rectangle metrics, for
various learning algorithms.

Algorithm
Image-wise split Object-wise split
Point Rect Point Rect

Chance 35.9 6.7 35.9 6.7
Jiang et al. [28] 75.3 60.5 74.9 58.3
SAE, no mask-based scaling 62.1 39.9 56.2 35.4
SAE, separate layer-1 feat. 70.3 43.3 70.7 40.0
SAE, L1 reg. 87.2 72.9 88.7 71.4

SAE, struct. reg., 1st pass only 86.4 70.6 85.2 64.9

SAE, struct. reg., 2nd pass only 87.5 73.8 87.6 73.2
SAE, struct. reg. two-stage 88.4 73.9 88.1 75.6
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Fig. 11: Visualization of grasping scores for different grippers:
Red indicates maximum score for a grasp with left gripper plane
centered at each point, blue is similar for the right plate. Best-scoring
rectangle shown in green/yellow.

pass network alone by up to 8.3%, integrating both in our two-

pass system outperforms the solo second-pass network by up

to 2.4%. This shows that the two-pass system improves not

only efficiency, but accuracy as well. The performance gains

from multimodal regularization and the two-pass system are

discussed in detail below.

Our system outperforms all baseline approaches by all

metrics except for the point metric in the object-wise split

case. However, we can see that the chance performance is

much higher for the point metric than for the rectangle metric.

This shows that the point metric can overstate performance,

and the rectangle metric is a better indicator of the accuracy

of a grasp detection system.

Adaptability: One important advantage of our detection

system is that we can flexibly specify the constraints of the

gripper in our detection system. This is particularly important

for a robot like Baxter, where different objects might require

different gripper settings to grasp. We can constrain the

detectors to handle this. Figure 11 shows detection scores

for systems constrained based on two different settings of

Baxter’s gripper, one wide and one thin. The implications of

these results for other types of grippers will be discussed in

Section IX.

B. Multimodal Group Regularization

Our group regularization term improves detection accuracy

over simple L1 regularization. The improvement is more

significant for the object-wise split than for the image-wise

split because the group regularization helps the network to

avoid overfitting, which will tend to occur more when the

learning algorithm is evaluated on unseen objects.

Fig. 12: Improvements from group regularization: Cases where
our group regularization approach produces a viable grasp (shown
in green and yellow), while a network trained only with simple L1

regularization does not (shown in blue and red). Top: RGB image,
bottom: depth channel. Green and blue edges correspond to gripper.

Fig. 13: Improvements from two-stage system: Example cases
where the two-stage system produces a viable grasp (shown in green
and yellow), while the single-stage system does not (shown in blue
and red). Top: RGB image, bottom: depth channel. Green and blue
edges correspond to gripper.

Figure 12 shows typical cases where a network trained using

our group regularization finds a valid grasp, but a network

trained with L1 regularization does not. In these cases, the

grasp chosen by the L1-regularized network appears valid for

some modalities – the depth channel for the sunglasses and nail

polish bottle, and the RGB channels for the scissors. However,

when all modalities are considered, the grasp is clearly invalid.

The group-regularized network does a better job of combining

information from all modalities and is more robust to noise and

missing data in the depth channel, as seen in these cases.

C. Two-stage Detection System

Using our two-pass system enhanced both computational

performance and accuracy. The number of rectangles the full-

size network needed to evaluate was reduced by roughly a

factor of 1000. Meanwhile, detection performance increased

by up to 2.4% as compared to a single pass with the large-

size network, even though using the small network alone

significantly underperforms the larger network. In most cases,

the top 100 rectangles from the first pass contained the top-

ranked rectangle from an exhaustive search using the second-

stage network, and thus results were unaffected.

Figure 13 shows some cases where the first-stage network

pruned away rectangles corresponding to weak grasps which

might otherwise be chosen by the second-stage network. In



Fig. 14: Robotic experiment objects: Several of the objects used
in experiments, including challenging cases such as an oddly-shaped
RC car controller, a cloth towel, plush cat, and white ice cube tray.

these cases, the grasp chosen by the single-stage system might

be feasible for a robotic gripper, but the rectangle chosen by

the two-stage system represents a grasp which would clearly

be successful.

