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Abstract

For many pattern recognition tasks, the ideal input featvoald be invariant to
multiple confounding properties (such as illumination afeWing angle, in com-
puter vision applications). Recently, deep architecttnaaed in an unsupervised
manner have been proposed as an automatic method for exgraseful features.
However, it is difficult to evaluate the learned features hy means other than
using them in a classifier. In this paper, we propose a numbemgpirical tests
that directly measure the degree to which these learnedré=agre invariant to
different input transformations. We find that stacked antoelers learn modestly
increasingly invariant features with depth when trainediatural images. We find
that convolutional deep belief networks learn substdwgtiabre invariant features
in each layer. These results further justify the use of “desp“shallower” repre-
sentations, but suggest that mechanisms beyond merekirejame autoencoder
on top of another may be important for achieving invariari@er evaluation met-
rics can also be used to evaluate future work in deep learaing thus help the
development of future algorithms.

1 Introduction

Invariance to abstract input variables is a highly deseaisbperty of features for many detection
and classification tasks, such as object recognition. Theeq of invariance implies a selectivity
for complex, high level features of the input and yet a robeiss to irrelevant input transformations.
This tension between selectivity and robustness makesitepinvariant features nontrivial. In the
case of object recognition, an invariant feature shouldaed only to one stimulus despite changes
in translation, rotation, complex illumination, scalergective, and other properties. In this paper,
we propose to use a suite of “invariance tests” that direrthasure the invariance properties of
features; this gives us a measure of the quality of feat@@®éd in an unsupervised manner by a
deep learning algorithm.

Our work also seeks to address the question: why are deeprigalgorithms useful? Bengio and
LeCun gave a theoretical answer to this question, in whiely #howed that a deep architecture is
necessary to represent many functions compactly [1]. Arsgemswer can also be found in such
work as [2, 3, 4, 5], which shows that such architectures teasseful representations for classi-
fication. In this paper, we give another, empirical, answethts question: namely, we show that
with increasing depth, the representations learned careafgy an increased degree of invariance.
Our observations lend credence to the common view of inweeis to minor shifts, rotations and
deformations being learned in the lower layers, and beimgbioed in the higher layers to form
progressively more invariant features.

In computer vision, one can view object recognition perfance as a measure of the invariance of
the underlying features. While such an end-to-end systeforpesince measure has many benefits,
it can also be expensive to compute and does not give mudhinisito how to directly improve
representations in each layer of deep architectures. Mergib cannot identify specific invariances



that a feature may possess. The test suite presented inajés provides an alternative that can
identify the robustness of deep architectures to specifiegyof variations. For example, using
videos of natural scenes, our invariance tests measuregnealto which the learned representations
are invariant to 2-D (in-plane) rotations, 3-D (out-of+még rotations, and translations. Additionally,
such video tests have the potential to examine changes én wdniables such as illumination. We
demonstrate that using videos gives similar results to tbeentraditional method of measuring
responses to sinusoidal gratings; however, the naturabvéghproach enables us to test invariance
to a wide range of transformations while the grating tesy atibws changes in stimulus position,
orientation, and frequency.

Our proposed invariance measure is broadly applicablegimating many deep learning algorithms
for many tasks, but the present paper will focus on two diffiéralgorithms applied to computer
vision. First, we examine the invariances of stacked awutoder networks [2]. These networks
were shown by Larochelle et al. [3] to learn useful featuoesafrange of vision tasks; this suggests
that their learned features are significantly invariantie transformations present in those tasks.
Unlike the artificial data used in [3], however, our work usegural images and natural video
sequences, and examines more complex variations such-aé-plaine changes in viewing angle.
We find that when trained under these conditions, stackemkaabders learn increasingly invariant
features with depth, but the effect of depth is small comgppéwenther factors such as regularization.
Next, we show that convolutional deep belief networks (CBBJS], which are hand-designed to be
invariant to certain local image translations, do enjoyntitically increasing invariance with depth.
This suggests that there is a benefit to using deep archiésctout that mechanisms besides simple
stacking of autoencoders are important for gaining inénggisvariance.

