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Abstract

Stacked sparse denoising autoencoders (SSDAs) have recently been shown to be
successful at removing noise from corrupted images. However, like most denois-
ing techniques, the SSDA is not robust to variation in noise types beyond what
it has seen during training. To address this limitation, we present the adaptive
multi-column stacked sparse denoising autoencoder (AMC-SSDA), a novel tech-
nique of combining multiple SSDAs by (1) computing optimal column weights
via solving a nonlinear optimization program and (2) training a separate network
to predict the optimal weights. We eliminate the need to determine the type of
noise, let alone its statistics, at test time and even show that the system can be
robust to noise not seen in the training set. We show that state-of-the-art denois-
ing performance can be achieved with a single system on a variety of different
noise types. Additionally, we demonstrate the efficacy of AMC-SSDA as a pre-
processing (denoising) algorithm by achieving strong classification performance
on corrupted MNIST digits.

1 Introduction

Digital images are often corrupted with noise during acquisition and transmission, degrading perfor-
mance in later tasks such as: image recognition and medical diagnosis. Many denoising algorithms
have been proposed to improve the accuracy of these tasks when corrupted images must be used.
However, most of these methods are carefully designed only for a certain type of noise or require
assumptions about the statistical properties of the corrupting noise.

For instance, the Wiener filter [28] is an optimal linear filter in the sense of minimum mean-square
error and performs very well at removing speckle and Gaussian noise, but the input signal and noise
are assumed to be wide-sense stationary processes, and known autocorrelation functions of the input
are required [7]. Median filtering outperforms linear filtering for suppressing noise in images with
edges and gives good output for salt & pepper noise [2], but it is not as effective for the removal
of additive Gaussian noise [1]. Periodic noise such as scan-line noise is difficult to eliminate using
spatial filtering but is relatively easy to remove using Fourier domain band-stop filters once the
period of the noise is known [6].

Much of this research has taken place in the field of medical imaging, most recently because of a
drive to reduce patient radiation exposure. As radiation dose is decreased, noise levels in medical
images increases [12, 15], so noise reduction techniques have been key to maintaining image quality
while improving patient safety [25]. In this application, assumptions must also be made or statistical
properties must also be determined for these techniques to perform well [24].

Recently, various types of neural networks have been evaluated for their denoising efficacy. Xie
et al. [29] had success at removing noise from corrupted images with the stacked sparse denoising
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autoencoder (SSDA). The SSDA is trained on images corrupted with a particular noise type, so it
too has a dependence on a priori knowledge about the general nature of the noise.

In this paper, we present the adaptive multi-column sparse stacked denoising autoencoder (AMC-
SSDA), a method to improve the SSDA’s robustness to various noise types. In the AMC-SSDA,
columns of single-noise SSDAs are run in parallel and their outputs are linearly combined to pro-
duce the final denoised image. Taking advantage of the sparse autoencoder’s capability for learning
features, the features encoded by the hidden layers of each SSDA are supplied to an additional
network to determine the optimal weighting for each column in the final linear combination.

We demonstrate that a single AMC-SSDA network provides better denoising results for both noise
types present in the training set and for noise types not seen by the denoiser during training. A given
instance of noise corruption might have features in common with one or more of the training set noise
types, allowing the best combination of denoisers to be chosen based on that image’s specific noise
characteristics. With our method, we eliminate the need to determine the type of noise, let alone its
statistics, at test time. Additionally, we demonstrate the efficacy of AMC-SSDA as a preprocessing
(denoising) algorithm by achieving strong classification performance on corrupted MNIST digits.

We will make our code available for reproducible research.

2 Related work

Numerous approaches have been proposed for image denoising using signal processing techniques
(e.g., see [21, 8] for a survey). Some methods transfer the image signal to an alternative domain
where noise can be easily separated from the signal [23, 19]. Portilla et al. [23] proposed a wavelet-
based Bayes Least Squares with a Gaussian Scale-Mixture (BLS-GSM) method. More recent ap-
proaches exploit the “non-local” statistics of images: different patches in the same image are often
similar in appearance, and thus they can be used together in denoising [11, 20, 8]. This class of
algorithms—BM3D [11] in particular—represents the current state-of-the-art in natural image de-
noising; however, it is targeted primarily toward Gaussian noise. In our preliminary evaluation,
BM3D did not perform well on many of the variety of noise types.

