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Abstract

It is well established that high-level representations
learned via sparse coding are effective for many machine
learning applications such as denoising and classifica-
tion. In addition to being reconstructive, sparse rep-
resentations that are discriminative and invariant can
further help with such applications. In order to achieve
these desired properties, this paper proposes a new
framework that discriminatively trains structured dic-
tionaries via block orthogonal matching pursuit. Specif-
ically, the dictionary atoms are assumed to be orga-
nized into blocks. Distinct classes correspond to distinct
blocks of dictionary atoms; however, our algorithm can
handle the case where multiple classes share blocks. We
provide theoretical justification and empirical evalua-
tion of our method.

1 Introduction

Sparse coding is the task of representing the input data
as a linear combination of a few atoms from an over-
complete dictionary [I]. In recent years, sparse coding
has been extensively applied in many applications of
machine learning to efficiently represent the input sig-
nal (e.g., image or audio denoising tasks [2], B, [4]) or to
construct abstract features for high-level tasks, such as
classification [B] [@] [7, [8, [9].

Standard sparse coding, however, does not enforce
any further constraints besides reconstruction. Recent
works have shown that dictionaries trained with addi-
tional discriminative objectives are beneficial to classi-
fication tasks [10, [1I]. Other works have shown that
enforcing structured sparsity during training results in
more invariant thus robust features [I2, I3]. In our
work, combining these two criteria in addition to re-
construction, we propose to learn a structured discrim-
inative dictionary via block orthogonal matching pur-
suit (B-OMP), a greedy approach that can be more
computationally efficient than the unconstrained convex
relaxation solvers adopted by most dictionary learning
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algorithms. The learned dictionary can produce more
robust and discriminative features, compared to unsu-
pervised OMP-based algorithms without block-sparsity.

1.1 Motivations and Contributions. We hypoth-
esize that two properties can potentially enhance the
robustness of sparse representations in a supervised set-
ting: (1) related atoms are grouped in the same block,
and (2) the blocks are discriminative to one another.

To achieve the first property, we enforce a block
structure on the dictionary to group “similar” atoms
together. In standard sparse coding without struc-
tures [1, 14] (Figure [1(a)]), any combination of atoms
can be used to represent an input signal. As a result,
the input signals that are semantically similar (e.g., with
same class labels) can end up activating quite different
atoms. This is problematic in tasks such as classifica-
tion since it causes significant within-class variation in
the feature space. Meanwhile, when there is a well-
designed block structure in the dictionary such that a
block will be activated if and only if a significant portion
of the atoms from the block can be activated together,
such within-class variation will then be alleviated.

To achieve the second property, during dictionary
learning, we leverage label information to craft label-
driven blocks: each block is associated with one or
multiple classes and a training example is encouraged
to activate blocks associated with its own class.

Our sparse coding algorithm is based on a greedy
pursuit method, namely block orthogonal matching
pursuit (B-OMP). It not only enables us to assign
each block primarily to a specific class, but also to
manipulate the degree of block sharing between different
classes. Furthermore, we demonstrate that B-OMP
significantly speeds up the sparse coefficients update
compared with {1 /I3 norm constrained convex relaxation
solver such as block/group sparse coding (BGSC) [15].

In summary, our contributions are as follows: (1) we
propose a fast dictionary learning algorithm that pro-
duces discriminative dictionaries with structures based
on block sparse coding, (2) we provide a theoretical
analysis of the dictionaries that optimize our proposed
objective function, (3) we evaluate our algorithm on an



occlusion denoising task with USPS handwritten digit
dataset [I6] and a facial expression recognition task
with Toronto Face Database (TFD) [I7] to empirically
demonstrate that integrating the two properties above
indeed results in robust sparse representations that are
suitable for discriminative tasks.

1.2 Related Work. In recent years, much work has
been done in sparse coding and dictionary learning.
In [I5], the idea of block structure is explored: their
algorithm learns structured dictionaries and utilizes an
intra-block coherence penalty term (see Section for
definition). However, [I5] does not incorporate the label
information. The idea of leveraging label information to
discriminatively train dictionaries appears in both [10]
and [II]. The major difference that distinguishes our
work from theirs is that we do not add an additional
classification loss penalty to the objective function.
In addition, neither [I0] nor [II] learns structured
dictionaries.