2 Reated work

Deep architectures have shown significant promise as aitpehfor automatically learning fea-
tures for recognition systems. Deep architectures coosistiltiple layers of simple computational
elements. By combining the output of lower layers in higlesters, deep networks can represent
progressively more complex features of the input. Hintoal eintroduced the deep belief network,
in which each layer consists of a restricted Boltzmann nmecfd]. Bengio et al. built a deep net-
work using an autoencoder neural network in each layer [B].3Ranzato et al. and Lee et al.
explored the use of sparsity regularization in autoenapéimergy-based models [7, 8] and sparse
convolutional DBNs with probabilistic max-pooling [5] neactively. These networks, when trained
subsequently in a discriminative fashion, have achieveelent performance on handwritten digit
recognition tasks. Further, Lee et al. and Raina et al. shaivdeep networks are able to learn
good features for classification tasks even when trainedaten tthat does not include examples of
the classes to be recognized [5, 9].

Some work in deep architectures draws inspiration from thkody of sensory systems. The human
visual system follows a similar hierarchical structurethaiigher levels representing more complex
features [10]. Lee et al., for example, compared the respprsperties of the second layer of a
sparse deep belief network to V2, the second stage of thaligerarchy [11]. One important prop-
erty of the visual system is a progressive increase in thariemce of neural responses in higher
layers. For example, in V1, complex cells are invariant taktnanslations of their inputs. Higher
in the hierarchy in the medial temporal lobe, Quiroga et alihidentified neurons that respond with
high selectivity to, for instance, images of the actresdd-Haeérry [12]. These neurons are remark-
ably invariant to transformations of the image, respondiggally well to images from different
perspectives, at different scales, and even respondirfeettekt “Halle Berry.” While we do not
know exactly the class of all stimuli such neurons respon{d tested on a larger set of images, they
may well turn out to respond also to other stimuli than Halearg related ones), they nonetheless
show impressive selectivity and robustness to input transdtions.

Computational models such as the neocognitron [13], HMAXleai¢14], and Convolutional Net-
work [15] achieve invariance by alternating layers of featdetectors with local pooling and sub-
sampling of the feature maps. This approach has been usedltovedeep networks with some
degree of translation invariance [8, 5]. However, it is neac how to explicitly imbue models with
more complicated invariances using this fixed architectéwditionally, while deep architectures
provide a task-independent method of learning featuresjatotional and max-pooling techniques
are somewhat specialized to visual and audio processing.
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3 Network architecture and optimization

We train all of our networks on natural images collected sty (and in geographically different
areas) from the videos used in the invariance tests. Spabifithe training set comprises a set of
stillimages taken in outdoor environments free from aitfiobjects, and was not designed to relate
in any way to the invariance tests.

3.1 Stacked autoencoder

The majority of our tests focus on the stacked autoencod@&eafio et al. [2], which is a deep
network consisting of an autoencoding neural network irhdager. In the single-layer case, in
response to an input patterne R, the activation of each neuroh;, i = 1,--- ,m is computed as

h(l‘) = tanh(Wlx + bl) s

whereh(z) € R™ is the vector of neuron activationd/; € R™*™ is a weight matrixp; € R™ is a
bias vector, and tanh is the hyperbolic tangent applied coraptwise. The network output is then
computed as

T = tanh(Wgh(x) + bg) ,
wherez € R™ is a vector of output value$y, € R"*™ is a weight matrix, and, € R" is a bias
vector. Given a set of input patterng: (Vi = 1, - - - , p, the weight matrice¥/; and¥, are adapted

using backpropagation [16, 17, 18] to minimize the recamsion errory_?_, ||z — 2 H2

Following [2], we successively train up layers of the networ a greedy layerwise fashion. The
first layer receives 44 x 14 patch of an image as input. After it achieves acceptablddevie
reconstruction error, a second layer is added, then a i so on.

In some of our experiments, we use the method of [11], andt@inghe expected activation of the
hidden units to be sparse. We never consti&in= W, although we found this to approximately
hold in practice.

