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1 Problem title

The RTRBM describes the joint probability distribution of the visible units vector vt ∈
RNv , and hidden units vector ht ∈ RNh at time step t, using a conditional RBM which
depends on the hidden input rt−1. The RTRBM network is illustrated in Figure ??. The
joint probability distribution of vt,ht for any t > 1 (given rt−1) takes the following form:

P (vt,ht; rt−1) =
1

Zrt−1

exp{−E(vt,ht; rt−1)} (1.1)

E(vt,ht; rt−1) = −(h>t Wvt + c>vt + b>ht + h>t Urt−1),

where W ∈ RNh×Nv , U ∈ RNh×Nh , c ∈ RNv , b ∈ RNh are model parameters, and Zrt−1

denotes a normalization factor which depends on rt−1 and the other model parameters
(we used the subscript rt−1 since the dependency on the input rt−1 is the major difference
compared to the RBM). For t = 1, the joint distribution of v1,h1 takes the form of a
standard RBM with the hidden units biases binit ∈ RNh .
The inputs rt (where t ∈ {1, . . . , T − 1}) are obtained from a RNN given v1, ...,vt:

rt =

{
σ(Wvt + b + Urt−1), if t > 1

σ(Wvt + binit), if t = 1
(1.2)

where the logistic function σ(x) = (1 + exp(−x))−1 is applied to each element of its
argument vector. The motivation for the choice of rt is that using the RBM associated
with time instant t, we have that E[ht|vt] = rt; i.e., it is the expected value of the hidden
units vector.
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The joint probability distribution of the visible and hidden units of the RTRBM with
length T takes the form:

P ({vt,ht}Tt=1; {rt}T−1t=1 ) = P (v1,h1)
T∏
t=2

P (vt,ht; rt−1) =
exp{E({vt,ht}Tt=1; {rt}

T−1
t=1 )}

Z · Zr1 · · ·ZrT−1

(1.3)
where Z denotes the normalization factor for the first RBM at t = 1, and where

E({vt,ht}Tt=1; {rt}T−1t=1 ) = −
(
h>1 Wv1+c>v1+b>inith1+

T∑
t=2

(
h>t Wvt + c>vt + b>ht + h>t Urt−1

) )
(1.4)

Since Z,Zr1 . . . ZrT−1 are independent of {vt,ht}Tt=1; {rt}
T−1
t=1 , we can rewrite (1.3) using

P ({vt,ht}Tt=1; {rt}T−1t=1 ) =
exp{E({vt,ht}Tt=1; {rt}

T−1
t=1 )}

Z̄
(1.5)

where Z̄ =
∑
{v′t,ht}Tt=1

E({v′t,ht}Tt=1; {rt}
T−1
t=1 ). Note that {rt}T−1t=1 are not a function of

{v′t}Tt=1.

1.1 Inference in the RTRBM

Given the hidden inputs rt−1 (t > 1), the conditional distributions are factorized and
take the form:

P (ht,j = 1|vt, rt−1) = σ(
∑
i

wj,ivt,i + bj +
∑
l

uj,mrt−1,m),

P (vt,i = 1|ht, rt−1) = σ(
∑
j

wj,iht,j + ci), (1.6)

For t = 1, the posterior of h1 given v1 has the same for as in RBM, where binit replaces
b. The above conditional probabilities can also be used to generate samples v1, ...,vT
(i.e., by repeatedly running Gibbs sampling for t = 1, ..., T ).
Further, note that, given the hidden inputs r1, ..., rT−1, all the RBMs (corresponding
to different time frames) are decoupled; thus, sampling can be performed using block
Gibbs sampling for each RBM independently. This fact is useful in deriving the CD
approximation for the RTRBM.

1.2 Learning in the RTRBM

In order to learn the parameters, we need to obtain the partial derivatives of the log-
likelihood, logP (v1, ...,vT ), with respect to the model parameters. Using the CD ap-
proximation to compute these derivatives requires the gradients of energy function (1.4)
with respect to all the model parameters. We separate the energy function into the
following two terms: E = −H−Q2, where
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H = h>1 Wv1 + c>v1 + b>inith1 +
T∑
t=2

h>t Wvt + cvt + b>ht, (1.7)

Q2 =
T∑
t=2

hTt Urt−1. (1.8)

Taking the gradients of H with respect to the model parameters is straightforward, and
therefore we focus onQ2. To compute the partial derivative ofQ2 with respect to a model
parameter θ, we first compute the gradient of Q2 with respect to rt, for t = 1, . . . , T − 1,
which can be computed recursively using the backpropagation-through-time (BPTT)
algorithm. These gradients are then used with the chain rule to compute the derivatives
with respect to all the model parameters. In the next subsection, we use the BPTT to
derive the gradient with respect to U. The other gradients can be computed similarly.

