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Abstract

Machine learning has proved a powerful tool for artificial intelligence and data mining

problems. However, its success has usually relied on having a good feature representa-

tion of the data, and having a poor representation can severely limit the performance of

learning algorithms. These feature representations are often hand-designed, require signif-

icant amounts of domain knowledge and human labor, and do not generalize well to new

domains.

To address these issues, I will present machine learning algorithms that can automat-

ically learn good feature representations from unlabeled data in various domains, such as

images, audio, text, and robotic sensors. Specifically, I will first describe how efficient

sparse coding algorithms — which represent each input example using a small number of

basis vectors — can be used to learn good low-level representations from unlabeled data. I

also show that this gives feature representations that yield improved performance in many

machine learning tasks.

In addition, building on the deep learning framework, I will present two new algo-

rithms, sparse deep belief networks and convolutional deep belief networks, for building

more complex, hierarchical representations, in which more complex features are automat-

ically learned as a composition of simpler ones. When applied to images, this method au-

tomatically learns features that correspond to objects and decompositions of objects into

object-parts. These features often lead to performance competitive with or better than

highly hand-engineered computer vision algorithms in object recognition and segmenta-

tion tasks. Further, the same algorithm can be used to learn feature representations from

audio data. In particular, the learned features yield improved performance over state-of-

the-art methods in several speech recognition tasks.
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Chapter 1

Introduction

1.1 Motivation

The goal of machine learning is to develop algorithms that can learn (e.g., recognize pat-

terns) from complex data and make accurate predictions for previously unseen data. In the

past few decades, machine learning has been successful in tackling many real-world arti-

ficial intelligence (AI) problems. For example, it has been successfully applied in optical

character recognition, face detection, and speech recognition. Machine learning has also

been a powerful tool in tackling challenging problems in computer vision, natural language

understanding, autonomous car driving, data mining of biological data, medical imaging,

financial engineering, and web search/information retrieval.

However, there are two issues that may need to be addressed in order for machine

learning to be more successful. First, the success of machine learning systems often re-

quires a large amount of labeled data. While it is known that a larger amount of training

data is better [10, 11, 28], it is expensive to obtain a large amount of labels since it often

requires significant human labor. In contrast, unlabeled data are cheap to obtain because

a virtually unlimited amount of them can be easily obtained over the web. Therefore, it

is desirable to use a large amount of unlabeled data with only a small amount of labeled

data. Furthermore, many real-world machine learning applications require a good “fea-

ture” representation to be successful. Here we define features as properties or attributes

that can be computed from the input data, with a hope that these feature representations are

1
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somewhat easier for learning algorithms. However, it is not straightforward to obtain good

feature representations; unfortunately, such processes are usually done by human efforts,

as further described in this thesis.

Feature engineering

The requirement of good feature representations comes from the fact that real-world data

are complex and highly variable. For instance, computer vision is a challenging problem

where current state-of-the-art algorithms do not match the level of human performance.

The challenge for computers lies in the fact that images are high-dimensional (images are

often represented by hundreds of thousands of pixels) and highly variable (due to many

factors of variations, such as viewpoint changes, photometric effects, shape variation, and

context variation). Hence, it is very difficult for learning algorithms to capture the structure

of raw image data (i.e., pixel intensities) and to generalize well from training images to new

images. This difficulty also holds true for most other domains, including speech and text,

where input data is high-dimensional. Thus, it is often necessary to develop clever ways of

constructing features to make learning problems easier to solve.

As a motivating example, consider a problem of classifying images into motorcycles or

non-motorcycles. First, consider a setting where we use the pixel representation of images,

and put the pixel features into a learning algorithm, such as the support vector machine

(SVM) [26, 41], to classify whether the image contains motorcycles and other objects.

As shown in Figure 1.1, if we pick two pixels and draw a scatter plot, motorcycles and

non-motorcycles are difficult to separate. This issue is also true when we consider tens of

thousands or hundreds of thousands of pixels.

Now, consider another setting where we have some magical features that give use-

ful information about the image. For example, suppose that we have a feature mapping

that computes “whether there exists a motorcycle wheel or motorcycle handle-bars.” Given

these higher-level features, the binary classification problem can be better separated. In

other words, if we know that motorcycle wheels and motorcycle handlebar exist in an im-

age, then there will be a high chance that the image contains motorcycles.

This illustration shows the powerful impact of good features on machine learning and

its applications. However, it is not very practical to hand specify these high-level features
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3

Learning pipeline
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Figure 1.1: Illustration comparing pixel representation and higher-level feature represen-
tation. The upper part shows a typical pipeline of a machine learning application. For
example, when we use pixel values as features, the two classes are not well separated (the
bottom left plot). However, the separation becomes clearer when using a feature mapping
from pixels to high-level features, such as “is there a handle bar in the image?” or “are there
any motorcycle wheels in the image?” (the bottom right plot). See text for details.

because it requires much human labor (mostly spent on trials and errors). Furthermore,

this process becomes more expensive and cumbersome if we have a large number of object

categories to classify. More importantly, this approach is not feasible when we have little

domain knowledge about the data.

Currently, most state-of-the-art systems in machine learning applications (e.g., com-

puter vision, speech recognition, etc.) rely on these types of hand-tuned feature repre-

sentations. These features are then used as inputs for machine learning algorithms (e.g.,

classification or regression). Typically, these hand-tuned features are fairly low-level be-

cause we try to hand-encode much prior knowledge, but at the same time we want to make
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these features work reasonably well in general cases. In other words, these hand-tuned fea-

tures are domain-specific, but not data-specific. For example, in a visual object recognition

task, we can use edge detectors to compute the boundaries of the object, and then put this

feature representation (“edge detection” output) into a supervised learning algorithm (e.g.,

SVM). Similarly, in a speaker identification task, we can convert the waveform data into a

spectrogram representation, which is essentially a Fourier transform of the time-series data

(waveform intensities) by taking a small time window, and then put these features into a

learning algorithm to identify the speaker.

Indeed, many of these hand-engineered features have been developed over last several

decades. Examples of widely used computer vision features include Geometric Blur [18],

SIFT [106], Shape Context [15], HOG [42], Textons [102], Spin images [74], RIFT [87],

SURF [12], and GLOH [115]. Similarly in audio processing, a number of features have

been developed, such as Spectrogram [44], MFCC [113], Spectral rolloff [146], Spectral

flux [46], Zero-crossing rate (ZCR) [34]. Although such hand-engineered features are ex-

tensively used in practice, there are problems with these features.

First, they need a huge amount of domain-expert knowledge and time consuming hand-

tuning. These feature representations often have to be obtained by human efforts, meaning

that many domain experts (e.g., computer vision experts, speech recognition experts, nat-

ural language processing experts, etc.) have to spend a significant amount of their time

(weeks, months, or even years) on “hand-tuning” the features based on their knowledge

and numerous trials and errors. Second, the features in one domain do not generalize to

other domains. Both of these issues are universally true in most domains. Therefore, it is

desirable to have a way of automatically learning these feature representations from data,

instead of hand-tuning.

In this thesis, I will investigate the problem of learning feature representations in an

unsupervised way, without much hand-tuning. Addressing this issue will dramatically im-

prove the current state of machine learning and its applications by achieving better predic-

tion performance while using much less labeled data.
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1.2 Unsupervised Feature Learning

Given the above issues, consider the problem of learning feature representations from un-

labeled data. We are interested in primarily using unlabeled data because we can easily

obtain a virtually unlimited amount of unlabeled data, such as images, speech, video, text,

and other domains. In fact, even though we do not have labels, there often exist rich struc-

tures in unlabeled data. For example, if we look at images of a specific object (e.g. face),

we can easily discover high-level structures such as object parts (e.g. face parts). Given

natural images, we may be able to discover low-level structures such as edges, as well as

high-level structures such as corners, local curvatures, and shapes. Similarly, given speech

data, we may be able to discover not only low-level structures such as gamma-tone filters,

but also higher-level structures that correspond to phonemes or words.

This thesis assumes that structures in unlabeled data can be useful in machine learning

tasks. For example, if the input data have structures generated from specific object classes

(such as cars vs. faces), then discovering class-specific patterns (such as car wheels or face

parts) will be useful for classification, possibly together with a very small amount of labeled

data. How can we discover these high-level features from unlabeled data? Unfortunately, it

is difficult to learn such high-level features, which is the main problem that this thesis aims

to address.

1.3 Related work

This section describes related work on learning features in a supervised or unsupervised

way, using unlabeled data to help supervised learning tasks, and learning hierarchical rep-

resentations.

1.3.1 Learning features from labeled data

Learning features from labeled data is related to several research areas in machine learning.

I will briefly describe some of them, including multiple kernel learning, neural networks,

multi-task learning, and transfer learning.
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Recently, there has been much research in “learning kernels.” One representative ap-

proach is called multiple kernel learning (MKL) [79, 150, 161, 8], where the goal is to

learn a convex combination of multiple kernels to obtain improved results for training data.

Here, each kernel is typically derived from a specific feature representation; thus, MKL can

be viewed as learning feature representations by combining features. However, it requires

that multiple basic feature representations are initially given.

Multi-layer neural network [20] consists of hidden or output variables (also called arti-

ficial neurons) connected in a feed-forward manner across multiple layers. Each value of

hidden or output variables is computed as a nonlinear function of the weights and the vari-

ables in the previous layer. The objective function to minimize is a loss function between

the output and the labels in the training data, and the parameters (weights) of the network

are trained via backpropagation [141]. In the context of feature learning, the hidden vari-

ables in the neural network can be viewed as features; therefore, training a neural network

corresponds to learning the feature representation to improve the objective function. In

particular, convolutional neural network has been successful in computer vision tasks [89].

The main idea is to share the parameters across hidden variables, and this weight-sharing

has the advantage of reducing the number of parameters. However, convolutional neural

networks do not work well given a small number of training examples [173, 133].

Multi-task learning [30] is a framework that aims to optimize multiple related (often

similar) tasks simultaneously. The main idea is to share the intermediate feature represen-

tations for multiple tasks, thereby allowing the learning algorithms to exploit commonality

among the tasks. Multi-task learning can be formulated in several different ways. For

example, Argyriou et al. [6] formulated as regularizing with a composite norm (e.g., 1-2

norm) of the weight matrix (where each column represents a weight vector for each task).

In this setting, the algorithm chooses a subspace of the original feature representation, and

the weights for individual tasks are learned within this learned subspace. In another ex-

ample, multi-task learning is implemented in multi-layer neural networks, where multiple

output variables correspond to multiple tasks [30, 39]. In this setting, the hidden variables

in the intermediate layers are shared and tuned for the multiple tasks simultaneously.

In a broader perspective, transfer learning is also related to the problem of feature learn-

ing [156, 30]. A complete review of transfer learning literature is beyond the scope of this
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thesis. (See [126] for a survey.) Briefly speaking, transfer learning assumes that there are

source tasks and a target task (or sometimes multiple target tasks). The goal is to transfer

knowledge or information from the source tasks to the target task. In particular, there are

several transfer learning approaches based on transferring knowledge of feature represen-

tations from source tasks to the target task [6, 98, 71]. In addition, transfer learning and

multi-task learning are closely related. Multi-task learning is informally considered as a

sub-field of transfer learning although technically, multi-task learning aims to optimize for

the multiple tasks simultaneously instead of having source and target tasks.