3.2 Convolutional Deep Belief Network

We also test a CDBN [5] that was trained using two hidden syEgach layer includes a collection
of “convolution” units as well as a collection of “max-pood” units. Each convolution unit has
a receptive field size of 10x10 pixels, and each max-poolimigimplements a probabilistic max-
like operation over four (i.e., 2x2) neighboring convatutiunits, giving each max-pooling unit an
overall receptive field size of 11x11 pixels in the first layed 31x31 pixels in the second layer.
The model is regularized in a way that the average hiddenaatiitation is sparse. We also use a
small amount ofl., weight decay.

Because the convolution units share weights and becauseotliputs are combined in the max-
pooling units, the CDBN is explicitly designed to be invaitito small amounts of image translation.

4 |nvariance measure

An ideal feature for pattern recognition should be both sblaund selective. We interpret the hidden
units as feature detectors that should respond strongly Wieefeature they represent is present in
the input, and otherwise respond weakly when it is absentindariant neuron, then, is one that
maintains a high response to its feature despite certansfoemations of its input. For example,
a face selective neuron might respond strongly whenevecea ifapresent in the image; if it is
invariant, it might continue to respond strongly even aditi&ge rotates.

Building on this intuition, we consider hidden unit respesgbove a certain threshold tofiring,
that is, to indicate the presence of some feature in the inffatadjust this threshold to ensure that
the neuron is selective, and not simply always active. Itigdar we choose a separate threshold
for each hidden unit such that all units fire at the same ratenwiresented with random stimuli.
After identifying an input that causes the neuron to fire, \&a test the robustness of the unit by
calculating its firing rate in response to a set of transfarwersions of that input.

More formally, a hidden unit is said to fire whers;h;(xz) > t;, wheret; is a threshold chosen
by our test for that hidden unit and € {—1,1} gives the sign of that hidden unit’s values. The
sign terms; is necessary because, in general, hidden units are as tikelge low values as to
use high values to indicate the presence of the featurehbgtdetect. We therefore choosgto
maximize the invariance score. For hidden units that arelagiged to be sparse, we assume that
s; = 1, since their mean activity has been regularized to be low.défme the indicator function



fi(z) = 1{s;hi(x) > t;}, i.e., itis equal to one if the neuron fires in response totinpand zero
otherwise.

A transformation functiorr(z, ) transforms a stimulus into a new, related stimulus, where the
degree of transformation is parametrized by R. (One could also imagine a more complex
transformation parametrized bye R™.) In order for a functiorr to be useful with our invariance
measurely| should relate to the semantic dissimilarity betweemdr (z, v). For exampley might

be the number of degrees by whighs rotated.

A local trajectory T'(z) is a set of stimuli that are semantically similar to someneziee stimulus
z, thatis

T(z) ={r(z,7) [y €T}
wherel is a set of transformation amounts of limited size, for exknall rotations of less than 15
degrees.

The global firing rateis the firing rate of a hidden unit when applied to stimuli drasandomly
from a distributionP(z):
G(i) = E[fi(x)],

whereP(z) is a distribution over the possible inputsiefined for each implementation of the test.

Using these definitions, we can measure the robustness dfiarhunit as follows. We define the
setZ as a set of inputs that activakg near maximally. Théocal firing rateis the firing rate of a
hidden unit when it is applied to local trajectories surming inputsz € Z that maximally activate

the hidden unit, .
1
L(i) = — % )
O =17 ; T > )f ()

z€T(z

i.e., L(7) is the proportion of transformed inputs that the neuron fimegsponse to, and hence is a
measure of the robustness of the neuron’s response to tistdraationr.

Our invariance score for a hidden uhitis given by

The numerator is a measure of the hidden unit's robustndsarsformationr near the unit's opti-
mal inputs, and the denominator ensures that the neuroteigtise and not simply always active.

In our tests, we tried to select the threshglfior each hidden unit so that it fires one percent of the
time in response to random inputs, thatG§;) = 0.01. For hidden units that frequently repeat the
same activation value (up to machine precision), it is somest not possible to chooggsuch that

G (i) = 0.01 exactly. In such cases, we choose the smallest valtg)asuch thatz (i) > 0.01.

Each of the tests presented in the paper is implemented bjdprg a different definition ofP(z),
7(z,7y), andl.