In [I8], both “structured” and “discriminative”
properties are considered. However, for certain
datasets, we find that the penalty term proposed in [I§],
the inter-block coherence (definition see Section
penalty, does not necessarily improve the classification
performance in practice. In our work, we further ex-
plore our observations and reach a potential theoretical
justification for why this penalty term is unnecessary in
some cases. In addition, there is no sharing of dictio-
naries between different classes during learning in [18].

Lastly, [19] is related to our work in the sense that
a greedy pursuit method is used in dictionary learning.
However, in [19], there is no label information involved.
We use gradient descent to update the dictionary atoms,
which provides more flexibility in the objective function,
unlike the K-SVD based approach utilized in [19].

1.3 Notation. We consider that the (labeled) data
matrix is given as Y¢ € R?*"c for each class ¢ €
{1,---,C}. Here, d denotes the dimension of a data
point; n. is the number of data points in class c,
and n denotes the total number of examples, i.e.,
n = Zczl ne. The dictionary matrix is given as
De (K ) which is composed of K non-overlapping
sub-matrices D[k] € R¥**, k € {1,--- ,K}, ie., D =
[D[1];- -+ ; D[K]], where s is the number of atoms in
each D[k]. We assume throughout the paper that all
data points and dictionary atoms are normalized, i.e.,
[Y7ll2 = 1 and || D[k]i|[2 = 1, where Y denotes the j-
th column of Y¢, and D[k]; denotes the I-th column of
DIk]. The sparse coefficient, i.e. sparse representation,
of Y is denoted by S§ € REs and S (or S¢) denote
the coefficient sub-matrices of Y (or Y¢). In addition,

Q

o
o
k. il
Y Y? D

st s

(a) Standard Sparse Coding

Q

D[1] D[3]

St §?

(b) Discriminative Structured Sparse Coding

Y!y? D

Figure 1: In standard sparse coding, suppose examples
from class 1 tend to activate subsets from the first
two thirds atoms in D, and rarely the last one third;
suppose those from class 2 tend to activate subsets from
the last two thirds but rarely the top one third. For
discriminative and structured sparse coding, we can
group the first one third atoms into a block colored
green, second one third to a purple block and last ones
to an orange block. A block is activated if and only if a
significant number of atoms in the block are activated.
In this example, W} = Wi = W2 = W2 = 1 and the
other entries of W are zeros. Best viewed in color.

S[k] € R**™ (or S°[k] € R**") denotes a coefficient
matrix of data in ¥ (or Y¢) corresponding to the atoms
in D[k]. Finally, for clarity, we introduce binary variable
W to indicate whether the atoms in D[k] are used to
represent the data in class c. In other words, if W =1,
we may have non-zero elements in S°¢[k], but when
W¢ = 0, all elements in S°[k] are zeros. We describe
the usage of W with a toy example in Figure[L(b)] The
block sparsity of a sparse coefficient vector S5 € REs
is defined as the number of active blocks, which can be
defined using an indicator function 1(-) as follows:

K
1S¢]12.0 = > 1(IS5[K] 12 > 0).

k=1

2 Objective Function and Theoretical Analysis

2.1 The Proposed Objective Function. Our goal
is to construct a dictionary such that: (1) the dictionary



is structured, (2) activation is block-sparse, (3) each
class is associated with some blocks and a limited
amount of block sharing is allowed among different
classes, (4) an input data only activates the blocks
associated with its class, and (5) the block structure is
both highly representative and discriminative—an input
data’s reconstruction error is minimized only when
activating the blocks associated with its class. To
construct such a dictionary, we propose the following
objective function:

(2.1) rmn ZZ

K 2
ZW,;?D[k]Sj[k]’L
c=1 j=1 k=1

subject to Ve, V7, [[S5 (2,0 < A

K
Vey,Veg,e1 # 2, Y Wi Wi < p,p e ZTU{0}
k=1

The proposed objective function captures most of the
desired properties. However, in order to avoid over-
complication in training, it does not directly enforce
part of property (5) mentioned above, i.e., the discrim-
inative power of the block structure. Instead, we math-
ematically explore conditions under which the learned
blocks have strong discriminative power even without
explicitly taking property (5) into consideration during
training in the next section.