Although these methods show promise, all above-mentioned supervised feature learn-

ing methods typically require a large number of labeled training examples. Therefore, these

algorithms may suffer when there is a small amount of labels. In this thesis, we mostly fo-

cus on settings without a large amount of labels. Thus, a question naturally follows: how

can we learn feature representations in an unsupervised way?

1.3.2 Using unlabeled data to improve supervised learning tasks

There has been research on using unlabeled data to help supervised learning tasks. I will

briefly describe semi-supervised learning (SSL) and a few specific SSL-based algorithms,

such as co-occurrence heuristics [97, 62, 104], LDA [21], Universum [163], and Alternat-

ing Structural Optimization [4].

Semi-supervised learning [119, 33, 177] attempts to improve classifiers by using a large

amount of unlabeled data together with the labeled data. A complete review of semi-

supervised learning is beyond the scope of this thesis. (For details, see [33] or [176] for

a survey.) Roughly speaking, semi-supervised learning algorithms are based on several

different assumptions. One common assumption, often called “cluster assumption,” is that

the decision boundary should avoid the high density region of the input data. Examples of

the models based on this assumption are mixture models (e.g., Gaussian mixtures) [119],

transductive support vector machines [73], information regularization [152], and Gaussian

processes-based models [86]. Other methods based on different assumptions include self-

training [169], co-training [24], and graph-based methods [177, 23].

There are a few domain specific methods that are based on modeling the distribution
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of the unlabeled data. For example, co-occurrence statistics [97, 62, 104] is a heuristic

widely used in natural language processing. The main idea is to compute co-occurrence

statistics of the word pairs in unlabeled documents, and use the co-occurrence statistics

for representing the context of a word in the documents. This heuristic is shown to im-

prove performance in clustering similar words [104] and disambiguation problems [127];

however, it is not obvious how to apply this heuristic to other domains.

Latent Dirichlet Allocation (LDA) [21] is also a very popular algorithm in text process-

ing. LDA assumes that the “topics” (where each topic represents a multinomial distribution

over words) of each document is drawn from a Dirichlet distribution. LDA can learn topics

based on bag-of-word representations. After training, the posterior over the topics for each

document can be used as a feature representation. LDA and its variants (e.g., [22]) have

been widely applied to information retrieval [162]. However, LDA is restricted to input

domains that are represented as bag-of-words, so it cannot be applied to real-valued data.

Universum [163] assumes that the unlabeled data are distributed near the decision

boundary of the classification task. Informally speaking, unlabeled data (assuming a binary

classification task) are interpreted as “neither positive nor negative” or “between positive

and negative classes.” Weston et al. demonstrated improved performance by carefully con-

structing classification tasks that satisfy this assumption. However, the assumption about

unlabeled data is fairly restrictive; therefore, the Universum method may not work well in

cases where unlabeled data share the same labels with labeled data.

Ando and Zhang [4] proposed the Alternating Structural Optimization (ASO) algo-

rithm. Specifically, they constructed auxiliary tasks using unlabeled data and showed that

these auxiliary tasks are beneficial for the supervised task. In practice, constructing these

auxiliary tasks significantly affect the classification performance, and the authors proposed

a clever heuristics for natural language processing tasks. However, it is not obvious how to

construct such auxiliary tasks in general settings.
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1.3.3 Generic unsupervised learning algorithms

Many unsupervised learning algorithms can be used to learn features from unlabeled data. I

will briefly discuss those algorithms, such as clustering methods (e.g., K-means and Gaus-

sian mixture model), matrix factorization methods (e.g., PCA and other variants, ICA,

NMF, and sparse coding), and nonlinear embeddings (e.g., ISOMAP, Locally Linear Em-

bedding, Laplacian Eigenmaps, restricted Boltzmann machines, etc.).

K-means [107] is one of the most widely used unsupervised algorithms for clustering.

Given a set of training examples (in a d-dimensional vector space Rd), K-means learns a

set of K centroids such that each example is assigned to the closest centroid. K-means

can be viewed as an algorithm for vector quantization that partitions the input vector space

(as Voronoi tessellation), where each centroid corresponds to the “center” of each parti-

tion [48]. A potential limitation of K-means is that the number of centroid points often

needs to be very large as the input dimension grows. Thus, K-means may not be scalable

to high-dimensional input data, especially when the number of examples is large.

Gaussian Mixture Model (GMM) [158] is also widely used for clustering and density

estimation. The assumption for GMM is that the density (or distribution) of the input

data is well modeled by a mixture of “clusters” (Gaussian distributions). In GMMs, it

is easy to compute the posterior probability of mixture components. In the context of

feature learning, this posterior can be used as a feature representation for a supervised

learning task.1 GMMs are closely related to K-means in that, GMMs can be viewed as

“soft-assignment” of each input example to multiple clusters, whereas K-means performs

“hard-assignment” of each input example to exactly one of the clusters. Similar to K-

means, GMM may not be applicable when input data is high-dimensional and the number

of examples is large.

Principal component analysis (PCA) is one of the most widely used algorithms for

1The assumption here can be stated as follows: If two examples x and y “belong” to the same Gaussian
(i.e., x and y have high posterior probability of belonging to the same cluster), then there is a high chance that
these two examples will have the same labels. This is somewhat consistent with the “cluster assumption” in
semi-supervised learning. Here the cluster assumption (considering a binary classification problem without
loss of generality) can be stated as: the decision boundary of the binary classification problem passes through
the low density region of the data. In this setting, the positive and negative classes should be “well clustered,”
and it is sensible to use the posterior probability of mixture components as features.
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dimensionality reduction and preprocessing. PCA extracts a set of basis vectors from unla-

beled data, which collectively maximizes the variance of the projected subspace (spanned

by the basis vectors). The basis vectors are obtained by the computing eigenvectors of the

covariance matrix of the input data. Informally speaking, PCA retains the “variability”

of the input data, and the projected coordinates can recover the original data quite accu-

rately. However, PCA is limited in that (1) it is an orthogonal linear transformation, and

(2) PCA is not optimal for discovering structures for input data with a highly non-Gaussian

distribution.

Algorithms such as PCA can be viewed as matrix factorization methods. In general,

matrix factorization attempts to decompose the input data X ∈ Rd×m (where d is the

dimension of the data, m is the number of examples, and each column of X corresponds

to an individual input example) as X ≈ BS (where B ∈ Rd×n, S ∈ Rn×m, n is the

number of basis vectors, and each column of B corresponds to an individual basis vector).

Matrix factorization methods can be viewed as decomposing each input example as a linear

combination of basis vectors. Therefore, each column of S represents “coefficients” of the

basis vectors for each input example. There are several variants of matrix factorization,

such as sparse matrix factorization [178] (e.g., assuming the entries of B and S are sparse),

factor analysis [84], and probabilistic matrix factorization [144].

Other notable matrix factorization methods include independent component analysis

(ICA) and non-negative matrix factorization (NMF). ICA is also a linear model which

assumes the coefficients of the basis vectors are independent [40, 69]. ICA attempts to

maximize non-Gaussianity (e.g., kurtosis) of the coefficients (or the linear filter output)

for the basis vectors. ICA is widely used for blind source separation [69]. On the other

hand, NMF [90] attempts to decompose the input data X (with non-negative values) into

a product of two non-negative matrices (i.e., non-negative basis vectors and non-negative

coefficients). NMF has been applied to text mining [165] and spectral data analysis [19].

In this thesis, we consider sparse coding [122] as an algorithm for unsupervised feature

learning. Sparse coding can be also viewed as matrix factorization where the coefficients

are assumed to be sparse. One advantage of sparse coding is that it can learn succinct

representations of the input data, where each input example can be represented as a linear

combination of small number of basis vectors. As a result, the basis vectors (also called
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“dictionary”) are forced to capture salient patterns in the data, thus the basis vectors and

the coefficients are often easy to interpret. Sparse coding allows for an overcomplete basis

set (i.e., large dictionary), where the number of basis vectors is larger than the dimension

of the input vector. Finally, sparse coding is robust to noise in the data or “change” in the

input distributions. This is because the coefficients are not determined as a simple linear

function of the input, but it goes through a sparsification process due to the sparse prior on

the coefficients. This property makes sparse coding a good candidate in settings where (1)

unlabeled data and labeled data have different distributions or (2) input data contain much

noise. We will investigate the former setting (also called as self-taught learning framework

in this thesis) in detail.

Compared to other generic matrix factorization methods (e.g., PCA, factor analysis,

sparse matrix factorization, etc.), sparse coding fits better to the statistics of the natural

stimulus data (e.g., natural images, sound, speech, and video). It is true that ICA can learn

sparse representations as sparse coding. However, unlike sparse coding, the ICA output is

simply a linear function of input. Therefore, ICA may not be robust to noise in the data or

generalize well to different input distributions. NMF can be beneficial when the input data

is non-negative, but NMF usually does not lead to sparse representations. However, we note

that these matrix factorization methods may also be used for feature learning, depending

on the input data.

The above-mentioned matrix factorization methods can be viewed as some sort of lin-

ear embeddings. A more flexible representation may be obtained by learning nonlinear

embedding. In fact, numerous algorithms exist for nonlinear embedding, such as Kernel

PCA [114], ISOMAP [155], Locally Linear Embedding [140], Laplacian Eigenmaps [13],

Gaussian process latent variable models [85], autoencoders [16], restricted Boltzmann ma-

chines (RBMs) [149, 52], and deep belief networks (DBNs) [65]. (For a survey of nonlinear

embedding algorithms, see [96] or [168].) In particular, autoencoders, RBMs, and DBNs

can be used for building embeddings with multiple layers of abstractions, which will be

further discussed in the next section.
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1.3.4 Deep learning

In recent years, “deep learning” approaches have gained significant interest as a way of

building hierarchical representations from unlabeled data [65, 16, 136, 134, 83]. Deep ar-

chitectures attempt to learn hierarchical structures and seem promising in learning simple

concepts first and then successfully building up more complex concepts by composing the

simpler ones together. For example, Hinton et al. [65] proposed an algorithm based on

learning individual layers of a hierarchical probabilistic graphical model from the bottom

up. Bengio et al. [16] proposed a similarly greedy algorithm based on autoencoders. Ran-

zato et al. [136] developed an energy-based hierarchical algorithm, using a sequence of

sparsified autoencoders/decoders. Here, I will briefly describe restricted Boltzmann ma-

chines and deep belief networks.

The restricted Boltzmann machine (RBM) is a bipartite undirected graphical model

(Markov Random Field) with two layers, where a set of latent (or hidden) binary random

variables are densely connected to a set of input (or visible) variables. However, there are no

connections between hidden variables or between visible variables. The joint distribution

is described as an energy function (as in standard log-linear models), which is simply a sum

of products between the hidden, visible units, and the weights between the two layers. The

RBM is an instance of products-of-experts (PoE) models [63, 125]. Roughly speaking,

the RBM represents the input data using binary latent variables, and these binary latent

variables or their posterior probabilities (given the input data) can be used as a feature

representation.