While BM3D is a well-engineered algorithm, Burger et al. [9] showed that it is possible to achieve
state-of-the-art denoising performance with a plain multi-layer perceptron (MLP) that maps noisy
patches onto noise-free ones, once the capacity of the MLP, the patch size, and the training set are
large enough. Therefore, neural networks indeed have a great potential for image denoising.

Vincent et al. [27] introduced the stacked denoising autoencoders as a way of providing a good initial
representation of the data in deep networks for classification tasks. Our proposed AMC-SSDA builds
upon this work by using the denoising autoencoder’s internal representation to determine the optimal
column weighting for robust denoising.

Cireşan et al. [10] presented a multi-column approach for image classification, averaging the output
of several deep neural networks (or columns) trained on inputs preprocessed in different ways. How-
ever, based on our experiments, this approach (i.e., simply averaging the output of each column) is
not robust in denoising since each column has been trained on a different type of noise. To address
this problem, we propose an adaptive weighting scheme that can handle a variety of noise types.

Jain et al. [17] used deep convolutional neural networks for image denoising. Rather than using
a convolutional approach, our proposed method applies multiple sparse autoencoder networks in
combination to the denoising task. Tang et al. [26] applied deep learning techniques (e.g., extensions
of the deep belief network with local receptive fields) to denoising and classifying MNIST digits. In
comparison, we achieve favorable classification performance on corrupted MNIST digits.

3 Algorithm

In this section, we first describe the SSDA [29]. Then we will present the AMC-SSDA and describe
the process of finding optimal column weights and predicting column weights for test images.

3.1 Stacked sparse denoising autoencoders

A denoising autoencoder (DA) [27] is typically used as a way to pre-train layers in a deep neural
network, avoiding the difficulty in training such a network as a whole from scratch by performing
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greedy layer-wise training (e.g., [4, 5, 13]). As Xie et al. [29] showed, a denoising autoencoder is
also a natural fit for performing denoising tasks, due to its behavior of taking a noisy signal as input
and reconstructing the original, clean signal as output.

Commonly, a series of DAs are connected to form a stacked denoising autoencoder (SDA)—a deep
network formed by feeding the hidden layer’s activations of one DA into the input of the next DA.
Typically, SDAs are pre-trained in an unsupervised fashion where each DA layer is trained by gen-
erating new noise [27]. We follow Xie et al.’s method of SDA training by calculating the first layer
activations for both the clean input and noisy input to use as training data for the second layer. As
they showed, this modification to the training process allows the SDA to better learn the features for
denoising the original corrupting noise.

More formally, let y ∈ RD be an instance of uncorrupted data and x ∈ RD be the corrupted version
of y. We can define the feedforward functions of the DA with K hidden units as follows:

h(x) = f(Wx + b) (1)

ŷ(x) = g(W′h + b′) (2)
where f() and g() are respectively encoding and decoding functions (for which sigmoid function
σ(s) = 1

1+exp(−s) is often used),1 W ∈ RK×D and b ∈ RK are encoding weights and biases,
and W′ ∈ RD×K and b′ ∈ RD are the decoding weights and biases. h(x) ∈ RK is the hidden
layer’s activation, and ŷ(x) ∈ RD is the reconstruction of the input (i.e., the DA’s output). Given
training data D = {(x1,y1), ..., (xN ,yN )} with N training examples, the DA is trained by back-
propagation to minimize the sparsity regularized reconstruction loss given by

LDA(D;Θ) =
1

N

N∑
i=1

‖yi − ŷ(xi)‖22 + β

K∑
j=1

KL(ρ‖ρ̂j) +
λ

2
(‖W‖2F + ‖W′‖2F) (3)

where Θ = {W,b,W′,b′} are the parameters of the model, and the sparsity-inducing term
KL(ρ‖ρ̂j) is the Kullback-Leibler divergence between ρ (target activation) and ρ̂j (empirical av-
erage activation of the j-th hidden unit):

KL(ρ̂j‖ρ) = ρ log
ρ

ρ̂j
+ (1− ρ) log (1− ρ)

1− ρ̂j
where ρ̂j =

1

N

N∑
i=1

hj(xi) (4)

and λ, β, and ρ are scalar-valued hyperparameters determined by cross validation.