2.2 Theoretical  Analysis. Recent theoretical
works on structured sparse coding [20] imply that low
inter-block coherence positively impacts the discrimi-
native power of the blocks. Intuitively, even if a block
produces small reconstruction errors for the examples
from its associated class, there may exist other candi-
dates that can also achieve small reconstruction errors
but associated with a different class. If additionally the
inter-block coherence between blocks associated with
distinct classes is low, then more likely an example from
a certain class will correctly select blocks associated
with its own class during sparse approximation. As
a consequence, the resulting sparse coefficients for an
example tend to select the blocks associated with its
class and not to activate irrelevant blocks.

Thus we would like to show an upper bound of
the inter-block coherence when the blocks are optimal
for the proposed objective function. In particular, we
measure the inter-block coherence between two blocks
using the dot products (in absolute value) between
atoms from the two blocks.

For the theoretical analysis, we introduce further
assumptions and some definitions:

1. We consider two classes only and each class only
has one block associated with it; thus there are two

CLet Vi, Y-

blocks in total. In practice, we use multiple blocks
for each class because the examples from the same
class can be further divided into smaller sub-classes
(e.g., very different writing styles for the same digit
class).

Yl € R? be examples from class 1,
and Y2 Y3 - ~-Y,?2 € R? be examples from class
2 (note that all input vectors are unit norm, as
described previously). We assume VYil,le evYl,
(Y1, Y}') > 61 > 0, i.e. examples from class 1 are
sufficiently close to one another. We denote class-
specific mean vectors as

S v RN TRD v b vy
[P DR

and the coherence between the class-specific mean
vectors is defined as

(2.2) (V1

Y?)| = 610.

. We do not include any overlapping between classes,

i.e., p = 0. Therefore, we do not need to learn the
W¢ in our case: Wi = W2 =1 and W = Wy = 0.
In this special case, the objective functions can be
simplified into two independent objective functions:
For class 1,

@3 5>
For class 2,

2
e g2 o]

. We assume that ||S¢||2’s are bounded by some large

positive number a > 0, so that the optimization
problem is defined on a compact domain. And
since the objective function is continuous in both D
and S, there exists a global optimum. We further
assume that the globally optimal dictionaries for
and are obtained and denote them by
DI1] and D|2] respectively.

. Finally, we enforce one more assumption on class

1. Let

o [Preiw 7]

b1 = sup ’
dim(W)=s—1 n

denote the maximal average projection of the data
onto an (s — 1)-dimensional subspace W C R9, and



similarly let

it Prov 7]

ni

g1 = sup
dim(V)=s

We assume that g1 — p; > 12 + /1 — 8%,

We are ready to introduce the main theorem. In the
theorem, we show that under the above assumptions, if
an atom, da, in D[2] represents class 2 well, then it must
be far away from atoms in D[1].

THEOREM 2.1. With notation and assumptions in (1)
to (5) stated above, let do be a column vector in D[2]
such that

(2.5) [{d2, Y?)| = 72.
then, for any column vectors dy in DI[1], we have

|{d1,d2)| < da,

where

Nl=

dav2 — (1=07)(1—13))* >

(1 —(q1 —p1 — 612 — (1 —5%))2)%-

The proof to the theorem and associated lemmas
are presented in the Appendix. The theorem provides
an upper bound to the inter-block coherence under
certain assumptions. As illustrated at the beginning
of this section, low inter-block coherence leads to more
classifiable sparse representations. In other words, a
dictionary satisfying our objective function [2.1|naturally
possesses strong discriminative blocks.

Finally, we would like to generalize Theorem [2.]
heuristically to the block-sharing case. When p > 0,
the two classes share p blocks. If we subtract the
contributions of the shared blocks from both class 1 and
class 2, then the resulting residuals are likely to become
incoherent. Then, the non-shared blocks are responsible
to represent the residuals. Thanks to the incoherence
between the residuals, Theorem implies that blocks
only associated with class 1 and blocks only associated
with class 2 are incoherent. Again, as a potential
consequence, for an example from class 1, its sparse
coefficients corresponding to the blocks only associated
with class 1 are non-zero but those corresponding to the
blocks only associated with class 2 are zeros. Therefore
the sparse representations are still highly discriminative
and can lead to a better classification performance.