The deep belief network is a graphical model with multiple layers. Hinton et al. pro-

posed an algorithm for training deep belief networks, based on greedy layer-wise training

of RBMs. In a DBN, the top two layers have undirected connections, and the connec-

tions below are directed (downward connections). Recently, many variants of this greedy

learning algorithm have been successfully applied for classification tasks [65, 16, 136, 83],

object recognition [135, 17, 1], dimensionality reduction [66], information retrieval [137,

159, 143], and human motion analysis [154, 153]. Although these learning algorithms

show promise, the dimensionality of the input data is fairly limited (e.g., a few thousands

at most); therefore, it is nontrivial to apply these algorithms to learn from high-dimensional



CHAPTER 1. INTRODUCTION 13

data (e.g. tens or hundreds of thousands). This thesis will address this problem by scaling

up deep belief networks via incorporating convolutional structures.

1.4 Proposed approach

The main goal of this thesis is to develop algorithms that can extract rich, high-level struc-

tures from unlabeled data. To learn from unlabeled data, we build probabilistic generative

models so that we can perform probabilistic inference over this data.

This thesis will describe three ingredients to build such generative models. The first in-

gredient is sparsity. By incorporating sparsity, we can learn a succinct representation of the

input data. Further, sparsity often allows us to learn readily interpretable and discriminative

features. The second ingredient is hierarchy. We learn simple features first and then learn

more abstract and hierarchical features by compositing simpler features. Specifically, I will

present a method to incorporate sparsity into deep belief networks. The final ingredient is

scaling up by convolutional structure. This thesis will present a method to incorporate con-

volutional structure into deep belief networks that achieves both computational efficiency

and local invariance. As a result, this algorithm can learn high-level feature representations

from unlabeled data that can be very useful for many machine learning tasks. To summa-

rize, sparsity, hierarchy, and scaling up by convolutional structure will be the three ideas

that this thesis combines. In more general settings where convolutional structures do not

apply, the four principles, sparsity, hierarchy, invariance, and computational efficiency, can

be the main ingredients for learning good feature representations.

For intuitive understanding, I provide a preview of the key results. For example, this

thesis presents algorithms that allow us to learn high-level features from images, as shown

in Figure 1.2. Specifically, starting from pixel-level representation, the presented algorithm

will learn “edge detectors” in first layer representation; these edge detectors turn out to

be similar to what many other computer vision features represent. Furthermore, I will

show that the presented algorithm will learn higher-level features going beyond this level,

such as learning object parts in the intermediate layer and full objects in the top layer.

Moreover, I will show that the learned high-level features can directly improve machine

learning algorithms. Finally, these methods are not limited to computer vision, but can also
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Input data

1st layer
“Edges”

2nd layer
“Object parts”

3rd layer
“Objects”

Pixels

Learned hierarchical 
feature representation

Figure 1.2: Illustration of the main results. In this thesis, we explore algorithms for building
hierarchical representations from unlabeled data. We then demonstrate the usefulness of
these learned feature representations in a number of classification tasks.

apply to other domains. Specifically, we show that the same algorithm can be applied to

audio data, achieving excellent performance in audio classification tasks.

1.5 Summary of contributions

The main contribution of my thesis are as follows:

• We formulated sparse coding problem as a well-defined objective, proposed efficient

algorithms, and showed how it can be applied to machine learning tasks. In addition,

we developed generalized sparse coding algorithms that extend the range of data

types that sparse coding can be applied.

• By developing sparse deep belief networks, this work first incorporated sparsity into

deep belief networks. More specifically, we introduced sparsity regularization into
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deep networks, which are useful for learning succinct and discriminative features in

many applications.

• We developed convolutional deep belief networks. Our method is the first algorithm

that scales up the unsupervised deep learning algorithm into large sized images (e.g.,

200x200 pixels). We also demonstrated excellent performance in computer vision

tasks, such as object recognition and multi-class segmentation.

• We applied convolutional deep belief networks for audio recognition and demon-

strated state-of-the-art performance in speech and music classification tasks.

1.6 First published appearances of the described contri-

butions

Most of the contributions described in this thesis have first appeared as various publications.

The following list describes the representative publications roughly corresponding to the

chapters in this thesis:

• Chapter 2: H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algo-

rithms. In Advances in Neural Information Processing Systems 19, 2007.

• Chapter 3: H. Lee, R. Raina, A. Teichman, and A. Y. Ng. Exponential family sparse

coding with applications to self-taught learning. In Proceedings of the international

Joint Conference on Artifical Intelligence, 2009.

• Chapter 4: H. Lee, C. Ekanadham, and A. Y. Ng. Sparse deep belief network model

for visual area V2. In Advances in Neural Information Processing Systems 20, 2008.

• Chapter 5: H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep

belief networks for scalable unsupervised learning of hierarchical representations. In

Proceedings of the International Conference on Machine Learning, 2009.

• Chapter 6: H. Lee, P. Pham, Y. Largman, and A. Y. Ng. Unsupervised feature learn-

ing for audio classification using convolutional deep belief networks. In Advances in

Neural Information Processing Systems 22, 2009.
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1.7 Organization

This thesis is organized as follows. Chapter 2 will present efficient sparse coding algo-

rithms that can be used to learn sparse representations from the input data, which can also

help the supervised classification tasks. Chapter 3 will present an extension of the orig-

inal sparse coding formulation (which assumes real-valued inputs) to more general types

of input data (e.g., binary or integer values), with application to text classification and 3d

point-cloud classification. Chapter 4 will present a way of incorporating sparsity into hi-

erarchical representations, building upon deep learning algorithms. Chapter 5 will present

an algorithm that scales the deep belief networks to high-dimensional data, such as from

small (e.g., 14x14 pixels) image patches to realistic-sized (e.g., 200x200 pixels) images,

with extensive experimental results in computer vision tasks. Chapter 6 will present an

application of the same algorithm to audio data, achieving excellent performance in speech

and music classification tasks. Chapter 7 will provide a summary and the conclusion.



Chapter 2

Efficient Sparse Coding Algorithms

2.1 Introduction

Originated from computational neuroscience, sparse coding provides a class of algorithms

for finding succinct representations of stimuli; given only unlabeled input data, it learns ba-

sis functions that capture higher-level features in the data. When a sparse coding algorithm

is applied to natural images, the learned bases resemble the receptive fields of neurons in

the visual cortex [122, 123]. In addition, sparse coding produces localized bases when

applied to other natural stimuli such as speech and video [103, 121]. Unlike some other

unsupervised learning techniques such as PCA, sparse coding can be applied to learning

overcomplete basis sets, in which the number of bases is greater than the input dimension.

Sparse coding can also model inhibition between the bases by sparsifying their activations.

Similar properties have been observed in biological neurons, thus making sparse coding a

plausible model of the visual cortex [123, 124].

Despite the rich promise of sparse coding models, we believe that their development

has been hampered by their expensive computational cost. In particular, learning large,

highly overcomplete representations has been extremely expensive. In this chapter, we

develop a class of efficient sparse coding algorithms that are based on alternating opti-

mization over two subsets of the variables. The optimization problems over each of the

subsets of variables are convex; in particular, the optimization over the first subset is an L1-

regularized least squares problem; the optimization over the second subset of variables is

17
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an L2-constrained least squares problem. We describe each algorithm and empirically ana-

lyze their performance. Our method is significantly faster than the existing algorithms and

allows us to efficiently learn large overcomplete bases from natural images. We demon-

strate that the resulting learned bases exhibit (i) end-stopping [145] and (ii) modulation by

stimuli outside the classical receptive field [31]. Thus, sparse coding may also provide a

partial explanation for these phenomena in V1 neurons. Further, in related work [131], we

show that the learned succinct representation captures higher-level features that can then

be applied to supervised classification tasks.

2.2 Formulation

Sparse coding is a method for discovering salient basis vectors automatically using only

unlabeled data. The goal of sparse coding is to represent input vectors approximately as a

weighted linear combination of a small number of (unknown) “basis vectors.” Concretely,

each input vector ~x ∈ Rd is succinctly represented using basis vectors ~b1, . . . ,~bn ∈ Rd

and a sparse vector of weights or “coefficients” ~s ∈ Rn such that ~x ≈
∑

j
~bjsj . Here,

the coefficients ~s ∈ Rn are called the “activations” corresponding to the input ~x, and are

encouraged to be sparse (i.e., to have many of the activations exactly equal to zero). The

basis set can be overcomplete (n > d), and can thus capture a large number of patterns in

the input data. Sparse coding often learns a compact, succinct representation because only

a small number of coefficients are used to represent the data. At the same time, the basis

vectors thus capture salient patterns in the input data.

A standard generative model for sparse coding assumes that the reconstruction error

~x −
∑

j
~bjsj is distributed as a zero-mean Gaussian distribution with covariance σ2I . To

favor sparse coefficients, the prior distribution for each coefficient sj is defined as: P (sj) ∝
exp(−βφ(sj)), where φ(·) is a sparsity function and β is a constant. For example, we can
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use one of the following:

φ(sj) =


‖sj‖1 (L1 penalty function)

(s2
j + ε)

1
2 (epsilonL1 penalty function)

log(1 + s2
j) (log penalty function).

(2.1)

In this chapter, we will use the L1 penalty unless otherwise mentioned; L1 regularization is

known to produce sparse coefficients and can be robust to irrelevant features [118].

Consider a training set of m unlabeled input vectors ~x(1), ..., ~x(m), and their (unknown)

corresponding coefficients ~s(1), ..., ~s(m). The maximum a posteriori estimate of the bases

and coefficients, assuming a uniform prior on the bases, is the solution to the following

optimization problem:

maximize{~bj},{~s(i)}

∏
i

P
(
~x(i)|{~bj}, {~s(i)}

)
P
(
~s(i)
)
. (2.2)

This further reduces to the following optimization problem for sparse coding:

minimize{~bj},{~s(i)}
∑m

i=1
1

2σ2‖~x(i) −
∑n

j=1
~bjs

(i)
j ‖2 + β

∑m
i=1

∑n
j=1 φ(s

(i)
j ) (2.3)

subject to ‖~bj‖2 ≤ c, ∀j = 1, ..., n. (2.4)

Here, we imposed a norm constraint for bases: ‖~bj‖2 ≤ c,∀j = 1, ..., n for some con-

stant c. This norm constraint is necessary because, otherwise, there always exists a linear

transformation of ~bj’s and ~s(i)’s which keeps
∑n

j=1
~bjs

(i)
j unchanged, while making s(i)

j ’s

approach zero.

This problem can be written more concisely in matrix form: let X ∈ Rd×m be the input

matrix (each column is an input vector), let B ∈ Rd×n be the basis matrix (each column is

a basis vector), and let S ∈ Rn×m be the coefficient matrix (each column is a coefficient

vector). Then, the optimization problem above can be written as:

minimizeB,S
1

2σ2‖X −BS‖2F + β
∑

i,j φ(Si,j) (2.5)

subject to
∑

iB
2
i,j ≤ c, ∀j = 1, ..., n.
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Assuming the use of either L1 penalty or epsilonL1 penalty as the sparsity function, the op-

timization problem is convex in B (while holding S fixed) and convex in S (while holding

B fixed), but not convex in both simultaneously. In this chapter, we iteratively optimize the

above objective by alternatingly optimizing with respect to B (bases) and S (coefficients)

while holding the other fixed.

For learning the bases B, the optimization problem is a least squares problem with

quadratic constraints. There are several approaches to solving this problem, such as generic

convex optimization solvers (e.g., QCQP solver) as well as gradient descent using iterative

projections [32]. However, generic convex optimization solvers are too slow to be appli-

cable to this problem, and gradient descent using iterative projections often shows slow

convergence. In this chapter, we derive and solve the Lagrange dual, and show that this

approach is much more efficient than gradient-based methods.