In this work, two DAs are stacked as shown in Figure 1a, where the activation of the first DA’s
hidden layer provides the input to the second DA, which in turn provides the input to the output
layer of the first DA. This entire network—the SSDA—is trained again by back-propagation in a
fine tuning stage, minimizing the loss given by

LSSDA(D;Θ) =
1

N

N∑
i=1

‖yi − ŷ(xi)‖22 +
λ

2

2L∑
l=1

‖W(l)‖2F (5)

where L is the number of stacked DAs (we used L = 2 in our experiments), and W(l) denotes
weights for the l-th layer in the stacked deep network.2 The sparsity-inducing term is not needed
for this step because the sparsity was already incorporated in the pre-trained DAs. Our experiments
show that there is not a significant change in performance when sparsity is included.

3.2 Adaptive Multi-Column SSDA

The adaptive multi-column SSDA is the linear combination of several SSDAs, or columns, each
trained on a single type of noise using optimized weights determined by the features of each given
input image. Taking advantage of the SSDA’s capability of feature learning, we use the features gen-
erated by the activation of the SSDA’s hidden layers as inputs to a neural network-based regression
component, referred to here as the weight prediction module. As shown in Figure 1b, this module
then uses these features to compute the optimal weights used to linearly combine the column outputs
into a weighted average.

1In particular, the sigmoid function is often used for decoding the input data when their values are bounded
between 0 and 1. For general cases, other types of functions (such as tanh, rectified linear, or linear functions)
can be used.

2After pre-training, we initialized W(1) and W(4) from the encoding and decoding weights of the first-layer
DA, and W(2) and W(3) from the encoding and decoding weights of the second-layer DA, respectively.
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Figure 1: Illustration of the AMC-SSDA. We concatenate the activations of the first-layer hidden
units of the SSDA in each column (i.e., fc denotes the concatenated hidden unit vectors h(1)(x)
and h(2)(x) of the SSDA corresponding to c-th column) as input features to the weight prediction
module for determining the optimal weight for each column of the AMC-SSDA. See text for details.

3.2.1 Training the AMC-SSDA
The AMC-SSDA has three training phases: training the SSDAs, determining optimal weights for a
set of training images, and then training the weight prediction module. The SSDAs are trained as
discussed in Section 3.1, with each SSDA provided a noisy training set, corrupted by a single noise
type along with the original versions of those images as a target set. Each SSDA column c then
produces an output ŷc ∈ RD for an input x ∈ RD, which is the noisy version of original image y.
(We omit index i to remove clutter.)

3.2.2 Finding optimal column weights via quadratic program
Once the SSDAs are trained, we construct a new training set that pairs features extracted from the
hidden layers of the SSDAs to optimal columns weights. Specifically, for each image, a vector
φ = [f1; ...; fC ] is built from the features extracted from the hidden layers of each SSDA, where C is
the number of columns. That is, for SSDA column c, the activations of hidden layers h(1) and h(2)

(as shown in Figure 1a) are concatenated into a vector fc, and then f1, f2, . . . , fC are concatenated to
form the whole feature vector φ.

Additionally, the output of each column for each image is collected into a matrix Ŷ = [y1, ...,yC ] ∈
RD×C , with each column being the output of one of the SSDA columns, ŷc. To determine the ideal
linear weighting of the SSDA columns for that given image, we perform the following non-linear
minimization (quadratic program) as follows:3

minimize{sc}
1

2
‖Ŷs− y‖2 (6)

subject to 0 ≤ sc ≤ 1,∀c (7)

1− δ ≤
C∑

c=1

sc ≤ 1 + δ (8)

Here s ∈ RC is the vector of weights sc corresponding to each SSDA column c. Constraining the
weights between 0 and 1 was shown to allow for better weight predictions by reducing overfitting.
The constraint in Eq. (8) helps to avoid degenerate cases where weights for very bright or dark spots

3In addition to the L2 error shown in Equation (6), we also tested minimizing the L1 distance as the error
function, which is a standard method in the related field of image registration [3]. The version using the L1
error performed slightly better in our noisy digit classification task, suggesting that the loss function might need
to be tuned to the task and images at hand.
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Noise Type Parameter Parameter value
Gaussian σ2 0.02, 0.06, 0.10, 0.14, 0.18, 0.22, 0.26
Speckle ρ 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
Salt & Pepper ρ 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35

Table 1: SSDA training noises in the 21-column AMC-SSDA. ρ is the noise density.

would otherwise be very high or low. Although making the weights sum exactly to one is more
intuitive, we found that the performance slightly improved when given some flexibility, as shown in
Eq. (8). For our experiments, δ = 0.05 is used.