The two-stage system also significantly increases the com-

putational efficiency of our detection system. Average infer-

ence time for a MATLAB implementation of the deep network

was reduced from 24.6s/image for an exhaustive search using

the larger network to 13.5s/image using the two-stage system.

VIII. ROBOTIC EXPERIMENTS

In order to evaluate the performance of our algorithms in the

real world, we ran an extensive series of robotic experiments.

To explore the generalizability and effect of the robot on

the success rate of our algorithms, we performed experiments

on two different robotic platforms, a Baxter Research Robot

(“Yogi”) and a PR2 (“Kodiak”).

Baxter: The first platform used is our Baxter Research Robot,

which we call “Yogi.” Baxter has two arms with seven degrees

of freedom each and a maximum reach of 104 cm, although we

used only the left arm for these experiments. The end-effector

for this arm is a two-finger parallel gripper. We augmented the

gripper tips using rubber bands for additional friction. Baxter’s

grippers are interchangable, and we used two settings for these

experiments - a “wide” setting with an open width of 8 cm

and closed width of 4 cm, and a “thin” setting with an open

width of 4 cm and a closed width of 0 cm (completely closed,

gripper tips touching).

To detect grasps, we mounted a Kinect sensor to Yogi’s

head, approximately 1.75 m above the ground. angled down-

wards at roughly a 75o angle towards a table in front of it.

The Kinect gives RGB-D images at a resolution of 640x480

pixels. We calibrated the transformation between the Kinect’s

and Yogi’s coordinate frames by marking four points corre-

sponding to a set of 3D axes, and obtaining the coordinates

of these points in both Kinect’s and Yogi’s frames.

All control for Baxter was done by specifying an end-

effector position and orientation, and using the inverse kine-

matics provided with Baxter to determine a set of joint angles

for this pose. Baxter’s built-in control systems were used to

drive the arm to these new joint angles.

PR2: Our second platform was our PR2 robot, “Kodiak.”

Similar to Baxter, PR2 has two 7-DoF arms with approx-

imately 1 m reach, and we used only the left for these

experiments. PR2’s grippers open to a width of 8 cm, and

are capable of closing completely from that span, so we did

not need to use two settings as with Baxter. We augmented

PR2’s gripper friction with gaffer tape on the fingertips.

For the experiments on PR2, we used the Kinect already

mounted to Kodiak’s head, and used ROS’s built-in function-

ality to obtain 3D locations from that Kinect and transform

these to Kodiak’s body frame for manipulation. Control was

performed using the ee cart stiffness controller [5] with tra-

jectories provided by our own custom MATLAB code.

Experimental Setup: For each experiment, we placed a

single object within a 25 cm x 25 cm square on the ta-

ble, approximately 1.2 m below the mounting point of the

Kinect. This square was chosen to be well-contained within

each robot’s workspace, allowing objects to be reached from

most approach vectors. Object positions and orientations were

varied between trials, although objects were always placed in

configurations in which at least one viable grasp was visible

and accessible to the robot.

When using Baxter, due to the limited stroke (span from

open to closed) of its gripper, we pre-selected one of the

two gripper settings discussed above for each object. We

constrained the search space as illustrated in Fig. 11 to find

grasps for that particular setting.

To detect grasps, we first took an RGB-D image from the

Kinect with no objects in the scene as a background image.

The depth channel of this image was used to segment objects

from the scene, and to correct for the slant of the Kinect. Once

an object was segmented, we used our algorithm, as described

above, to obtain a single best-ranked grasping rectangle.

The search space for the first-pass network progressed in 15-

degree increments from 15 to 180 degrees (angles larger than

180 being mirror-images of grasps already tested), searching

over 10-pixel increments across the image for the X and Y

coordinates of the upper-left corner of the rectangle. For the

thin gripper setting, rectangle widths and heights from 10 to

40 pixels in 10-pixel increments were searched, while for the

thick setting these ranged from 40 pixels to 100 pixels in

20-pixel increments. In both cases, rectangles taller than they

were wide were ignored. Once a single best-scoring grasp was

detected, we translated it to a robotic grasp consisting of a

grasping point and an approach vector using the rectangle’s

parameters and the surface normal at the rectangle’s center as

described above.

To execute the grasp, we first positioned the gripper at

a location 10 cm back from the grasping point along the

approach vector. The gripper was oriented to the approach

vector, and rotated around it based on the orientation of the

detected grasping rectangle.