3 Block Orthogonal Matching Pursuit

Algorithm 1 Orthogonal Matching Pursuit

1: Initialize the activation set to be empty.

2: for iter =1: A, do

3:  Select the atom with maximum (in absolute
value) inner product with the residual.

4:  Add the atom to the activation set.

5. Update all sparse coefficients by computing the
orthogonal projection of the input signal onto the
set of currently activated atoms.

6: end for

Algorithm 2 (Modified) Block Orthogonal Mathing
Pursuit

1: Initialize the activation set to be empty.

2: for iter =1: )\, do

3:  Select the block hosting maximum (in [ norm)
orthogonal projection of the residual.

4:  Add the block to the activation set.

5. Update all sparse coefficients by computing the
orthogonal projection of the input signal onto the
set of atoms from the set of currently activated
blocks.

6: end for

In this section, we describe a Block Orthogonal
Matching Pursuit, which we use for the sparse approxi-
mation step during dictionary learning.

Orthogonal Matching Pursuit (OMP) [2I] is a
greedy algorithm to perform sparse approximation. It
chooses the atom from D that most correlates (largest
dot product in magnitude) with the residual, then sub-
tracts the contribution from all selected atoms from the
original input signal by computing its orthogonal pro-
jection onto these atoms to update the residual and re-
peats till A atoms are selected (Algorithm [1)). Block
OMP (B-OMP) [22] is an extension of OMP. It greedily
selects A optimal dictionary blocks instead of A atoms
to approximate input signals. The original B-OMP al-
gorithm selects the block with the largest (in absolute
value) sum of dot products with the residual. Such se-
lection criterion performs well under certain assump-
tions such as linear independence of the atoms in the
same block—so that the sum of dot products is an ap-
proximation to the orthogonal projection, which do not
carry over to our classification setting. In our setting,
empirical experiments show that the atoms from the
same block are highly correlated, hence such selection
criterion can unfairly ignore the input examples that
are very well represented, yet by only a few atoms in
the block. Therefore, we modify the original B-OMP to
fit our task: during each iteration, we select the block
whose atoms span the subspace that hosts the largest



Algorithm 3 Dictionary Learning

1: D < initial random weight.

2: W « initial assignment (Sec. |4.1]).
3: for i = 1 : maxiter do

4. forc=1:Cdo

5: Update S¢ and W* (Sec. [£.2).
6: Update D® (Sec. [4.3).

7. end for

8: end for

(in [? norm) orthogonal projection of the residual at this
iteration (Algorithm . If not mentioned otherwise, B-
OMP refers to our modified version throughout the rest
of the paper.

In addition, we extend B-OMP to Simultaneous B-
OMP (SB-OMP) similarly as the extension from OMP
to Simultaneous OMP in [23]. SB-OMP selects the
optimal blocks over all input signals simultaneously (i.e.
over multiple examples) instead of individually (i.e. over
each example) in order to be more robust to noise in the
input signals.

4 Dictionary Learning Algorithm

Now, we introduce the dictionary learning algo-
rithm with our proposed objective function. As is usual
for many dictionary learning algorithms of sparse cod-
ing [14], we alternately update the coefficient matrix S,
the assignment matrix W, and the dictionary matrix
D. In our case, we perform such an alternating update
for each class separately. An overview of our dictionary
learning algorithm is given by Algorithm

4.1 Initial assignment of W. Assuming that the
data is balanced in terms of class labels, we assign
the same number of dictionary blocks, each of which
contains the same number of dictionary atoms, to each
class. To assign equal number of blocks to each class
without overlapping, we enforce the total number of
blocks to be a multiple of the number of classes. For
example, when there are 20 blocks of dictionary with
10 class labels, we assign first two blocks to class 1
(i.e., W§ = W3 = 1), next two blocks to class 2 (i.e.,
W3 = W2 = 1), and so on, while setting all the other
entries of W to zero, where the superscripts denote class
label and the subscripts denote the block index. During
dictionary learning, the initial assignment, referred as
class-specific blocks, won’t be changed, but we assign
additional blocks to each class that are not initially
assigned to each class at each iteration; this assignment
can vary iteration from iteration. More details about
updating W will be discussed in the following section.