3.2.3 Learning to predict optimal column weights via RBF networks
The final training phase is to train the weight prediction module. A radial basis function (RBF)
network is trained to take the feature vector φ as input and produce a weight vector s, using the
optimal weight training set described in Section 3.2.2. An RBF network was chosen for our exper-
iments because of its known performance in function approximation [22]. However, other function
approximation techniques could be used in this step.

3.2.4 Denoising with the AMC-SSDA
Once training has been completed, the AMC-SSDA is ready for use. A noisy image x is supplied
as input to each of the columns, which together produce the output matrix Ŷ, each column of
which is the output of a particular column of the AMC-SSDA. The feature vector φ is created
from the activation of the hidden layers of each SSDA (as described in Section 3.2.2) and fed into
the weight prediction module (as described in Section 3.2.3), which then computes the predicted
column weights, s∗. The final denoised image ŷ is produced by linearly combining the columns
using these weights: ŷ = Ŷs∗.4

4 Experiments

We performed a number of denoising tasks by corrupting and denoising images of computed to-
mography (CT) scans of the head from the Cancer Imaging Archive [16] (Section 4.1). Quan-
titative evaluation of denoising results was performed using peak signal-to-noise ratio (PSNR),
a standard method used for evaluating denoising performance. PSNR is defined as PSNR =
10 log10(p

2
max/σ

2
e), where pmax is the maximum possible pixel value and σ2

e is the mean-square
error between the noisy and original images. We also tested the AMC-SSDA as pre-processing step
in an image classification task by corrupting MNIST database of handwritten digits [18] with various
types of noise and then denoising and classifying the digits with a classifier trained on the original
images (Section 4.2).

4.1 Image denoising

To evaluate general denoising performance, images of CT scans of the head were corrupted with
seven variations of Gaussian, salt-and-pepper, and speckle noise, resulting in the 21 noise types
shown in Table 1. Twenty-one individual SSDAs were trained on randomly selected 8-by-8 pixel
patches from the corrupted images; each SSDA was trained on a single type of noise. These twenty-
one SSDAs were used as columns to create an AMC-SSDA.5 The testing noise is given in Table 2.
The noise was produced using Matlab’s imnoise function with the exception of uniform noise,
which was produced with our own implementation. For Poisson noise, the image is divided by λ
prior to applying the noise; the result is then multiplied by λ.

To train the weight predictor for the AMC-SSDA, a set of images disjoint from the training set of
the individual SSDAs were used. The training images for the AMC-SSDA were corrupted with the
same noise types used to train its columns. The AMC-SSDA was tested on another set of images
disjoint from both the individual SSDA and AMC-SSDA training sets. The AMC-SSDA was trained

4We have tried alternatives to this approach. Some of these involved using a single unified network to
combine the columns, such as joint training. In our preliminary experiments, these approaches did not yield
significant improvements.

5We also evaluated AMC-SSDAs with smaller number of columns. In general, we achieved better perfor-
mance with more columns. We discuss its statistical significance later in this section.
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Noise Type 1 2 3 4
Gaussian σ2 = 0.01 σ2 = 0.07 σ2 = 0.1 σ2 = 0.25
Speckle ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.4
Salt & Pepper ρ = 0.1 ρ = 0.15 ρ = 0.3 ρ = 0.4
Poisson log(λ) = 24.4 log(λ) = 25.3 log(λ) = 26.0 log(λ) = 26.4
Uniform [-0.5, 0.5] 30% 50% 70% 100%

Table 2: Parameters of noise types used for testing. The Poisson and uniform noise types are not
seen in the training set. The percentage for uniform noise denotes how many pixels are affected. ρ
is the noise density.

(a) Original (b) Noisy (c) Mixed-SSDA (d) AMC-SSDA
Figure 2: Visualization of the denoising performance of the Mixed-SSDA and AMC-SSDA. Top:
Gaussian noise. Bottom: speckle noise.

on 128-by-128 pixel patches. When testing, 64-by-64 pixel patches are denoised with a stride of 48.
During testing, we found that smaller strides yielded a very small increase in PSNR; however, having
a small stride was not feasible due to memory constraints. Since our SSDAs denoise 8-by-8 patches,
features for, say, a 64-by-64 patch are the average of the features extracted for each 8-by-8 patch in
the 64-by-64 patch. We find that this allows for more consistent and predictable weights. The AMC-
SSDA is first tested on noise types that have been seen (i.e., noise types that were in the training set)
but have different statistics. It is then tested on noise not seen in the training examples, referred to
as “unseen” noise.