Since Baxter’s arms are highly compliant, slight impreci-

sions in end-effector positioning are to be expected – we found

that errors of up to 2 cm were typical. Thus, we implemented a

visual servoing system using its hand camera, which provides



TABLE IV: Results for robotic experiments for Baxter, sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)

Kitchen tools Lab tools Containers Toys Others

Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc.

Can opener 3 100 Kinect 5 100 Colored cereal box 3 100 Plastic whale 4 75 Electric shaver 3 100
Knife 3 100 Wire bundle 3 100 White cereal box 4 50 Plastic elephant 4 100 Umbrella 4 75
Brush 3 100 Mouse 3 100 Cap-shaped bowl 3 100 Plush cat 4 75 Desk lamp 3 100
Tongs 3 100 Hot glue gun 3 67 Coffee mug 3 100 RC controller 3 67 Remote control 5 100
Towel 3 100 Quad-rotor 4 75 Ice cube tray 3 100 XBox controller 4 50 Metal bookend 3 33
Grater 3 100 Duct tape roll 4 100 Martini glass 3 0 Plastic frog 3 67 Glove 3 100

Average 100 Average 90 Average 75 Average 72 Average 85

Overall 84

TABLE V: Results for robotic experiments for PR2, sorted by object category, for a total of 100 trials.
Tr. indicates number of trials, Acc. indicates accuracy (in terms of success percentage.)

Kitchen tools Lab tools Containers Toys Others

Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc. Object Tr. Acc.

Can opener 3 100 Kinect 5 100 Colored cereal box 3 100 Plastic whale 4 75 Electric shaver 3 100
Knife 3 100 Wire bundle 3 100 White cereal box 4 100 Plastic elephant 4 100 Umbrella 4 100
Brush 3 100 Mouse 3 100 Cap-shaped bowl 3 100 Plush cat 4 100 Desk lamp 3 100
Tongs 3 100 Hot glue gun 3 67 Coffee mug 3 100 RC controller 3 67 Remote control 5 100
Towel 3 100 Quad-rotor 4 100 Ice cube tray 3 100 XBox controller 4 25 Metal bookend 3 67
Grater 3 100 Duct tape roll 4 100 Martini glass 3 0 Plastic frog 3 67 Glove 3 100

Average 100 Average 95 Average 83 Average 72 Average 95

Overall 89

Fig. 15: Robots executing grasps: Our robots grasping several objects from the experimental dataset. Top row: Baxter grasping a quad-rotor
casing, coffee mug, ice cube tray, knife, and electric shaver. Middle row: Baxter grasping a desk lamp, cheese grater, umbrella, cloth towel,
and hot glue gun. Bottom row: PR2 grasping a plush cat, RC car controller, cereal box, toy elephant, and glove.



RGB images at a resolution of 320x200 pixels. We used color

segmentation to separate the object from the background, and

used its lateral position in image space to drive Yogi’s end-

effector to center the object. We did not implement visual

servoing for PR2 because its gripper positioning was found to

be precise to within 0.5 cm.

After visual servoing was completed, we drove the gripper

14 cm forwards from its current position along the approach

vector, so that the grasping point was well-contained within

it. We then closed the gripper, grasping the object, and moved

it 30 cm upwards. A grasp was determined to be successful if

it was sufficient to lift the object and hold it for one second.

Objects to be Grasped: For our robotic experiments, we

collected a diverse set of 35 objects within a size of .3 m x .3

m x .3 m and weighing at most 2.5 kg (although most were

less than 1 kg) from our offices, homes, and lab. Many of them

are shown in Fig. 14. Most of these objects were not present

in the training dataset, and thus were completely new to the

grasp detection algorithm.

Due to the physical limitations of the robots’ grippers,

we found that five of these objects were not graspable even

when given a hand-chosen grasp. The small pair of pliers

was too low to the table to grip properly. The spray paint

can was too smooth for the gripper to get enough friction

to lift it. The weight of the hammer was too imbalanced,

causing the hammer to rotate and slip out of the gripper when

grasped. Similar problems were encountered with the bicycle

U-lock. The bevel spatula’s handle was too close to the thin-

set size of Baxter’s gripper, so that we could not position

it precisely enough to grasp it reliably. We did not consider

these objects for purposes of our experimental results, since

our focus was on evaluating the performance of our grasp

detection algorithm.