S(t) gives the invariance score for a single hidden unit. Theriamae scordnv, (V) of a network
N is given by the mean d§(¢) over the top-scoring proportignof hidden units in the deepest layer
of N. We discard th€1 — p) worst hidden units because different subpopulations dsunay be
invariant to different transformations. Reporting the meéall unit scores would strongly penalize
networks that discover several hidden units that are iamatb transformation but do not devote
more than proportiop of their hidden units to such a task.

Finally, note that while we use this metric to measure iraraes in the visual features learned
by deep networks, it could be applied to virtually any kindfediture in virtually any application
domain.

5 Gratingtest

Ouir first invariance test is based on the response of neun@ysithetic images. Following such au-
thors as Berkes et al.[19], we systematically vary the patars used to generate images of gratings.
We use as input an imageof a grating, with image pixel intensities given by

I(z,y) = b+ asin (w(z cos(f) + ysin(f) — ¢)),



wherew is the spatial frequency, is the orientation of the grating, andis the phase. To imple-
ment our invariance measure, we defiRgr) as a distribution over grating images. We measure
invariance to translation by definingx, ) to change by v. We measure invariance to rotation by
defining(z, ) to changew by 7.1

6 Natural video test

While the grating-based invariance test allows us to sydieaily vary the parameters used to
generate the images, it shares the difficulty faced by a numibether methods for quantifying

invariance that are based on synthetic (or nearly syndhddia [19, 20, 21]: it is difficult to generate
data that systematically varies a large variety of imagarmpaters.

Our second suite of invariance tests uses natural video dideng this method, we will measure
the degree to which various learned features are invareatwide range of more complex image
parameters. This will allow us to perform quantitative camigons of representations at each layer
of a deep network. We also verify that the results using thihinique align closely with those
obtained with the grating-based invariance tests.

6.1 Datacollection

Our dataset consists of natural videos containing commagyéntransformations such as transla-
tions, 2-D (in-plane) rotations, and 3-D (out-of-planejatamns. In contrast to labeled datasets like
the NORB dataset [21] where the viewpoint changes in largements between successive images,
our videos are taken at sixty frames per second, and thusidable for measuring more modest
invariances, as would be expected in lower layers of a dedyitacture. After collection, the images
are reduced in size to 320 by 180 pixels and whitened by applgtiband pass filter. Finally, we
adjust the constrast of the whitened images with a scalimgteot that varies smoothly over time
and attempts to make each image use as much of the dynaméeabtig image format as possible.
Each video sequence contains at least one hundred frames \Bdeo sequences contain motion
that is only represented well near the center of the imagesXample, 3-D (out-of-plane) rotation
about an object in the center of the field of view. In these €age cropped the videos tightly in
order to focus on the relevant transformation.

6.2 Invariance calculation

To implement our invariance measure using natural imageslefineP(x) as a uniform distribution
over image patches contained in the test videos, 7gndy) to be the image patch at the same
image location as but occurringy video frames later in time. We defifie= {-5,...,5}. To
measure invariance to different types of transformatiansinply use videos that involve each type
of transformation. This obviates the need to define a complepable of synthetically performing
operations such as 3-D rotation.

7 Results

7.1 Stacked autoencoders

7.1.1 Relationship between grating test and natural video test

Sinusoidal gratings are already used as a common referéinugluss. To validate our approach
of using natural videos, we show that videos involving thatien give similar test results to the
phase variation grating test. Fig. 1 plots the invarianoeestor each of 378 one layer autoencoders
regularized with a range of sparsity and weight decay patensiéshown in Fig. 3). We were not able
to find as close of a correspondence between the gratingati@mtest and natural videos involving
2-D (in-plane) rotation. Our 2-D rotations were capturedhbpd-rotating a video camera in natural
environments, which introduces small amounts of otherdygfetransformations. To verify that
the problem is not that rotation when viewed far from the imagnter resembles translation, we
compare the invariance test scores for translation andofation in Fig. 2. The lack of any clear

"Details: We defineP(z) as a uniform distribution over patches produced by varying {2,4,6, 8},
6 € {0,---,m} in steps ofr/20, and¢ € {0,--- , 7} in steps ofr/20. After identifying a grating that
strongly activates the neuron, further local gratififs) are generated by varying one parameter while holding
all other optimal parameters fixed. For the translation test, local trajestb(ie) are generated by modifying
¢ from the optimal valueop: t0 ¢ = ¢ope £ {0, - -+ , 7w} in steps ofr /20, whereg,,. is the optimal grating
phase shift. For the rotation test, local trajectofiés:) are generated by modifyingfrom the optimal value
Oopt 1060 = Oope £ {0, - -+ , 7} in steps ofr /40, wheref,,,; is the optimal grating orientation.