For learning the coefficients S, the optimization problem is equivalent to a regularized

least squares problem. For some differentiable sparsity functions, we can use gradient-

based methods (e.g., conjugate gradient). However, for the L1 sparsity function, the objec-

tive is not continuously differentiable and the most straightforward gradient-based methods

are difficult to apply. In this case, the following approaches have been used: generic QP

solvers (e.g., CVX [59, 58]), Chen et al.’s interior point method [35], a modification of

least angle regression (LARS) [49], or grafting [128]. In this chapter, we present a new

algorithm for solving the L1-regularized least squares problem and show that it is more

efficient for learning sparse coding bases.

In previous work, Olshausen and Field [122] presented a sparse coding algorithm with

the same form of objective function as in the Equation (2.3). However, they used gradient-

based algorithms to solve both for the coefficients and the basis vectors, respectively.

Specifically, they used conjugate gradient for solving the coefficients. However, using

conjugate gradient is not efficient for the L1 sparsity function. Also, a non-convex sparsity

function (the log penalty) was used in their implementation, so conjugate gradient may get

stuck in local optima. For solving the basis vectors, they applied a single gradient descent

step followed by a heuristic for normalization. In detail, to prevent the norm of the basis

vectors going to infinity, they used a heuristic which retains the variance of the coefficients

(for every basis) at the same level. Overall, this algorithm is slow and does not scale well
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for a large number of basis vectors. In this chapter, we present new algorithms for sparse

coding that is significantly faster than Olshausen and Field’s method.

2.3 L1-regularized least squares: The feature-sign search

algorithm

Consider solving the optimization problem (2.3) with an L1 penalty over the coefficients

{s(i)
j } while keeping the bases fixed. This problem can be solved by optimizing over each

~s(i) individually:

minimize~s(i)‖~x(i) −
∑
j

~bjs
(i)
j ‖2 + (2σ2β)

∑
j

|s(i)
j |. (2.6)

Notice now that if we know the signs (positive, zero, or negative) of the s(i)
j ’s at the optimal

value, we can replace each of the terms |s(i)
j | with either s(i)

j (if s(i)
j > 0),−s(i)

j (if s(i)
j < 0),

or 0 (if s(i)
j = 0). Considering only nonzero coefficients, this reduces (2.6) to a standard,

unconstrained quadratic optimization problem (QP), which can be solved analytically and

efficiently. Our algorithm, therefore, tries to search for, or “guess,” the signs of the coeffi-

cients s(i)
j ; given any such guess, we can efficiently solve the resulting unconstrained QP.

Further, the algorithm systematically refines the guess if it turns out to be initially incorrect.

To simplify notation, we present the algorithm for the following equivalent optimization

problem (e.g., we use x and s to denote ~x and ~s, respectively):

minimizesf(s) ≡ ‖x−Bs‖2 + γ‖s‖1, (2.7)

where γ is a constant. The feature-sign search algorithm is shown in Algorithm 1. It

maintains an active set of potentially nonzero coefficients and their corresponding signs—

all other coefficients must be zero—and systematically searches for the optimal active set

and coefficient signs.

The algorithm proceeds in a series of “feature-sign steps”: on each step, it is given

a current guess for the active set and the signs, and it computes the analytical solution
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Algorithm 1 Feature-sign search algorithm

1: Initialize s := ~0, θ := ~0, and active set := {}, where θi ∈ {−1, 0, 1} denotes sign(si).
2: From zero coefficients of s, select i = arg maxj

∂‖x−Bs‖2
∂sj

.
Activate si (add i to the active set) only if it locally improves the objective, namely:

If ∂‖x−Bs‖2
∂si

> γ, then set θi := −1, active set := {i}∪ active set.

If ∂‖x−Bs‖2
∂si

< −γ, then set θi := 1, active set := {i}∪ active set.
3: Feature-sign step:

Let B̂ be a submatrix of B that contains only the columns corresponding to the active
set.

Let ŝ and θ̂ be subvectors of s and θ corresponding to the active set.
Compute the analytical solution to the resulting unconstrained QP:
ŝnew := arg minŝ ‖x− B̂ŝ‖2 + γθ̂>ŝ = (B̂>B̂)−1(B̂>x− γθ̂/2).

Perform a discrete line search on the closed line segment from ŝ to ŝnew:
Check the objective value at ŝnew and all points where any coefficient changes sign.
Update ŝ (and the corresponding entries in s) to the point with the lowest objective

value.
Remove zero coefficients of ŝ from the active set and update θ := sign(s).

4: Check the optimality conditions:
(a) Optimality condition for nonzero coefficients: ∂‖x−Bs‖2

∂sj
+ γ sign(sj) = 0,∀sj 6= 0

If condition (a) is not satisfied, go to Step 3 (without any new activation);
else check condition (b).

(b) Optimality condition for zero coefficients:
∣∣∣∂‖x−Bs‖2∂sj

∣∣∣ ≤ γ, ∀sj = 0

If condition (b) is not satisfied, go to Step 2; otherwise return s as the solution.

ŝnew to the resulting unconstrained QP; it then updates the solution, the active set and the

signs using an efficient discrete line search between the current solution and ŝnew (details

in Algorithm 1).1 We will show that each such step reduces the objective f(s), and that the

overall algorithm always converges to the optimal solution.

To sketch the proof of convergence, let a coefficient vector s be called consistent with

a given active set and sign vector θ if the following two conditions hold for all i: (i) If i is

in the active set, then sign(si) = θi, and, (ii) If i is not in the active set, then si = 0.

1A technical detail has been omitted from the algorithm for simplicity, as we have never observed it in
practice. In Step 3 of the algorithm, in case B̂>B̂ becomes singular, we can check if q ≡ B̂>x − γθ̂/2 ∈
R(B̂>B̂). If yes, we can replace the inverse with the pseudo-inverse to minimize the unconstrained QP;
otherwise, we can update ŝ to the first zero-crossing along any direction z such that z ∈ N (B̂>B̂), z>q 6= 0.
Both these steps are still guaranteed to reduce the objective; thus, the proof of convergence is unchanged.
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Lemma 2.3.1. Consider optimization problem (2.7) augmented with the additional con-

straint that s is consistent with a given active set and sign vector. Then, if the current

coefficients sc are consistent with the active set and sign vector, but are not optimal for

the augmented problem at the start of Step 3, the feature-sign step is guaranteed to strictly

reduce the objective.

Proof (sketch): Let ŝc be the subvector of sc corresponding to coefficients in the given

active set. In Step 3, consider a smooth quadratic function f̃(ŝ) ≡ ‖x−B̂ŝ‖2+γθ̂>ŝ. Since

ŝc is not an optimal point of f̃ , we have f̃(ŝnew) < f̃(ŝc). Now consider the two possible

cases: (i) if ŝnew is consistent with the given active set and sign vector, updating ŝ := ŝnew

strictly decreases the objective; (ii) if ŝnew is not consistent with the given active set and

sign vector, let ŝd be the first zero-crossing point (where any coefficient changes its sign)

on a line segment from ŝc to ŝnew, then clearly ŝc 6= ŝd, and f̃(ŝd) < f̃(ŝc) by convexity

of f̃ , thus we finally have f(ŝd) = f̃(ŝd) < f̃(ŝc) = f(ŝc).2 Therefore, the discrete line

search described in Step 3 ensures a decrease in the objective value.

Lemma 2.3.2. Consider optimization problem (2.7) augmented with the additional con-

straint that s is consistent with a given active set and sign vector. If the coefficients sc at

the start of Step 2 are optimal for the augmented problem, but are not optimal for prob-

lem (2.7), the feature-sign step is guaranteed to strictly reduce the objective.

Proof (sketch): Since sc is optimal for the augmented problem, it satisfies optimality

condition (a), but not (b); thus, in Step 2, there is some i, such that
∣∣∣∂‖x−Bs‖2

∂si

∣∣∣ > γ; this

i-th coefficient is activated, and i is added to the active set. In Step 3, consider the smooth

quadratic function f̃(ŝ) ≡ ‖x − B̂ŝ‖2 + γθ̂>ŝ. Observe that (i) since a Taylor expansion

of f̃ around ŝ = ŝc has a first order term in si only (using condition 4(a) for the other

coefficients), we have that any direction that locally decreases f̃(ŝ) must be consistent with

the sign of the activated si, and, (ii) since ŝc is not an optimal point of f̃(ŝ), f̃(ŝ) must

decrease locally near ŝ = ŝc along the direction from ŝc to ŝnew. From (i) and (ii), the

line search direction ŝc to ŝnew must be consistent with the sign of the activated si. Finally,

since f̃(ŝ) = f(ŝ) when ŝ is consistent with the active set, either ŝnew is consistent, or

2To simplify notation, we reuse f(·) even for subvectors such as ŝ; in the case of f(ŝ), we consider only
the coefficients in ŝ as variables, and all coefficients not in the subvector can be assumed constant at zero.
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the first zero-crossing from ŝc to ŝnew has a lower objective value (similar argument to

Lemma 2.3.1).

Theorem 2.3.3. The feature-sign search algorithm converges to a global optimum of the

optimization problem (2.7) in a finite number of steps.

Proof (sketch): From the above lemmas, it follows that the feature-sign steps always

strictly reduce the objective f(s). At the start of Step 2, s either satisfies optimality condi-

tion 4(a) or is ~0; in either case, s is consistent with the current active set and sign vector,

and must be optimal for the augmented problem described in the above lemmas. Since the

number of all possible active sets and coefficient signs is finite, and since no pair can be

repeated (because the objective value is strictly decreasing), the outer loop of Steps 2–4(b)

cannot repeat indefinitely. Now, it suffices to show that a finite number of steps is needed

to reach Step 4(b) from Step 2. This is true because the inner loop of Steps 3–4(a) always

results in either an exit to Step 4(b) or a decrease in the size of the active set.

While the above convergence proof does not provide a strong guarantee on the con-

vergence rate, we often observe that feature-sign search algorithm finds optimal solution

very efficiently when the optimal solution is sparse. Further, note that initialization with

arbitrary starting points requires a small modification: after initializing θ and the active set

with a given initial solution, we need to start with Step 3 instead of Step 1. Specifically,

if the algorithm terminates without reaching Step 2, we are done; otherwise, once the al-

gorithm reaches Step 2, the same argument in the proof applies. When the initial solution

is near the optimal solution, feature-sign search can often obtain the optimal solution more

quickly than when starting from ~0.

2.4 Learning bases using the Lagrange dual

In this subsection, we present a method for solving optimization problem (2.5) over bases

B given fixed coefficients S. This reduces to the following problem:

minimize ‖X −BS‖2F (2.8)

subject to
∑d

i=1B
2
i,j ≤ c,∀j = 1, ..., n.
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This is a least squares problem with quadratic constraints. In general, this constrained

optimization problem can be solved using gradient descent with iterative projection [32].