4.2 Updating 5S¢ and W¢€. If there is no sharing
allowed (i.e., p = 0), we can simply use the B-
OMP algorithm to compute the sparse coefficients S°¢
using at most A blocks out of D[k]’s whose W = 1.
When dictionary blocks are allowed to be shared across
different classes, we need to jointly estimate the sparse
coefficient matrix S¢ while assigning additional blocks
that are not initially assigned to that class. Finding an
exact solution for S¢ and W€ is difficult, thus we propose
a heuristic algorithm that goes around such a difficulty.
We describe the details of our proposed optimization
steps of S¢ and W€ in Algorithm [4]

In a high-level viewpoint, our proposed algorithm
can be interpreted as a sequential procedure that first
determines W€ for the blocks that are not initially
assigned to class ¢, referred as non-class specific blocks,
and then fit the data using the selected dictionary blocks
both from class-specific and non class-specific sets to
obtain S¢. In order to determine W€, we first fit the
data using only A — p blocks (p blocks are reserved for
the next step) among class-specific blocks using B-OMP
(line 2) and compute the residual (line 3). Then, we
greedily select the p blocks among those whose were
non-specific to class ¢ that best represent the residuals
(line 4). Since we select one block at a time that is going
to be shared by all residuals of the training examples
from class ¢, we use SB-OMP instead of B-OMP. Once
we select the blocks, we use the B-OMP algorithm to
compute S¢ (line 5) and finally, we revert W¢ back to
initial assignment matrix. Empirical experiments (see
Section show that such approximated updates for
S¢ and W€ work well in practice.

4.3 Updating D¢. After updating the sparse coeffi-
cient matrix S¢ of data YCE| we update the atoms in
each block. For the dictionary block D[k] with W =1,
let V¢ =Y~ D[l]S¢[l] be the residual of the data
using all the dictionary blocks (and corresponding co-
efficients) other than kth block. Then, the objective
function for dictionary learning can be simplified as fol-
lows:

)

min 5[V DIkIs“[k]

st. |DElilla=1,i=1,...,s.

(4.11)

We update the dictionary atoms in D[k]; one by one,
i.e., update one column while fixing other columns and
the coefficient matrix. Each dictionary element update
involves two steps: firstly, we analytically solve for the
optimal DIk]; while ignoring the unit norm constraint,

TNote that W€ is reverted back to the initial assignment
matrix after updating the sparse coefficient matrix (line 6 of
Algorithm [4)).



Algorithm 4 Optimization algorithm of W€ and S¢ for
class c.

1: Given: an input data matrix Y¢ € R*"  initial
assignment matrix W€, block sparsity level A, and
number of shared dictionary blocks p whose initial
assignments are zero (i.e., W =0).

2: Use the B-OMP to solve the following optimization
problem for all j =1,...,n.:

(4.6)

1 2
minf’
sg 2

vi- > DIKS;HH
k:We=1

; st 1520 < A=p

3: Compute the residual matrix of class ¢:

(4.7) Y¢=Y°~> D[KS[K].

4: Use the SB-OMP to solve the following optimization

problem:
|7 X:Dmymw
5t g 2’
(48) k:Wg=0
st Y 1([S20 > 0) < p
R WE=0

and update W¢ = 1 if [|S¢[k]||2,0 > 0.
5: Use the B-OMP to solve the following optimization
problem for all j =1,... n. to obtain the final S¢:

o1
min —
s¢ 2

e S bS]

k:Wi=1
s.t. ||S;H2’0 S A

(4.9)

6: Revert W€ back to the initial assignment matrix.

and secondly, we normalize it to have unit norm. More
details in dictionary learning algorithm are provided in
Algorithm

4.4 Implementation Details: Intra-Block Co-
herence Penalty. We can add an intra-block coher-
ence penalty term to the objective function so that

o1
min —
DIk] 2

st. |Dklilla=1,i=1,...,s.