1.2.1 Calculating ∇rtQ2 using BPTT

We observe that Q2 can be computed recursively using:

Qt =
T∑
τ=t

h>τ Urτ−1 = Qt+1 + h>t Urt−1 (1.9)

where QT+1 = 0. Using the chain rule and (1.12), we have

∂

∂rt,m
Qt+1 =

∑
m′

∂Qt+2

∂rt+1,m′

∂rt+1,m′

∂rt,m
+

∂

∂rt,m
(h>t+1Urt)

=
∑
m′

∂Qt+2

∂rt+1,m′
rt+1,m′(1− rt+1,m′)um′,m +

∑
m′

ht+1,m′um′,m (1.10)

where rt+1,m′(1− rt+1,m′) is obtained from the partial derivative of the sigmoid function.
Equation (1.13) can also be expressed in vector form using:

∇rtQt+1 = U>(∇rt+1Qt+2 � rt+1 � (1− rt+1) + ht+1), (1.11)

where � denotes element-wise product. Since Qt+1 is not a function of r1, . . . , rt−1,
we have that ∇rtQ2 = ∇rtQt+1, and therefore the necessary partial derivatives can be
computed recursively using (1.14).

1.2.2 Calculating ∇rtQ2 using BPTT

We observe that Q2 can be computed recursively using:

Qt =
T∑
τ=t

h>τ Urτ−1 = Qt+1 + h>t Urt−1 (1.12)
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where QT+1 = 0. Using the chain rule and (1.12), we have

∂

∂rt,m
Qt+1 =

∑
m′

∂Qt+2

∂rt+1,m′

∂rt+1,m′

∂rt,m
+

∂

∂rt,m
(h>t+1Urt)

=
∑
m′

∂Qt+2

∂rt+1,m′
rt+1,m′(1− rt+1,m′)um′,m

+
∑
m′

ht+1,m′um′,m (1.13)

where rt+1,m′(1− rt+1,m′) is obtained from the partial derivative of the sigmoid function.
Equation (1.13) can also be expressed in vector form using:

∇rtQt+1 = U>(∇rt+1Qt+2 � rt+1 � (1− rt+1) + ht+1), (1.14)

where � denotes element-wise product. Since Qt+1 is not a function of r1, . . . , rt−1,
we have that ∇rtQ2 = ∇rtQt+1, and therefore the necessary partial derivatives can be
computed recursively using (1.14).

1.2.3 Calculating the partial derivatives with respect to the model
parameters

In order to compute the derivatives with respect to U, we use the chain rule and (1.12):

∂Q2

∂um,m′
=

T∑
t=2

(
∂Qt+1

∂rt,m

∂rt,m
∂um,m′

+
∂

∂um,m′
(h>t Urt−1)

)

=

T∑
t=2

(
∂Qt+1

∂rt,m
rt,m(1− rt,m) + ht,m

)
rt−1,m′ (1.15)

where when taking the derivative of h>t Urt−1 with respect to um,m′ we regard rt−1 as a
constant, since the contribution of its derivative is factored in through ∇rt−1Qt.
Next, we use the CD approximation with (1.13), to show that the update rule for U,
that is related to Q2 (not including H), takes the form:

∆Q2
U =

T∑
t=2

(
Dt+1 � rt � (1− rt) + Eht|vt,rt−1

[ht]− Ev′t,ht|rt−1
[ht]
)
r>t−1 (1.16)

where

Dt = Eht,...,hT |vt,...vT ,r1...,rT−1
[∇rt−1Qt]− Eht,...,hT ,v

′
t,...v

′
T |r1...,rT−1

[∇rt−1Qt]. (1.17)

Proof. The partial derivative of Q2 with respect to um,m′ takes the form:

∂Q2

∂um,m′
=

T∑
t=2

ht,mrt−1,m′+
T∑
t=2

∂Q2

∂rt,m

∂rt,m
∂um,m′

=
T∑
t=2

ht,mrt−1,m′+
T∑
t=2

∂Q2

∂rt,m
rt,m(1−rt,m)rt−1,m′

(1.18)
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The derivative of the log-likelihood with respect to um,m′ takes the form