However, it can be much more efficiently solved using a Lagrange dual. First, consider the

Lagrangian:

L(B,~λ) = trace
(
(X −BS)>(X −BS)

)
+

n∑
j=1

λj(
d∑
i=1

B2
i,j − c), (2.9)

where each λj ≥ 0 is a dual variable. Minimizing over B analytically, we obtain the

Lagrange dual:

D(~λ) = min
B
L(B,~λ) = trace

(
X>X −XS>(SS> + Λ)−1(XS>)> − cΛ

)
,(2.10)

where Λ = diag(~λ). The gradient and Hessian of D(~λ) are computed as follows:

∂D(~λ)

∂λi
= ‖XS>(SS> + Λ)−1ei‖2 − c (2.11)

∂2D(~λ)

∂λi∂λj
= −2

(
(SS> + Λ)−1(XS>)>XS>(SS> + Λ)−1

)
i,j

(
(SS> + Λ)−1

)
i,j
,(2.12)

where ei ∈ Rn is the i-th unit vector. Now, we can optimize the Lagrange dual (2.10) using

Newton’s method or conjugate gradient. After maximizing D(~λ), we obtain the optimal

bases B as follows:

B> = (SS> + Λ)−1(XS>)>. (2.13)

The advantage of solving the dual is that it uses significantly fewer optimization vari-

ables than the primal. For example, optimizing B ∈ R1,000×1,000 requires only 1,000 dual

variables. Note that the dual formulation is independent of the sparsity function (e.g., L1,

epsilonL1, or other sparsity function), and can be extended to other similar models such as

“topographic” cells [68].3

3The sparsity penalty for topographic cells can be written as
∑

l φ((
∑

j∈cell l s
2
j )

1
2 ), where φ(·) is a spar-

sity function and cell l is a topographic cell (e.g., group of ‘neighboring’ bases in 2-D torus representation).
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natural image speech stereo video
196×512 500×200 288×400 512×200

Feature-sign 2.16 (0) 0.58 (0) 1.72 (0) 0.83 (0)
LARS 3.62 (0) 1.28 (0) 4.02 (0) 1.98 (0)
Grafting 13.39 (7e-4) 4.69 (4e-6) 11.12 (5e-4) 5.88 (2e-4)
Chen et al.’s 88.61 (8e-5) 47.49 (8e-5) 66.62 (3e-4) 47.00 (2e-4)
QP solver (CVX) 387.90 (4e-9) 1108.71 (1e-8) 538.72 (7e-9) 1219.80 (1e-8)

Table 2.1: The running time in seconds (and the relative error in parentheses) for
coefficient-learning algorithms applied to different natural stimulus datasets. For each
dataset, the input dimension d and the number of bases n are specified as d × n. The
relative error for an algorithm was defined as (fobj − f ∗)/f ∗, where fobj is the final objec-
tive value attained by that algorithm, and f ∗ is the best objective value attained among all
the algorithms.

2.5 Experimental results

2.5.1 The feature-sign search algorithm

We evaluated the performance of our algorithms on four natural stimulus datasets: natural

images (http://redwood.berkeley.edu/bruno/sparsenet), speech (TIDIG-

ITS dataset [101]), stereo images (http://www.pokescope.com/geology/geology.

html), and natural image videos (http://hlab.phys.rug.nl/imlib/). All ex-

periments were conducted on a Linux machine with AMD Opteron 2GHz CPU and 2GB

RAM.

First, we evaluated the feature-sign search algorithm for learning coefficients with the

L1 sparsity function. We compared the running time and accuracy to previous state-of-

the-art algorithms: a generic QP solver (CVX [59]), a modified version of LARS [49]

with early stopping,4 grafting [128], and Chen et al.’s interior point method [35];5 all the

algorithms were implemented in MATLAB. For each dataset, we used a test set of 100

input vectors and measured the running time and the objective function at convergence.

4LARS (with LASSO modification) provides the entire regularization path with discrete L1-norm con-
straints; we further modified the algorithm so that it stops upon finding the optimal solution of the Equa-
tion (2.6).

5MATLAB code is available at http://www-stat.stanford.edu/˜atomizer/.
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For each dataset/algorithm combination, we report the average running time over 20 trials.

Table 2.1 shows both the running time and accuracy (measured by the relative error in

the final objective value) of different coefficient learning algorithms. Over all datasets,

feature-sign search achieved the best objective values as well as the shortest running times.

Feature-sign search and modified LARS produced more accurate solutions than the other

methods. Specifically, a general-purpose QP package (such as CVX) does not explicitly

take the sparsity of the solutions into account. Thus, its solution tends to have many very

small nonzero coefficients; as a result, the objective values obtained from CVX were always

slightly worse than those obtained from feature-sign search or LARS. Further, feature-

sign search was an order of magnitude faster than both Chen et al.’s algorithm and the

generic QP solver, and it was also significantly faster than modified LARS and grafting.

In addition, feature-sign search has the crucial advantage that it can be initialized with

arbitrary starting coefficients (unlike LARS); we will demonstrate that feature-sign search

leads to even further speedup over LARS when applied to iterative coefficient learning.

2.5.2 Total time for learning bases

The Lagrange dual method for one basis learning iteration was much faster than gradient

descent with iterative projections. Below, we present results for the overall time taken by

sparse coding for learning bases from natural stimulus datasets.

We evaluated different combinations of coefficient learning and basis learning algo-

rithms: the fastest coefficient learning methods from our experiments (feature-sign search,

modified LARS and grafting for the L1 sparsity function, and conjugate gradient for the

epsilonL1 sparsity function) and the basis learning methods (gradient descent with iterative

projection and the Lagrange dual formulation). We used a training set of 1,000 input vec-

tors for each of the four natural stimulus datasets. We initialized the bases randomly and

ran each algorithm combination (by alternatingly optimizing the coefficients and the bases)

until convergence. In detail, we ran each algorithm combination until the relative change

of the objective per iteration became less than 10−6 (i.e., |(fnew − fold)/fold| < 10−6).

To compute the running time to convergence, we first computed the “optimal” (minimum)

objective value achieved by any algorithm combination. Then, for each combination, we
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L1 sparsity function
Coeff. / Basis learning natural

image
speech stereo video

Feature-sign / LagDual 260.0 248.2 438.2 186.6
Feature-sign / GradDesc 1093.9 1280.3 950.6 933.2
LARS / LagDual 666.7 1697.7 1342.7 1254.6
LARS / GradDesc 13085.1 17219.0 12174.6 11022.8
Grafting / LagDual 720.5 1025.5 3006.0 1340.5
Grafting / GradDesc 2767.9 8670.8 6203.3 3681.9

epsilonL1 sparsity function
Coeff. / Basis learning natural

image
speech stereo video

ConjGrad / LagDual 1286.6 544.4 1942.4 1461.9
ConjGrad / GradDesc 5047.3 11939.5 3435.1 2479.2

Table 2.2: The running time (in seconds) for different algorithm combinations using differ-
ent sparsity functions.

defined the convergence point as the point at which the objective value reaches within 1%

relative error of the observed “optimal” objective value. The running time measured is the

time taken to reach this convergence point. We truncated the running time if the optimiza-

tion did not converge within 60,000 seconds.

Table 2.2 shows the running times for different algorithm combinations. First, we ob-

serve that the Lagrange dual method significantly outperformed gradient descent with it-

erative projections for both L1 and epsilonL1 sparsity; a typical convergence pattern is

shown in Figure 2.1(a). Second, we observe that for L1 sparsity, feature-sign search sig-

nificantly outperformed both modified LARS and grafting. We also evaluated a generic

conjugate gradient implementation based on the L1 sparsity function; however, it did not

converge even after 60,000 seconds. Figure 2.1(b) shows the running time per iteration for

modified LARS and grafting as a multiple of that for feature-sign search (using the same

gradient descent algorithm for basis learning), demonstrating significant efficiency gains

at later iterations; note that feature-sign search (and grafting) can be initialized with the

coefficients obtained in the previous iteration, whereas modified LARS cannot. This result
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(a) (b)

Figure 2.1: Demonstration of speedup. Left: Comparison of convergence between the
Lagrange dual method and gradient descent for learning bases. Right: The running time
per iteration for modified LARS and grafting as a multiple of the running time per iteration
for feature-sign search.

demonstrates that feature-sign search is particularly efficient for the alternating optimiza-

tion procedure, such as learning sparse coding bases.

2.5.3 Learning highly overcomplete natural image bases

Using our efficient algorithms, we were able to learn highly overcomplete bases of natural

images. For example, we were able to learn a set of 1,024 bases (each 14×14 pixels) in

about 2 hours and a set of 2,000 bases (each 20×20 pixels) in about 10 hours. We used

Lagrange dual formulation for learning bases, and both conjugate gradient with epsilonL1

sparsity as well as the feature-sign search with L1 sparsity for learning coefficients. The

bases learned from both methods showed qualitatively similar receptive fields. The bases

shown in the Figure 2.2 were learned using epsilonL1 sparsity function and 4,000 input im-

age patches randomly sampled for every iteration. In contrast, the gradient descent method

for basis learning did not result in any reasonable bases even after running for 24 hours.
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(a) 1,024 bases (each 14×14 pixels) (b) 2,000 bases (each 20×20 pixels)

Figure 2.2: Learned overcomplete natural image bases.

2.5.4 Replicating complex neuroscience phenomena

Several complex phenomena of V1 neural responses are not well explained by simple lin-

ear models (in which the response is a linear function of the input). For instance, many

visual neurons display “end-stopping,” in which the neuron’s response to a bar image of

optimal orientation and placement is actually suppressed as the bar length exceeds an op-

timal length [145]. Sparse coding can model the interaction (inhibition) between the bases

(neurons) by sparsifying their coefficients (activations), and our algorithms enable these

phenomena to be tested with highly overcomplete bases. In addition, center-surround non-

classical receptive field effects explain inhibition between biological V1 neurons that have

similarly-oriented, spatially-close receptive fields (see [31] for details). In the previous

publication of this chapter [91], we applied the sparse coding algorithms to learn highly

overcomplete (4x) bases from natural images and demonstrated that the inferred sparse

codes exhibit end-stopping and non-classical receptive field surround suppression. Thus,

sparse coding may also provide a partial explanation for these phenomena in V1 neurons.
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Natural Images Learned bases:  “Edges”
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~ 0.8 *                   + 0.3 *                     + 0.5 *

Coefficients  =  [0, 0, …, 0, 0.8, 0, …, 0, 0.3, 0, …, 0, 0.5, …] 

(new feature representation) 

Test example

x


654236 bbb


~ 0.8 *                   + 0.3 *                     + 0.5 *

Figure 2.3: Illustration of sparse coding applied to natural images. In the upper left, small
red squares represent 14x14 image patches randomly sampled from natural images. The
upper right shows the learned bases from natural images via sparse coding. The below
illustrates of how sparse coding decomposes a new 14x14 image patch into a linear com-
bination of a few basis vectors. The resulting sparse coefficients can be used as features
representing 14x14 pixels.

2.6 Application to self-taught learning

Sparse coding forces each input ~x to be “explained” using a small number of basis vectors,

and the activations often capture certain higher-level features of the input. For example,

when the inputs ~x consist of small images (represented as vectors of pixel intensities), the

basis vectors learned using Equation (2.2) capture various kinds of edges, as shown in Fig-

ure 2.3. Effectively, the procedure converts the pixel-based representation ~x to a succinct,

slightly higher-level, edge-based representation ~s, and this new feature representation can

be useful for a variety of tasks.