Results: Table IV shows the results of our robotic experiments

on Baxter for the remaining 30 objects, a total of 100 trials.

Using our algorithm, Yogi was able to successfully execute a

grasp in 84% of the trials. Figure 15 shows Yogi executing

several of these grasps. In 8% of the trials, our algorithm

detected a valid grasp which was not executed correctly by

Yogi. Thus, we were able to successfully detect a good grasp

in 92% of the trials. Video of some of these trials is available

at http://pr.cs.cornell.edu/deepgrasping.

PR2 yielded a higher success rate as seen in Table V,

succeeding in 89% of trials. This is largely due to the much

wider span of PR2’s gripper from open to closed and its ability

to fully close from its widest position, as well as PR2’s ability

to apply a larger gripping force. Some specific instances where

PR2 and Baxter’s performance differed are discussed below.

For comparison purposes, we ran a small set of control

experiments for 16 of the objects in the dataset. The control

algorithm simply returned a fixed-size rectangle centered at the

object’s center of mass, as determined by depth segmentation

from the background. The rectangle was aligned so that the

gripper plates ran parallel to the object’s principal axis. This

algorithm was only successful in 31% of cases, significantly

underperforming our system.

On Baxter, our algorithm sometimes detected a grasp which

was not realizable by the current setting of its gripper, but

might be executable by others. For example, our algorithm

detected grasps across the leg of the plush cat, and the region

between the handle and body of the umbrella, both too thin

for the wide setting of Baxter’s gripper to grasp since it has

a minimum span of 4 cm. Since PR2’s gripper can close

completely from any position, it did not encounter these issues

and thus achieved a 100% success rate for both these objects.

The XBox controller proved to be a very difficult object for

either robot to grasp. From a top-down angle, there is only a

small space of viable grasps with a span of less than 8 cm, but

many which have either a slightly larger span (making them

non-realizable by either gripper), or are subtly non-viable (e.g.

grasps across the two “handles,” which tend to slip off.) All

viable grasps are very near to the 8 cm span of both grippers,

meaning that even slight imprecision in positioning can lead to

failure. Due to this, Baxter achieved a higher success rate for

the XBox controller thanks to visual servoing, succeeding in

50% of cases as compared to the 25% success rate for PR2.

Our algorithm was able to consistently detect and execute

valid grasps for a red cereal box, but had some failures on a

white and yellow one. This is because the background for all

objects in the dataset is white, leading the algorithm to learn

features relating white areas at the edges of the gripper region

to graspable cases. However, it was able to detect and execute

correct grasps for an all-white ice cube tray, and so does not

fail for all white objects. This could be remedied by extending

the dataset to include cases with different background colors.

Interestingly, even though the parameters of grasps detected

for the white box were similar for PR2 and Baxter, PR2 was

able to succeed in every case while Baxter succeeded only

half the time. This is because PR2’s increased gripper strength

allowed it to execute grasps across corners of the box, crushing

it slightly in the process.

Other failures were due to the limitations of the Kinect

sensor. We were never able to properly grasp the martini glass

because its glossy finish prevented Kinect from returning any

depth estimates for it. Even if a valid grasp were detected

using color information only, there was no way to infer a

proper grasping position without depth information. Grasps

for the metal bookend failed for similar reasons, but it was

not as glossy as the martini glass, and gave enough returns

for some to succeed.

However, our algorithm also had many noteworthy suc-

cesses. It was able to consistently detect and execute grasps for

a crumpled cloth towel, a complex and irregular case which

bore little resemblance to any object in the dataset. It was also

able to find and grasp the rims of objects such as the plastic

baseball cap and coffee mug, cases where there is little visual

distinction between the rim and body of the object. These

objects underscore the importance of the depth channel for

robotic grasping, as none of these grasps would be detectable

without depth information.

Our algorithm was also able to successfully detect and

http://pr.cs.cornell.edu/deepgrasping


execute many grasps for which the approach vector was non-

vertical. The grasps shown for the coffee mug, desk lamp,

cereal box, RC car controller, and toy elephant shown in

Fig. 15 were all executed by aligning the gripper to such an

approach vector. Indeed, many of these grasps may have failed

had the gripper been aligned vertically. This shows that our

algorithm is not restricted to detecting top-down grasps, but

rather encodes a more general notion of graspability which

can be applied to grasps from many angles, albeit within the

constraints of visibility from a single-view perspective.