B L e

atoms in each block can learn more diverse pat-
terns while avoiding redundancy between elements [15].
Adding such a diversity constraint between atoms in the

Algorithm 5 Dictionary learning algorithm of DIk]’s
with W¢ = 1.
1: for k such that W =1, do
2 Ye=Ye—37, DS
3: fori=1:s do
4: Update DIk]; using the following closed-form
solution and normalize:

(4.10)

(V2STHIT 3, DI 71657187

(semlisein))
Dikl; < DIK]/| DIkl

5. end for
6: end for

same block is especially important since we use greedy
pursuit method B-OMP for sparse approximation [24].
We can still obtain a closed-form solution without the
unit norm constraint for atom; for more details, please
see [I5] (Supplementary Materials, 1.2).

5 Experiments

We evaluate our proposed framework on computer
vision datasets, namely USPS handwritten digit
dataset [16] for image denoising and Toronto Face
Database (TFD) [I7] for facial expression recognition.

5.1 Hand-Written Digit Denoising: USPS. We
first test our algorithm on the USPS dataset [16] for
denoising occlusion noise. Based on Theorem
our proposed algorithm will learn dictionaries with low
inter-block coherence. In other words, the blocks are not
only capable of representing the digits from the classes
they are associated with but also highly differentiated
from the blocks associated with other classes. Hence,
an occluded digit still is likely to activate the correct
blocks, i.e., the blocks associated with its class. In
turn, the subspace spanned by the atoms from the
correctly activated blocks can fill up the information
that is missing due to the occlusion and thus achieve a
realistic reconstruction.

The handwritten digit images are of size 16 x 16
range from 0 to 9. The dataset contains 7921 training
and 2007 testing examples. The only preprocessing is
to normalize each example to have {2 norm 1. We ran-
domly corrupt the testing examples with 8 x 8 zeroed
patches and our goal is to estimate the original digits
from the occluded ones. During dictionary learning, as
described in Section [4] we alternately update the coeffi-
cient S along with the assignment W and the dictionary



D, with uncorrupted training examples. Specifically, we
apply SB-OMP to find p non-class specific blocks and
compute S using A different dictionary blocks in total.
Since label is unknown during testing time, we compute
the sparse coefficients S for the corrupted testing ex-
amples using block sparse coding algorithms, BGSC, as
proposed in [I5]. Finally, we combine the sparse coef-
ficients S and the learned dictionary D to reconstruct
the ground truth with no occlusions. The final result is
normalized to have [2 norm 1.

In this experiment, we use K=20 blocks of dictio-
naries (which assigns 2 blocks per category for the initial
assignment), each of which contains s = 25 dictionary
elements, which are consistent with the corresponding
hyperparameters from [I5]. For the other parameters
during dictionary learning, we set A = 5, p = 3, and
B = 50. During sparse approximation using BGSC,
we set the sparsity parameter A\; = 0.25. These pa-
rameters, namely A, p, 8, and A, are chosen by cross
validation. We compare our proposed algorithm with
the standard OMP [25] which is neither structured nor
discriminative and BGSC [I5] which is structured but
not discriminative. For OMP baseline, to be consistent
with our experiments using the proposed algorithm, we
set the number of atoms in D to be 500 and allow 50
of them to be activated during both dictionary learning
and sparse approximation. For BGSC, we follow the
hyperparameters from [I5].

The denoising quality is measured quantitatively by
PSNRE] in Table [1] and qualitatively by visualization
of reconstructed digits in Figure Our proposed al-
gorithm notably outperforms the standard OMP both
quantitatively and qualitatively. Thanks to its struc-
tured and discriminative nature, dictionaries learned
through our proposed algorithm manage to fill in the oc-
cluded regions based on the available information from
the corrupted testing examples. After filling in the oc-
cluded regions, we may further filter the remaining noise
by applying existing general denoising tools such as [26].