In related work [131], we apply this to self-taught learning, a new machine learning

formalism in which we are given a supervised learning problem together with additional

unlabeled instances that may not have the same class labels or the same generative distri-

bution as the labeled instances. The main motivation for self-taught learning is to learn a

useful representation from a huge amount of mildly-related unlabeled data and to use this
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learned representation for a supervised learning task. For example, one may wish to learn

to distinguish between cars and motorcycles given images of each, and additional—and

in practice readily available—unlabeled images of various natural scenes. This approach

contrasts the much more restrictive semi-supervised learning problem, which would re-

quire that the unlabeled examples also be of cars or motorcycles only. We apply our sparse

coding algorithms to the unlabeled data to learn bases, which gives us a higher-level repre-

sentation for images, thus making the supervised learning task easier. More concretely, the

following describes a self-taught learning algorithm using sparse coding:

1. Use the unlabeled data to learn basis vectors {~bj} by solving the problem in Equation

(2.3).

2. Now fix the basis vectors, and compute the “activations” for labeled examples xl by

computing ~s∗ = arg min~s
1

2σ2‖~xl −
∑

j
~bjsj‖2 + β

∑
j |sj|.

3. Finally, use the activations ~s∗ as features to train a standard, off-the-shelf classifier

(such as an SVM) using the labeled data. The classifier can then be applied to predict

test data.

On a variety of problems including object recognition, audio classification, and text

categorization, this approach leads to 11–36% reductions in test error. For details, see [131]

or Rajat Raina’s Ph.D. thesis [130]. In the next chapter, we will develop a generalized

version of sparse coding that can be applied to self-taught learning given a wider range of

input data types.

Self-taught learning does not necessarily assume sparse coding for the unsupervised

feature learning step; however, its good performance was demonstrated via sparse coding.

Indeed, in empirical comparisons, sparse coding outperformed other baseline methods such

as PCA (which can be viewed as another unsupervised feature learning algorithm) [131,

95]. Therefore, the initial success of self-taught learning partly comes from the good feature

representations that can be learned via sparse coding.
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2.7 Other related work and applications

In this chapter, we formulated sparse coding as optimization with a well-defined objective

function and proposed efficient algorithms. Since the original publication of this work,

many other authors have built upon this work (e.g., online sparse coding [108, 109], dis-

criminative sparse coding [111], and other variants of sparse feature learning [80, 7, 9, 72,

43]).

The sparse coding implementation described in this chapter is available at:

http://ai.stanford.edu/˜hllee/,

and has been applied to various applications. For example, Yang et al. (2009) [167] used

feature-sign search in learning sparse coding bases for SIFT descriptors. Their results

are considered state-of-the-art in image classification, outperforming the classical SIFT

features. The sparse coding implementation also has been applied to image super resolu-

tion [166], mass spectroscopy [3, 2], and autonomous altitude estimation of a UAVs via

learning basis vectors for aerial images [36].

2.8 Summary

In this chapter, we formulated sparse coding as a combination of two convex optimization

problems and presented efficient algorithms for each: the feature-sign search for solving

the L1-least squares problem to learn coefficients, and a Lagrange dual method for the L2-

constrained least squares problem to learn the bases for any sparsity penalty function. We

test these algorithms on a variety of datasets, and show that they give significantly better

performance compared to previous methods. Our algorithms can be used to learn an over-

complete set of bases, and show that sparse coding could partially explain the phenomena

of end-stopping and non-classical receptive field surround suppression in biological V1

neurons. In related work on self-taught learning, we also show that this algorithm can be

used for learning useful feature representations that achieve good performance in image

classification, audio classification, and text classification.



Chapter 3

Exponential Family Sparse Coding

3.1 Introduction

In this chapter, we consider the self-taught learning problem, in which we are given limited

labeled data from a classification task, as well as large amounts of unlabeled data that is

only mildly related to the task [163, 131]. Raina et al. [131] show that with a specific sparse

coding model, such mildly-related unlabeled data can help improve classification accuracy

on some tasks. However, the previous sparse coding model assumes that the inputs consist

of real-valued vectors, and that the vectors can be well described using a Gaussian noise

model (details in Section 2.2). In our view, and as demonstrated by our experiments, this

severely limits the applicability of sparse coding in a general self-taught learning algorithm.

As a running example, consider the application of self-taught learning to text classifica-

tion: suppose we would like to classify sports webpages as “Baseball” or “Football” using

only very few labeled webpages and many unlabeled text documents, obtained randomly

from the Internet (say). The natural representation of text documents is often as a binary

“bag-of-words” vector x ∈ {0, 1}d, where the i-th feature is 1 if the i-th word in our vo-

cabulary occurred in the document, or as a word-counts vector x ∈ {0, 1, 2, . . . }d, where

the i-th feature represents the number of times the i-th word occurred in the document. In

either case, such input vectors are very poorly modeled by a continuous Gaussian distribu-

tion (which could take fractional, or negative values). It is thus hardly surprising that when

sparse coding is applied to a self-taught learning task involving text data, it only leads to

34
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very small improvements in accuracy.

The above problem is not unique to text classification. Sparse coding with the Gaussian

noise distribution assumption may be too restrictive to model the wide variety of inputs that

we might encounter in machine learning problems, including point clouds or depth maps,

discrete data, etc.

To address this problem, we generalize the Gaussian probabilistic model behind sparse

coding in a principled way to include most standard distributions. We draw on the widely

studied idea of the “exponential family” of distributions. This class of distributions in-

cludes the Gaussian, Bernoulli and Poisson distribution, among others, while still provid-

ing guarantees useful for efficient learning and inference. Our generalization is analogous

to the way in which generalized linear models (GLMs) generalize least squares regression

(which relies on a Gaussian assumption) to other kinds of regression, including logistic

regression (for binary inputs) or softmax regression (for multivalued inputs) [112]. We

call our model exponential family sparse coding, and to differentiate it from the previous

model, we henceforth call that model Gaussian sparse coding.

Our generalization makes the parameter learning problem significantly harder. How-

ever, we show that the optimization problem can be solved via a series of L1-regularized

least squares problems, each of which can be solved using algorithms similar to the ones

used for Gaussian sparse coding. In fact, our optimization procedure can also be applied

to other L1-regularized optimization problems, and is especially efficient for problems that

have very sparse optimal solutions.

We apply our model successfully to two self-taught learning problems—text classifi-

cation and a robotic perception task—even though Gaussian sparse coding produces poor

performance for both.

3.2 Self-taught Learning for Discrete Inputs

We consider a classification problem with a small labeled training set {(x(1)
l , y(1)), (x

(2)
l , y(2)),

. . . , (x
(m)
l , y(m))} drawn i.i.d. from an unknown distribution D. Each input x(i)

l ∈ X is

assigned a class label y(i) ∈ Y = {1, 2, . . . , K}. We do not place the additional restric-

tion that X = Rd. For example, text documents can be represented as a binary vector
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x
(i)
l ∈ X = {0, 1}d or as an integer-valued vector x(i)

l ∈ X = {0, 1, 2, . . . }d.
Following the self-taught learning framework, we assume that we are also given a large

set of unlabeled examples {x(1), x(2), . . . , x(r)} (without the subscript “l”). The inputs

x(i) ∈ X are only mildly constrained to be of the same “input type” as the labeled ex-

amples, but need not belong to any of the labels in the classification task, and need not

arise from the same distribution D.

To motivate the algorithms introduced in this chapter, consider the application of the

above self-taught learning algorithm to binary input vectors x ∈ {0, 1}d, say for text

classification. The Gaussian sparse coding model makes the probabilistic assumption that

P (x | η =
∑

j bjsj) is a Gaussian distribution, which is a poor fit to binary data. Stated oth-

erwise, the Gaussian sparse coding model tries to enforce the decomposition x ≈
∑

j bjsj ,

even though the unconstrained sum
∑

j bjsj is a particularly poor approximation to a bi-

nary vector x. Thus, a straightforward application of Gaussian sparse coding does not lead

to very useful basis vectors or features.

Instead, we might want to find an approximation of the form x ≈ σ(
∑

j bjsj), where

σ(v) = [ 1
1+e−v1

, 1
1+e−v2

, . . . ] represents the element-wise logistic function for a vector v.

This promises to be a better formulation, since the logistic function always lies in (0, 1).

We now present a systematic generalization of the Gaussian sparse coding model. Our

generalization includes both Gaussian sparse coding and our seemingly arbitrary logistic

function approximation as special cases, and will directly suggest models for other input

types, such as when the inputs consist of nonnegative integer counts x ∈ {0, 1, 2, . . . }d.

3.3 Exponential Family Sparse Coding

The exponential family is a widely used class of distributions in statistics, and in its most

general form, is represented as:

P (x|η) = h(x) exp(η>T (x)− a(η)). (3.1)

Here, η represents the natural parameter for the model, and the functions h, T and a together

define a particular member of the family.
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For example, the multivariate Gaussian distribution N (µ, I) with fixed covariance I

and (unknown) mean parameter µ ∈ Rd can be written as follows:

P (x;µ, I) =
1

(2π)d/2
exp

(
−‖x− µ‖

2

2

)
(3.2)

This is equivalent to the exponential family distribution defined by h(x) = e−‖x‖
2/2/(2π)d/2,

T (x) = x, η = µ, and a(η) = η>η/2.

As another example, a Bernoulli distribution for a random variable x ∈ {0, 1} with

probability p can be written as follows:

P (x; p) = exp(x log(p) + (1− x) log(1− p)) (3.3)

= exp (x log(p/(1− p)) + log(1− p)) (3.4)

This can be written as an exponential family distribution with h(x) = 1, T (x) = x, η =

log(p/(1− p)), and a(η) = − log(1− p) = log(1 + exp(η)).

Finally, a Poission distribution for a random variable x ∈ {0, 1, 2, ...} with rate λ can

be written as follows:

P (x;λ) =
1

x!
λx exp(−λ) (3.5)

=
1

x!
exp(x log λ− λ) (3.6)

We can simply describe this as an exponential family distribution with h(x) = 1/x!,

T (x) = x, η = log λ, and a(η) = λ = exp(η).

To summarize, the exponential family of distributions is broad enough to include most

standard distributions (Gaussian, Bernoulli, Poisson, exponential, multinomial, and others),

but also restrictive enough to provide useful guarantees. For example, it guarantees that the

log-likelihood is concave in the natural parameter η, making maximum likelihood learning

of parameters tractable [112].

In our approach, we modify the Gaussian sparse coding model to allow any distribution
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from the exponential family:

P (x|b, s) = h(x) exp(η>T (x)− a(η)), η =
∑

j bjsj (3.7)

where we use the basis vectors bj and the activations sj to construct the natural parameter

η for the family. Since the Gaussian distribution is a member of the exponential family,

our new generative model includes the earlier Gaussian generative model for P (x|η) as

a special case. In fact, our model extends Gaussian sparse coding in the same way that

generalized linear models (GLMs) extend the notion of regression with least squares loss to

other loss functions, including logistic regression and softmax regression as special cases.