29ra’[ing and natural video test comparison Natural 2—-D rotation and translation test

e N
& 8
N 58 o ®» B B R 5 &

s

@
\
\
\

Natural translation test
Natural 2-D rotation test

0

0 10 20 30 .40 50 60 70 80 90 100 0 5 10 15 20
Grating phase test Natural translation test

Figure 1: Videos involving translation  Figure 2: We verify that our translation
give similar test results to synthetic and 2-D rotation videos do indeed cap-
videos of gratings with varying phase.  ture different transformations.
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Figure 3: Our invariance measure selects networks that kige detectors resembling Gabor func-
tions as the maximally invariant single-layer networks. réfjularized networks that learn high-
frequency weights also receive high scores, but are notalshatch the scores of good edge detec-
tors. Degenerate networks in which every hidden unit leassentially the same function tend to
receive very low scores.

trend makes it obvious that while our 2-D rotation videos dbaorrespond exactly to rotation, they
are certainly not well-approximated by translation.

7.1.2 Pronounced effect of sparsity and weight decay

We trained several single-layer autoencoders using $paegjularization with various target mean
activations and amounts of weight decay. For these expaténee averaged the invariance scores
of all the hidden units to form the network score, i.e., wedyse= 1. Due to the presence of the
sparsity regularization, we assumge= 1 for all hidden units. We found that sparsity and weight
decay have a large effect on the invariance of a single-lagtwvork. In particular, there is a semi-
circular ridge trading sparsity and weight decay wherenavee scores are high. We interpret this
to be the region where the problem is constrained enoughhbaautoencoder must throw away
some information, but is still able to extract meaningfult@ans from its input. These results are
visualized in Fig. 3. We find that a network with no regulatiaa obtains a score of 25.88, and the
best-scoring network receives a score of 32.41.

7.1.3 Modest improvementswith depth

To investigate the effect of depth on invariance, we chosatensively cross-validate several depths
of autoencoders using only weight decay. The majority oteasful image classification results in
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Figure 4: Left to right: weight visualizations from layerlayer 2, and layer 3 of the autoencoders;
layer 1 and layer 2 of the CDBN. Autoencoder weight imagegaden from the best autoencoder at
each depth. All weight images are contrast normalized iaddently but plotted on the same spatial
scale. Weight images in deeper layers are formed by makieaidicombinations of weight images
in shallower layers. This approximates the function coragltty each unit as a linear function.

the literature do not use sparsity, and cross-validating @single parameter frees us to sample the
search space more densely. We trained a totat mietworks with weight decay at each layer set to
avalue from{10,1,1071,1072,1073,1075,0}. For these experiments, we averaged the invariance
scores of the tog0% of the hidden units to form the network score, i.e., we ysed.2, and chose

s; for each hidden unit to maximize the invariance score, sihege was no sparsity regularization
to impose a sign on the hidden unit values.

After performing this grid search, we trained 100 additioc@pies of the network with the best

mean invariance score at each depth, holding the weightydeseameters constant and varying
only the random weights used to initialize training. We fddhat the improvement with depth was
highly significant statistically (see Fig. 5). However, thagnitude of the increase in invariance is
limited compared to the increase that can be gained withdhect sparsity and weight decay.