While a few failures occurred, our algorithm still achieved

a high rate of accuracy for other oddly-shaped objects such

as the quad-rotor casing, RC car controller, and glue gun.

For objects with clearly defined handles, such as the cheese

grater, kitchen tongs, can opener, and knife, our algorithm was

able to detect and execute successful grasps in every trial,

showing that there is a wide range of objects which it can

grasp extremely consistently.

IX. DISCUSSION AND FUTURE WORK

Our algorithm focuses on the problem of grasp detection for

a two-fingered parallel-plate style gripper. It would be directly

applicable to other grippers with fixed configurations, simply

requiring new training data labeled with grasps for the gripper

in question. Our system would allow even the basic features

used for grasp detection to adapt to the gripper. This might be

useful in cases such as jamming grippers [29], or two-fingered

grippers with differently-shaped contact surfaces, which might

require different features to determine a graspable area.

Our detection algorithm does not directly address the prob-

lem of 3D orientation of the gripper – this orientation is

determined only after an optimal rectangle has been detected,

orienting the grasp based on the object’s surface normals.

However, just as our approach here considers aligns a 2D

feature window to the gripper, an extension of this work might

align a 3D window – using voxels, rather than pixels, as its

basic unit of representation for input features to the network.

This would allow the system to search across the full 6-DoF

3D pose of the gripper, while still leveraging the power of

feature learning.

Our system gives only a gripper pose as output, but multi-

fingered reconfigurable hands also require a configuration of

the fingers in order to grasp an object. In this case, our

algorithm could be used as a heuristic to find one or more

locations likely to be graspable (similar to the first pass in our

two-pass system), greatly reducing the search space needed to

find an optimal gripper configuration.

Our algorithm also depends only on local features to de-

termine grasping locations. However, many household objects

may have some areas which are strongly preferable to grasp

over others - for example, a knife might be graspable by

the blade, or a hot glue gun by the barrel, but both should

actually be grasped by their respective handles. Since these

regions are more likely to be labeled as graspable in the

data, our system already weakly encodes this, but some may

not be readily distinguishable using only local information.

Adding a term modeling the probability of each region of

the image being a semantically-appropriate area to grasp the

object would allow us to incorporate this information. This

term could be computed once for the entire image, then added

to each local detection score, keeping detection efficient.

In this work, our visual-servoing algorithm was purely

heuristic, simply attempting to center the segmented object

underneath the hand camera. However, in future work, a simi-

lar feature-learning approach might be applied to hand camera

images of graspable and non-graspable regions, improving the

visual servoing system’s ability to fine-tune gripper position

to ensure a good grasp.

Many robotics problems require the use of perceptual infor-

mation, but can be difficult and time-consuming to engineer

good features for, particularly when using RGB-D data. In

future work, our approach could be extended to a wide range

of such problems. Our system could easily be applied to

other detection problems such as object detection or obstacle

detection. However, it could also be adapted to other similar

problems, such as object tracking and visual servoing.

Multimodal data has become extremely important for

robotics, due both to the advent of new sensors such as the

Kinect and the application of robots to more challenging tasks

which require multiple modalities of information to perform

well. However, it can be very difficult to design features which

do a good job of integrating many modalities. While our

work focuses on color, depth, and surface normals as input

modes, our structured multimodal regularization algorithm

might also be applied to others. This approach could improve

performance while allowing roboticists to focus on other

engineering challenges.

X. CONCLUSIONS

We presented a system for detecting robotic grasps from

RGB-D data using a deep learning approach. Our method

has several advantages over current state-of-the-art methods.

First, using deep learning allows us to avoid hand-engineering

features, learning them instead. Second, our results show that

deep learning methods significantly outperform even well-

designed hand-engineered features from previous work.

We also presented a novel feature learning algorithm for

multimodal data based on group regularization. In extensive

experiments, we demonstrated that this algorithm produces

better features for robotic grasp detection than existing deep

learning approaches to multimodal data. Our experiments and

results, both offline and on real robotic platforms, show that

our two-stage deep learning system with group regularization

is capable of robustly detecting grasps for a wide range of

objects, even those previously unseen by the system.
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