Given unlabeled examples {x(1), x(2), . . . , x(r)}, we can apply Equation (2.2) to com-

pute the maximum a posteriori estimates of the basis vectors bj and the activations s(i) as

follows:1

minimize
B,{s(i)}

∑
i− log h(x(i))− s(i)>B>T (x(i)) + a(Bs(i)) + β

∑
i,j |s

(i)
j | (3.8)

subject to ‖bj‖2 ≤ c, ∀j = 1, ..., n, (3.9)

where we define the basis matrixB such that its j-th column is the basis vector bj , implying

that η =
∑

j bjsj = Bs. By definition, we want the model to produce sparse activations,

so we set β large enough to produce only a small number of nonzero values per activation

vector s(i) on average.

Since the exponential family guarantees convexity of logP (x|η) with respect to η, we

can show that the above optimization problem is convex with respect to s for fixed B,

and with respect to B for fixed s (though it is not jointly convex). This again suggests an

alternating minimization procedure iterating the following two steps till convergence: (i)

fix the activations s, and compute the optimal bases B; and, (ii) fix these bases B, and

compute the optimal activations s.

Step (i) involves a constrained optimization problem over B with a differentiable ob-

jective function. We can thus apply projective gradient descent updates, where at each

iteration we perform a line search along the direction of the (negative) gradient, projecting
1As in Gaussian sparse coding, we assume a Laplacian prior on s: P (s) ∝

∏
j exp(−β|sj |), and a

uniform prior on bj .
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onto the feasible set before evaluating the objective function during the line search. In our

case, the projection operation is especially simple: we just need to rescale each basis vector

to have norm c if its norm is greater than c. In our experiments, we find that such a projec-

tive gradient descent scheme is sufficiently fast for basis learning. We thus focus now on

the algorithm for computing the optimal activations in Step (ii).

Step (ii) computes the optimal activation s given fixed basis vectors. The resulting

problem involves a non-differentiable L1-regularized objective function, to which straight-

forward gradient descent methods are not applicable. Recently, many sophisticated algo-

rithms have been developed for L1-regularized optimization, including specialized interior

point methods [78], quasi-Newton methods [5, 172] and coordinate descent methods [53].

When used for computing activations with 1000 basis vectors, these methods find the op-

timal solution in a few seconds per unlabeled example. Since we often need to solve for

the activations of tens of thousands of unlabeled examples repeatedly in the inner loop of

the overall alternating minimization procedure, these solvers turn out to be too slow for our

model.

We now present a simple optimization algorithm for L1-regularized optimization prob-

lems. We later show that, despite the simplicity of the algorithm, when the optimal solution

is very sparse (as in Equation 3.8-3.9) our method is faster than state-of-the-art solvers for

L1-regularized problems.

3.3.1 Computing optimal activations

We first note that since the optimal values for the activation vectors s(i) do not depend

on each other, and can be optimized separately, it is sufficient to consider the following

optimization problem for a single input x and its activation s:

minimizes `(s) + β‖s‖1 (3.10)

where s corresponds to a vector of activations, and `(s) is a convex function of s. Specifi-

cally, we consider the following function derived from Equations (3.8-3.9):

l(s) , − log h(x)− s>B>T (x) + a(Bs) (3.11)
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Algorithm 2 IRLS-FS algorithm for L1-regularized exponential family problems
Input: B ∈ Rd×n, x ∈ Rd, threshold ε.
Initialize s := ~0.
while decrease in objective value at last step > ε do

Compute diagonal matrix Λ with Λii = a′′ ((Bs)i),
Compute vector z = Λ−1(T (x)− a′(Bs)) +Bs.
Initializing feature-sign search at s, compute:
ŝ = arg mins′

∥∥Λ1/2Bs′ − Λ1/2z
∥∥2

+ β‖s′‖1
Set s := (1− t)s+ tŝ, where t is found by backtracking line-search [27] to minimize
the objective function in Equation (3.8).

end while

In the case of Gaussian sparse coding, `(s) is simply a quadratic function, and the op-

timization problem is a L1-regularized least squares problem that can be solved efficiently,

as shown in the previous chapter. This suggests an iterative algorithm for the general case:

at each iteration, we compute a local quadratic approximation ˆ̀(s) to the function `(s),

and optimize the objective function ˆ̀(s) + β‖s‖1 instead. This method is an instance of a

general method called Iteratively Reweighted Least Squares (IRLS) in the literature [60].

Using this insight, Lee et al. [99] proposed the IRLS-LARS algorithm for the case of logis-

tic regression with L1-norm constraints, using Efron et al.’s LARS algorithm in the inner

loop to solve the approximated problem. In this chapter, we develop a new algorithm for

optimizing smooth convex functions with an L1-norm penalty.

The IRLS formulation can be applied to general L1-regularized optimization problems

for which a local quadratic approximation can be efficiently computed. Let’s consider a

local quadratic quadratic approximation of l(s) at a point s0. The gradient and Hessian of

l(s) at s0 can be written as follows:

∇` = −B>T (x) +B>a′(Bs0), (3.12)

∇2` = B>ΛB, (3.13)

where Λii = a′′ ((Bs0)i) for a diagonal matrix Λ. Now a quadratic approximation of l(s)
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at s0 can be written as:

ˆ̀(s) =
1

2
(s− s0)

>∇2`(s− s0) +∇`(s− s0) + l(s0) (3.14)

=
1

2
(s− s0)

>B>ΛB(s− s0) + (s− s0)
> (−B>T (x) +B>a′(Bs0)

)
+ l(s0)

=
1

2
(s− s0)

>B>ΛB(s− s0) + (s− s0)
>B>Λ Λ−1 (−T (x) + a′(Bs0)) + l(s0)

=
1

2
s>B>ΛBs− s>B>ΛBs0 + s>B>Λ Λ−1 (−T (x) + a′(Bs0)) + constant

=
1

2
s>B>ΛBs+ s>B>Λ

(
Λ−1(−T (x) + a′(Bs0))−Bs0

)
+ constant

=
∥∥Λ1/2Bs− Λ1/2

(
Λ−1(T (x)− a′(Bs0)) +Bs0

)∥∥2
+ constant

=
∥∥Λ1/2Bs− Λ1/2z

∥∥2
+ constant,

where z = Λ−1(T (x)− a′(Bs0)) +Bs0.

We note that if the objective function `(s) is reasonably approximated by a quadratic

function, the solutions to the successive quadratic approximations should be close to each

other. However, the LARS algorithm used in IRLS-LARS cannot be initialized at an arbi-

trary point, and thus has to rediscover the solution from scratch while solving each succes-

sive approximation. In contrast, the feature-sign search algorithm (originally proposed in

the context of Gaussian sparse coding in Chapter 2) can be initialized at an arbitrary point

and can thus potentially solve the successive approximations much faster. We propose to

use the feature-sign search algorithm to optimize each quadratic approximation.

The final algorithm, which we call IRLS-FS, is described in Algorithm 2. The algorithm

is guaranteed to converge to the global optimum in a finite number of iterations. (Proof

similar to IRLS-LARS.)

3.4 Computational Efficiency

We compare the IRLS-FS algorithm against state-of-the-art algorithms for optimizing the

activations, focusing on the case of binary sparse coding (i.e., x ∈ {0, 1}d). This case is

especially interesting because this leads to an L1-regularized logistic regression problem,
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Dataset Small1 Small2 Small3 Med1 Med2 Med3 Large1 Large2 Large3
IRLS-LARS 4.6 4.9 4.3 12.8 12.5 13.2 1131 1270 1214
l1-logreg 18.3 18.9 17.7 181 188 185 3277 3101 3013
CoordDescent 3.6 3.4 5.6 20.7 20.7 31.0 787 653 723
OWL-QN 7.1 7.0 10.3 27.1 31.4 25.6 1018 739 906
SubLBFGS 33.0 22.3 23.1 101 142 57.2 1953 2717 1627
IRLS-FS 2.5 2.3 2.2 5.3 5.5 5.4 117 108 109

Table 3.1: Total running time in seconds for computing activations for 50 input examples
for 9 problems (one per column). See text for details.

Dataset Col Alon Duln Duer Arr Mad Hep Spf PromWbc Ion Spl Spc Spam
Sparsity (%) 0.2 0.5 0.8 1.4 3.5 3.6 26.3 29.5 31.6 40.0 45.5 56.7 63.6 66.7
IRLS-LARS 2.1 3.3 6.2 35.6 2.2 25.6 0.5 5.0 2.1 5.0 3.5 18.3 2.6 57.8
l1-logreg 18.3 16.8 13.6 14.4 34.8 509 1.0 3.0 2.0 3.8 2.7 12.8 2.0 37.1
CoordDescent 83.3 54.1 63.8 129 7.7 101 0.2 2.0 0.6 2.6 1.4 4.5 0.8 14.2
OWL-QN 27.4 29.4 16.9 79.6 7.7 634 0.1 3.4 0.4 13.4 1.9 7.1 0.9 39.3
SubLBFGS 114 80.8 60.5 311 24.3 261 0.7 9.3 2.7 14.4 4.5 13.4 2.1 43.0
IRLS-FS 1.9 1.9 2.5 7.1 1.5 14.0 0.3 2.3 1.3 2.9 2.0 10.4 1.9 50.8

Table 3.2: Total running time in seconds for 50 trials of learning parameters of various L1-
regularized logistic regression benchmarks (obtained from Lee et al., 2006). The datasets
are ordered left-to-right by the increasing fraction of nonzero parameters (“Sparsity (%)”)
at the optimal solution (e.g., the leftmost problem Col had only 0.2% nonzero parameters
at the optimal solution).

where the number of “features” is equal to the number of basis vectors used, but is indepen-

dent of the dimensionality of inputs x in the original problem. This problem is of general

interest (e.g., see Ng, 2004), and customized algorithms have also been developed for it.

We consider five recent algorithms: the IRLS-LARS algorithm [99] and the l1-logreg

interior point method [78] specifically for logistic regression, the Coordinate Descent method

[53] with successive IRLS approximations, and the OWL-QN [5] and SubLBFGS [172]

algorithms for L1-regularized convex optimization problems.2 IRLS-FS, IRLS-LARS, l1-

logreg and CoordDescent were implemented in Matlab, and OWL-QN and SubLBFGS

were compiled in C++ with optimization flags.

2Baseline algorithms: Lee et al. [99] show that IRLS-LARS outperforms several previous algorithms,
including grafting [128], SCGIS [56], GenLasso [139] and Gl1ce [105]. Therefore, we did not compare
against these methods.
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All algorithms were evaluated on nine L1-regularized logistic regression problems which

arise in the course of solving Equations (3.8-3.9) for unlabeled text documents with binary

sparse coding (details in Section 3.5.1). There were three problems for each of three dif-

ferent sizes, and they were labeled Small1 to Small3, Med1 to Med3, or Large1 to Large3

based on the size of the problem. The “Small” problems had 200 basis vectors and input

dimension 369, “Med” problems had 600 basis vectors and dimension 369, and “Large”

problems had 1000 basis vectors and dimension 3891. The sparsity parameter β was set to

produce roughly 20 nonzero activations per example on average.3 We measured the run-

ning time taken by each algorithm to converge within a specified tolerance of the optimal

objective value. In detail, since IRLS-LARS solves the dual or Lasso version of our prob-

lem (i.e., with a constraint “C” on the L1 norm of the activations rather than a penalty β),

we follow Lee et al.’s method of using the KKT conditions to convert between the con-

straint value C and the equivalent penalty β for that problem. We ran all algorithms until

they reached an objective value of (1 + ε)f opt where f opt is the optimal objective value (we

used ε = 10−6).