To compare with the experiments of Xie et al. [29], one SSDA was trained on only the Gaussian noise
types, one on only salt & pepper, one on only speckle, and one on all the noise types from Table 1.
We refer to these as gaussian SSDA, s&p SSDA, speckle SSDA, and mixed SSDA, respectively. These
SSDAs were then tested on the same types of noise that the AMC-SSDA was tested on. The results
for both seen and unseen noise can be found in Tables 3 and 4. On average, for all cases, the AMC-
SSDA produced superior PSNR values when compared to these SSDAs. Some example results are
shown in Figure 2. In addition, we test the case where all the weights are equal and sum to one. We
call this the MC-SSDA; note that there is no adaptive element to it. We found that AMC-SSDA also
outperformed MC-SSDA.

Statistical significance We statistically evaluated the difference between our AMC-SSDA and the
mixed SSDA (the best performing SSDA baseline) for the results shown in Table 3, using the one-
tailed paired t-test. The AMC-SSDA was significantly better than the mixed-SSDA, with a p-value
of 3.3×10−5 for the null hypothesis. We also found that even for a smaller number of columns (such
as 9 columns), the AMC-SSDA still was superior to the mixed-SSDA with statistical significance.
In this paper, we report results from the 21-column AMC-SSDA.

We also performed additional control experiments in which we gave the SSDA an unfair advantage.
Specifically, each test image corrupted with seen noise was denoised with an SSDA that had been
trained on the exact type of noise and statistics that the test image has been corrupted with; we call
this the “informed-SSDA.” We saw that the AMC-SSDA performed slightly better on the Gaussian
and salt & pepper noise and slightly worse on speckle noise. Overall, the informed-SSDA had,
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Noise Noisy Gaussian S&P Speckle Mixed MC-SSDA AMC-SSDA
Type Image SSDA SSDA SSDA SSDA
G 1 22.10 26.64 26.69 26.84 27.15 27.37 29.60
G 2 13.92 25.83 23.07 19.76 25.52 23.34 26.85
G 3 12.52 25.50 22.17 18.35 25.09 22.00 26.10
G 4 9.30 23.11 20.17 14.88 22.72 17.97 23.66
SP 1 13.50 25.86 26.26 22.27 26.32 25.84 27.72
SP 2 11.76 25.40 25.77 20.07 25.77 24.54 26.77
SP 3 8.75 23.95 23.96 15.88 24.32 20.42 24.65
SP 4 7.50 22.46 22.20 13.86 22.95 17.76 23.01
S 1 19.93 26.41 26.37 28.22 26.97 27.43 28.59
S 2 18.22 25.92 25.80 27.75 26.44 26.71 27.68
S 3 15.35 23.54 23.36 25.79 24.42 23.91 25.72
S 4 14.24 21.80 21.69 24.41 22.93 22.20 24.35
Avg 13.92 24.70 23.96 21.51 25.05 23.29 26.23

(a) PSNRs for previously seen noise, best values in bold.

Gaussian Avg Salt & Pepper Avg Speckle Avg
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(b) Average PNSRs for specific noise types

Figure 3: Average PSNR values for denoised images of various previously seen noise types (G:
Gaussian, S: Speckle, SP: Salt & Pepper).
Noise Noisy Gaussian S&P Speckle Mixed MC-SSDA AMC-SSDA
Type Image SSDA SSDA SSDA SSDA
P 1 19.90 26.27 26.48 27.99 26.80 27.35 28.83
P 2 16.90 25.77 25.92 26.94 26.01 26.78 27.64
P 3 13.89 24.61 24.54 24.65 24.43 25.11 25.50
P 4 12.11 23.36 23.07 22.64 23.01 23.28 23.43
U 1 17.20 23.40 23.68 25.05 23.74 24.71 24.50
U 2 16.04 26.21 25.86 23.21 26.28 26.13 28.06
U 3 12.98 23.24 21.36 17.83 22.89 21.07 23.70
U 4 8.78 16.54 15.45 12.01 16.04 14.11 16.78
Avg 14.72 23.67 23.29 22.54 23.65 23.57 24.80

(a) PSNR for unseen noise, best values in bold.
Poisson Avg Uniform Avg

0

5

10

15

20

25

30

A
v
e
ra

g
e
 P

S
N

R

PSNR for Unseen Noise

 

 

Noisy Gaussian S&P Speckle Mixed MC−SSDA AMC−SSDA

(b) Average results for noise types.