7.2 Convolutional Deep Belief Networks

We also ran our invariance tests on a two layer

CDBN. This provides a measure of the effec-  vean mariance Transiaion 2-0 Rotation
tiveness of hard-wired techniques for achiev- = = T T
ing invariance, including convolution and max- | ] il | s
pooling. The results are summarized in Table 1 ]
1. These results cannot be compared directly to™|
the results for autoencoders, because of the difs;
ferent receptive field sizes. The receptive field |
sizes in the CDBN are smaller than those in th‘ze
autoencoder for the lower layers, but larger thah
those in the autoencoder for the higher layers =

due to the pooling effect. Note that the great- .| I 1o 1 st
est relative improvement comes in the natural w2 1 1
image tests, which presumably require greater | | as 1 st ]
sophistication than the grating tests. The singlewvs—ﬂ T m ﬂ “'ﬂ
test with the greatest relative improvement is -l T L e

the 3-D (out-of-plane) rotation test. This is the Lever Lever Lover Lever
most complex transformation included in our ] ] o )
tests, and it is where depth provides the greatddgure 5: To verify that the improvement in invari-
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percentagewise increase. ance score of the best network at each layer is an
_ _ ) effect of the network architecture rather than the
8 Discussion and conclusion random initialization of the weights, we retrained

In this paper, we presented a set of tests fie best network of each depth 100 times. We find
defined a general formula for a test metric, arl@ant withp < 10~%. Looking at the scores for
demonstrated how to imp|ement it using Sydﬂleldual invariances, we see that the deeper net-
which reveal more types of invariances tha@nce for a larger amount of 2-D (in-plane) rotation

just 2-D (in-plane) rotation, translation and fre2nd 3-D (out-of-plane) rotation invariance. All
guency. plots are on the same scale but with different base-

lines so that the worst invariance score appears at
At the level of a single hidden unit, our firingthe same height in each plot.
rate invariance measure requires learned fea-
tures to balance high local firing rates with low global firirges. This concept resembles the
trade-off between precision and recall in a detection goblAs learning algorithms become more



| Test | Layer 1] Layer 2] % change]

Grating phase 68.7 95.3 38.2
Grating orientation 52.3 77.8 48.7
Natural translation 15.2 23.0 51.0
Natural 3-D rotation| 10.7 19.3 79.5

Table 1: Results of the CDBN invariance tests.

advanced, another appropriate measure of invariance mayhidden unit's invariance to object

identity. As an initial step in this direction, we attemptedscore hidden units by their mutual

information with categories in the Caltech 101 dataset.[2® found that none of our networks

gave good results. We suspect that current learning atgasitare not yet sophisticated enough to
learn, from only natural images, individual features thrattaghly selective for specific Caltech 101

categories, but this ability will become measurable in titare.

At the network level, our measure requires networks to halesaat some subpopulation of hidden
units that are invariant to each type of transformation. sTikiaccomplished by using only the
top-scoring proportiom of hidden units when calculating the network score. Suchadifigation

is necessary to give high scores to networks that decompesejut into separate variables. For
example, one very useful way of representing a stimulus évbelto use some subset of hidden units
to represent its orientation, another subset to repretepbsition, and another subset to represent
its identity. Even though this would be an extremely powkfdature representation, a valueof
set too high would result in penalizing some of these sulfeetsot being invariant.

We also illustrated extensive findings made by applyingnkariance test on computer vision tasks.
However, the definition of our metric is sufficiently genettat it could easily be used to test, for
example, invariance of auditory features to rate of spegcimvariance of textual features to author
identity.

A surprising finding in our experiments with visual data iattlstacked autoencoders yield only
modest improvements in invariance as depth increases.stijigests that while depth is valuable,
mere stacking of shallow architectures may not be suffidiergxploit the full potential of deep
architectures to learn invariant features.

Another interesting finding is that by incorporating spgysietworks can become more invariant.
This suggests that, in the future, a variety of mechanisrosldtbe explored in order to learn better
features. For example, one promising approach that we arently investigating is the idea of
learning slow features [19] from temporal data.

We also document that explicit approaches to achievingiiwee such as max-pooling and weight-
sharing in CDBNs are currently successful strategies fhiestng invariance. This is not suprising
given the fact that invariance is hard-wired into the netybut it validates the fact that our metric
faithfully measures invariances. It is not obvious how tteex these explicit strategies to become
invariant to more intricate transformations like largegkenout-of-plane rotations and complex illu-
mination changes, and we expect that our metrics will beulge§uiding efforts to develop learning
algorithms that automatically discover much more invarfaatures without relying on hard-wired
strategies.
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