∆H+Q2
um,m′

= Eh1,...,hT |v1,...,vT ,r1,...,rT−1

[
∂

∂um,m′
(H+Q2)

]
− Eh1,...,hT ,v

′
1,...,v

′
T ;r1,...,rT−1

[
∂

∂um,m′
(H+Q2)

]
= ∆Hum,m′

+ ∆Q2
um,m′

, (1.19)

where we defined

∆Hum,m′
= Eh1,...,hT |v1,...,vT ,r1,...,rT−1

[
∂

∂um,m′
H]− Eh1,...,hT ,v

′
1,...,v

′
T ;r1,...,rT−1

[
∂

∂um,m′
H]

∆Q2
um,m′

= Eh1,...,hT |v1,...,vT ,r1,...,rT−1
[

∂

∂um,m′
Q2]− Eh1,...,hT ,v

′
1,...,v

′
T ;r1,...,rT−1

[
∂

∂um,m′
Q2]

(1.20)

Using (1.18) in ∆Q2
um,m′

we have that

∆Q2
um,m′

=
T∑
t=2

(
Eh1,...,hT |v1,...,vT ,r1,...,rT−1

[ht,m]− Eh1,...,hT ,v
′
1,...,v

′
T ;r1,...,rT−1

[ht,m]
)
rt−1,m′

+
T∑
t=2

(
Eh1,...,hT |v1,...,vT ,r1,...,rT−1

[
∂

∂um,m′
Q2]− Eh1,...,hT ,v

′
1,...,v

′
T ;r1,...,rT−1

[
∂

∂um,m′
Q2]

)
× rt,m(1− rt,m)rt−1,m′

=
T∑
t=2

(
Eht|vt,rt−1

[ht,m]− Eht,v′t;rt−1
[ht,m]

)
rt−1,m′

+
T∑
t=2

(
Eht|vt,rt−1

[
∂

∂um,m′
Q2]− Eht,v′t;rt−1

[
∂

∂um,m′
Q2]

)

× rt,m(1− rt,m)rt−1,m′ =

T∑
t=2

(
Eht|vt,rt−1

[ht,m]− Eht,v′t;rt−1
[ht,m] +Dt+1,mrt,m(1− rt,m)

)
rt−1,m′

(1.21)

which in vector for is identical to (1.16).

In the following we show that similarly to (1.14), Dt can be computed recursively using:

Dt+1 = U>(Dt+2 � rt+1 � (1− rt+1) + Eht+1|vt+1;rt [ht+1]− Ev′t+1,ht+1|rt [ht+1]), (1.22)

and DT+1 = 0.
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Proof. Plugging (1.14) into (1.17), we have that:

Dt+1 = Eht+1,...,hT |vt+1,...,vT ,r1,...,rT [U>(∇rt+1Qt+2 � rt+1 � (1− rt+1) + ht+1)]

− Eht+1,...,hT ,v
′
t+1,...,v

′
T ;r1,...,rT [U>(∇rt+1Qt+2 � rt+1 � (1− rt+1) + ht+1)]

= U>[(Eht+1,...,hT |vt+1,...,vT ,r1,...,rT [∇rt+1Qt+2 ]− Eht+1,...,hT ,v
′
t+1,...,v

′
T ;r1,...,rT [∇rt+1Qt+2 ])

� rt+1 � (1− rt+1) + Eht+1|vt+1,rt [ht+1]− Eht+1,v′t+1;rt
[ht+1]]

= U>
(
Dt+2 � rt+1 � (1− rt+1) + Eht+1|vt+1,rt [ht+1]− Eht+1,v′t+1;rt

[ht+1]
)

(1.23)

The model parameters θ ∈ {W,U,b,binit, c} are updated via gradient ascent (e.g.,
θ := θ + η∆H+Q2

θ ) where

∆H+Q2
θ = E{ht}Tt=1|{vt,rt}Tt=1

[∇θH] (1.24)

− E{ht,v′t}Tt=1|{rt}Tt=1
[∇θH] + ∆Q2

θ

For the other model parameters, we have ∆Q2
c = 0, and

∆Q2
W =

T−1∑
t=1

(Dt+1 � rt � (1− rt))v
>
t (1.25)

∆Q2
b =

T−1∑
t=2

(Dt+1 � rt � (1− rt)) (1.26)

∆Q2
binit

= D2 � r1 � (1− r1) (1.27)
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