Figure 4: Average PSNR values for denoised images of various previously unseen noise types (P:
Poisson noise; U: Uniform noise).

on average, a PSNR that was only 0.076dB better than the AMC-SSDA. The p-value obtained was
0.4708, indicating little difference between the two methods. This suggests that the AMC-SSDA can
perform as well as using an ”ideally” trained network for specific noise type (i.e., training and testing
an SSDA for the same specific noise type). This is achieved through its adaptive functionality.

4.2 Digit recognition from denoised images

Since the results of denoising images from a visual standpoint can be more qualitative than quan-
titative, we have tested using denoising as a preprocessing step done before a classification task.
Specifically, we used the MNIST database of handwritten digits [18] as benchmark to evaluate the
efficacy of our denoising procedures.

First, we trained a deep neural network digit classifier from the MNIST training digits, following
[14]. The digit classifier achieved a baseline error rate of 1.09% when tested on the uncorrupted
MNIST test set.

The MNIST digits are corrupted with Gaussian, salt & pepper, speckle, block, and border noise.
Examples of this are shown in Figure 5. The block and border noises are similar to that of Tang
et al. [26]. An SSDA was trained on each type of noise. An AMC-SSDA was also trained using

Figure 5: Example MNIST digits. Noisy images are shown on top and the corresponding denoised
images by the AMC-SSDA are shown below. Noise types from left: Gaussian, speckle, salt &
pepper, block, border.
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these types of noise. The goal of this experiment is to show that the potential cumbersome and
time-consuming process of determining the type of noise that an image is corrupted with at test time
is not needed to achieve good classification results.

As the results show in Table 3, the denoising performance was strongly correlated to the type of noise
upon which the denoiser was trained. The bold-faced values show the best performing denoiser for a
given noise type. Since a classification difference of 0.1% or larger is considered statistically signif-
icant [5], we bold all values within 0.1% of the best error rate. The AMC-SSDA either outperforms,
or comes close to (within 0.06%), the SSDA that was trained with the same type of noise as in the
test data. In terms of average error across all types of noises, the AMC-SSDA is significantly better
than any single denoising algorithms we compared. The results suggest that the AMC-SSDA con-
sistently achieves strong classification performance without having to determine the type of noise
during test time.

These results are also comparable to the results of Tang et al. [26]. We show that we get better
classification accuracy for the block and border noise types. In addition, we note that Tang et al.
uses a 7-by-7 local receptive field, while ours uses 28-by-28 patches. As suggested by Tang et al.,
we expect that using a local field in our architecture could further improve our results.

Method / Noise Type Clean Gaussian S & P Speckle Block Border Average
No denoising 1.09% 29.17% 18.63% 8.11% 25.72% 90.05% 28.80%
Gaussian SSDA 2.13% 1.52% 2.44% 5.10% 20.03% 8.69% 6.65%
Salt & Pepper SSDA 1.94% 1.71% 2.38% 4.78% 19.71% 2.16% 5.45%
Speckle SSDA 1.58% 5.86% 6.80% 2.03% 19.95% 7.36% 7.26%
Block SSDA 1.67% 5.92% 15.29% 7.64% 5.15% 1.81% 6.25%
Border SSDA 8.42% 19.87% 19.45% 13.89% 31.38% 1.12% 15.69%
AMC-SSDA 1.50% 1.47% 2.22% 2.09% 5.18% 1.15% 2.27%
Tang et al. [26]* 1.24% - - - 19.09% 1.29% -

Table 3: MNIST test classification error of denoised images. Rows denote the performance of
different denoising methods, including: “no denoising,” SSDA trained on a specific noise type, and
AMC-SSDA. Columns represent images corrupted with the given noise type. Percentage values are
classification error rates for a set of test images corrupted with the given noise type and denoised
prior to classification. Bold-faced values represent the best performance for images corrupted by a
given noise type. *Note: we compare the numbers reported from Tang et al. [26] (“7x7+denoised”).

5 Conclusion

In this paper, we proposed the adaptive multi-column SSDA, a novel technique of combining mul-
tiple SSDAs by predicting optimal column weights adaptively. We have demonstrated that AMC-
SSDA can robustly denoise images corrupted by multiple different types of noise without knowledge
of the noise type at testing time. It has also been shown to perform well on types of noise that were
not in the training set. Overall, the AMC-SSDA has significantly outperformed the SSDA in denois-
ing. The good classification results of denoised MNIST digits also support the hypothesis that the
AMC-SSDA eliminates the need to know about the type of noise during test time.
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