Indeed, the performance of BGSC is within a small
margin from the proposed method, though our algo-
rithm gives better results both quantitatively and per-
ceptibly. In addition, our proposed algorithm is very
easy to implement, converges with significantly fewer
number of iterations, and runs much faster than the
unconstrained sparse coding algorithms used in BGSC.
For example, it took about 1.41 x 10% seconds (150 it-
erations) for our proposed algorithm to converge dur-
ing dictionary learning, whereas the BGSC took about
1.54x 10* seconds (300 iterations) to converge. Both are

2The PSNR values are negative because we assume that

maximum possible pixel value is 1.

Algorithm
PSNR

OMP [25]
~15.9

BGSC 1]
—39.4

Proposed
—37.1

Table 1: Denoising PSNR on USPS dataset.

5

Figure 2: Visualization of digit reconstructions.
From left to right: ground truth, corrupted testing
examples with occlusions, reconstructions from OMP,
BGSC and our proposed algorithm. The block structure
manages to fill up the missing region.

evaluated on a single CPU of Intel i7 processor with 16G
RAM. Such speedup is mainly due to the greedy pursuit
algorithm that we use to update S, which is arguably
faster than the standard sparse coding algorithm.

5.2 Facial Expression Recognition: Toronto
Face Database. The Toronto Face Database (TFD) is
a collection of aligned and rescaled (48 x 48 pixels) faces,
among which 4,178 are expression-labeled and 112,234
are unlabeled. There are 7 expressions and our task is to
recognize these expressions. Additionally, the dataset
comes with a pre-defined 5-fold cross validation. We
evaluate our algorithm on all 5 training/testing splits
and take the average.

We build a two-layer architecture for TFD facial
expression recognition. The first layer is unsupervised,
following the same procedures as in [27]. The resulting
features after the first layer are of dimension 4-by-4-
by-200. For the second layer, we first extract patches
of 10 different spatial locations in the following ways:
(1) 3-by-3 patches with stride 1, (2) 2-by-4 patches
with stride 1 and (3) 4-by-2 patches with stride 1. We
use our proposed algorithm to learn 10 (4 + 3 + 3)
independent dictionaries for the 10 types of patches.
For each dictionary, we set K = 7, thus each expression
is associated with 1 block, and s = 300. We do not
consider block sharing, i.e p = 0. The intra-block
coherence parameter is set to § = 5. We run our
proposed dictionary learning algorithm for 25 iterations
and then finetune the dictionary with OMP-1 [28] for
another 25 iterations.

Furthermore, we use threshold encoding (threshold
parameter \; = 0.5 for the top two 3-by-3 patches and



At = 0.3 for the rest) [28] to extract sparse features at
testing time. Although we are not directly performing
block-sparse encoding at testing time, Theorem
implies low coherence between individual atoms from
different blocks and hence an example would still favor
atoms from its own class. Next the extracted sparse
features are fed into 10 linear SVMs (C' = 0.5), and the
10 classifiers vote together to reach a final decision.

Among the baseline algorithms for USPS dataset
evaluation, BGSC is too slow for TFD adaptation, thus
we only compare our algorithm with OMP baseline.
For this baseline, we apply OMP-1 [28] to update the
dictionary for 100 iterations during dictionary learning
step. There are 2100 atoms in the dictionary, which is
consistent with the number of total atoms used in our
proposed algorithm for TFD. We also compare our al-
gorithm with other existing two-layer facial expression
recognition pipelines. Our algorithm achieves a classi-
fication accuracy after averaging across the 5 cross val-
idation sets that is comparable with those from much
more complicated architectures.

Proposed | Baseline | DBN[29] | CDA[29] | disBM[27]

85.54% 84.86% 82.40% 85.00% 85.43%

Table 2: Facial expression recognition accuracy on TFD.

6 Conclusion

We have proposed a novel discriminative structured dic-
tionary learning framework that is fast and more scal-
able than many other dictionary learning algorithms.
We also have theoretically justified the inter-block in-
coherence properties for the dictionaries optimizing our
proposed objective function. Our proposed framework
performs favorably on the USPS dataset for occlusion
denoising and TFD dataset for facial expression recog-
nition. We hope our proposed method becomes a useful
tool or inspires new ideas for learning discriminative,
invariant features through sparse coding.
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