Table 3.1 shows the running times computed over 50 trials. IRLS-FS outperforms the

other algorithms on this task, showing that it well-suited to exponential family sparse cod-

ing. When a large number of basis vectors are used, IRLS-FS can be 5 to 7 times faster

than the best baseline algorithm.

This poses the question: can IRLS-FS be a useful algorithm for general L1-regularized

optimization problems (not necessarily ones generated by the sparse coding problem)? We

compare the algorithms above on 14 moderate-size benchmark classification datasets, and

apply L1-regularized logistic regression to them. The value of β on each benchmark was

picked to optimize the generalization error of the resulting logistic regression classifier;

unlike the earlier experiment, β was not set explicitly to obtain sparse solutions. Table 3.2

shows the running time of the algorithms to compute the optimal parameters. IRLS-FS

outperforms the other algorithms on 6 out of 14 of these benchmark datasets; more specif-

ically, it performs best when the optimal parameters have a very small number of nonzero

values.
3In our experiments, such β values produced reasonable basis vectors during basis learning.
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3.5 Application to self-taught learning

The model presented in this chapter generalizes Gaussian sparse coding. It is also closely

related to exponential family PCA [38], which corresponds to setting the sparsity penalty β

to zero, and additionally constraining the basis matrix B to have orthogonal columns. We

now show that the exponential family sparse coding model can produce better self-taught

learning performance than either of these previous methods.

3.5.1 Text classification

We first apply the exponential family sparse coding algorithms to two self-taught learning

problems in text classification: one using binary-valued input vectors, and another using

integer-valued (word count) vectors.

We test on five standard webpage classification problems [47], and a newsgroup classi-

fication problem (20 newsgroups dataset). We used 470,000 unlabeled news articles (from

the Reuters corpus) to learn basis vectors according to the binary and Poisson sparse cod-

ing models. The webpage classification problems were created using subcategories of the

Arts, Business, Health, Recreation and Sports categories of the DMOZ hierarchy. Each of

them consisted of 10 separate binary classification problems over a 500 word vocabulary,

with stopword removal and stemming. The newsgroup classification problem consisted of

10 binary classification problems constructed using the 20 newsgroups dataset. We used

600 basis vectors, and picked β to achieve roughly 10% nonzero activations and did not

tune these numbers. For learning, we used stochastic updates with mini-batches of 2000

randomly sampled examples, and stopped learning when the objective value did not de-

crease for 10 consecutive mini-batch iterations. Table 3.3 gives examples of basis vectors

obtained from Poisson sparse coding. Many basis vectors appear to encode related words

and capture various “topics.”

Using the learned basis vectors, we computed features for each classification task us-

ing the binary and Poisson sparse coding model. We call our model “ExpSC” and com-

pare against several baselines: the raw words themselves (“Raw”), Gaussian sparse coding

(“GSC”), exponential family PCA with the same binary or Poisson exponential family

assumption (“ExpPCA”), and Latent Dirichlet Allocation (LDA), a widely-known topic
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free share subscrib paint actor novel
market exchange online pictur actress literari
polici stock servic portrait film poet
power secur server museum comedi fiction
peopl commiss databas rule star univers

Table 3.3: Examples of basis vectors trained for the Business (left 3 columns) and Arts
(right 3 columns) problems, using unlabeled Reuters news data with Poisson sparse coding.
Each column shows the five word stems that were most highly active (i.e., had the highest
weight) for some basis vector.

Features / training set size 4 10 20
Raw 34.3% 23.0% 17.7%
ExpSC 27.8% 20.5% 17.4%
ExpSC + Raw 30.0% 20.4% 16.1%
ExpPCA 29.1% 22.3% 19.3%
ExpPCA + Raw 31.3% 22.7% 17.7%

Table 3.4: Aggregate test error across all text classification problems (webpages and news-
groups), represented using binary vectors. The standard errors were similar across different
features, approximately corresponding to 2.5% for 4 training examples, 1.9% for 10 train-
ing examples, and 1.3% for 20 training examples.

model for text documents [21]. We also compared Gaussian sparse coding applied to log

of raw word counts (“Log-GSC”).4

All baselines (except the raw features) were trained using the same unlabeled data as

our model. For LDA, we tried 20, 50 and 100 topics, and picked the best. We also consider

combinations of the raw word features with the other types of features (e.g., “ExpSC+Raw”

indicates a combination of the ExpSC features and the raw features). All features were

evaluated using standard supervised-learning classifiers over 100 trials each for 4, 10 and

20 training documents. Specifically, We focused on three standard classifiers—SVM, GDA

and kernel dependency estimation (KDE)—that performed best for the raw bag-of-words

features out of several generic classifiers, including k-NN and decision trees. We report

average results of the best performing classifier for each feature. We picked the β value

used for computing the features by cross-validation.

4We first took log of word counts after adding a small constant, and we normalized the resulting vector
(for each example) to zero mean.
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Features / training set size 4 10 20
Raw 29.6% 24.3% 18.4%
ExpSC 25.4% 18.9% 15.2%
ExpSC + Raw 25.0% 18.6% 14.9%
GSC 31.2% 26.1% 21.4%
GSC + Raw 26.4% 22.7% 17.6%
Log-Raw 29.9% 23.1% 16.2%
Log-GSC 30.8% 28.6% 22.6%
Log-GSC + Log-Raw 29.7% 27.6% 21.6%
ExpPCA 32.9% 26.2% 24.2%
ExpPCA + Raw 30.4% 23.7% 21.1%
LDA + Raw 33.2% 24.7% 17.6%

Table 3.5: Aggregate test error across all text classification problems (webpages and news-
groups), represented using word count vectors. ExpSC denotes Poisson sparse coding.
LDA+Raw performed better than LDA alone, so we show results only for this case. The
standard errors were similar across different features, approximately corresponding to 2.8%
for 4 training examples, 2.0% for 10 training examples, and 1.4% for 20 training examples.

Table 3.4 and Table 3.5 shows the average test error over all problems for the binary and

Poisson case. The exponential family sparse coding features alone frequently outperform

the other features, and produce slightly better results when used in combination with the

raw features (ExpSC+Raw). The results for Poisson sparse coding are particularly striking,

showing 20-30% error reduction over raw counts in some cases. The other three methods

for using unlabeled data (GSC, ExpPCA, LDA) perform poorly in many cases.

3.5.2 Robotic perception

We also applied the exponential family sparse coding algorithm to a very different self-

taught learning problem: object recognition in 3D range data. The data was collected with

a laser range finder (Velodyne lidar) in a parking lot environment. Given a 3D box in this

space, the task is to predict whether the box contains a car or not.

A standard, robust representation for such 3D point cloud data is the “spin-image” rep-

resentation [74]. A detailed description of spin-images is beyond the scope of this chapter;

but informally, for our application, a spin-image can be thought of as a sheet spinning about

the vertical z vector at a point, accumulating counts of other points in each pixel as it rotates
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Figure 3.1: Three example pairs of point clouds (a car, a road, and a ground with non-car
objects) and the corresponding spin-images. Left of each pair: A view of a point cloud
produced by the laser range finder. Right of each pair: A spin-image generated around the
point marked with a red star on the left.

Features / training set size 4 10 20
Raw 34.2% 22.4% 18.4%
ExpSC 23.0% 20.0% 19.3%
ExpSC + Raw 25.0% 20.6% 16.9%
GSC 36.8% 31.3% 28.7%
GSC + Raw 36.0% 27.5% 19.5%
Log-Raw 29.9% 22.0% 17.3%
Log-GSC 31.6% 27.8% 27.2%
Log-GSC + Log-Raw 33.2% 24.1% 18.8%
ExpPCA 38.5% 31.4% 23.7%
ExpPCA + Raw 34.6% 22.2% 18.0%

Table 3.6: Test error for various algorithms and training set sizes for classifying spin-
images from the laser range finder. The standard errors across different features were sim-
ilar, corresponding to 3.3% for 4 training examples, 2.1% for 10 training examples, and
1.4% for 20 training examples.

(see Figure 3.1). Spin-images robustly describe the 3D surfaces around a reference point

using a 2D array of counts (20x10 array in our case).

Given a large number of unlabeled spin-images (which can be extracted very easily) and

a small number of spin-images from regions manually labeled as car or non-car, our task

is to predict whether a new spin-image represents a car or non-car region. Since the spin-

image is a count-based representation, we apply Poisson sparse coding to this problem.

Basis vectors were learned using 31,000 unlabeled spin-images, and manual examination

of the result reveals that certain basis vectors capture various 3D features of cars, roads,

trees, and other objects.
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Table 3.6 shows the test error for varying training set size. When compared with using

the raw spin-image alone, the Poisson sparse coding features reduce test error by 30% with

4 training examples, and by 8-10% for the other cases.

3.6 Discussion

Our extension to Gaussian sparse coding is conceptually similar to the extension proposed

for PCA by Collins et al. (2001). However, PCA itself defines a linear transform of the

features, unlike Gaussian sparse coding, and does not work as well on self-taught learning

tasks. It is thus not surprising that the exponential family extension of sparse coding also

outperforms exponential family PCA.

Compared to LDA, our model is more general because it can be applied to non-text

and non-exchangeable domains. Further, it has been pointed out that when LDA topics

are viewed as defining a simplex over word distributions, the exact topics learned by LDA

can vary a lot—the only constraint is that the simplex defined by the topics still spans all

the training documents [21]. In our view, the additional sparsity constraints in the sparse

coding model help reduce this ambiguity, and allow large numbers of “topics” to be learned

robustly.

3.7 Summary

In this chapter, we presented a general method for self-taught learning, that extends previ-

ous models in a natural way. The extensions can still be solved efficiently using the IRLS-

FS algorithm, which we showed to be an efficient algorithm for L1-regularized learning

problems with sparse optimal solutions. We showed that our model achieves better self-

taught learning performance than Gaussian sparse coding or exponential family PCA on

two very different tasks. We believe our model will extend the applicability of self-taught

learning to new, previously difficult problems.



Chapter 4

Sparse Deep Belief Networks

4.1 Introduction

As we have seen in previous chapters, sparse representations are beneficial. Specifically,

sparse coding learns useful low-level feature representations for unlabeled data, such as

images, sound, and text. Now, suppose that we are interested in learning more complex,

higher-level features. For example, we may want to learn object-part features from images

rather than just edge detectors. With this goal in mind, it appears to be fairly plausible to

attempt to build hierarchical feature representations using sparse coding.

However, it is not straightforward to apply sparse coding recursively to build multi-

ple levels of hierarchy. Although there is some sparse coding-related research that builds

hierarchies (e.g., [75, 76, 29]), these algorithms are highly non-trivial (i.e., they are not

merely stacking sparse coding layers) and computationally expensive to optimize. In fact,

it has been difficult to build hierarchical representations by straightforwardly “stacking”

sparse coding layers. We hypothesize that this difficulty may be due to the following fac-

tors. First, sparse coding (with real-valued inputs) assumes a non-sparse input distribution,

whereas the output distribution of sparse coding is very sparse; therefore, applying another

sparse coding on top of the sparse coding output may not satisfy the modeling assumption.

Second, the optimization (i.e., inference) in sparse coding is fairly expensive since it in-

volves L1 regularized optimization.1 Therefore, we found it quite challenging to develop

1We note that there have been attempts to speed up sparse coding by modifying the objective function.
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hierarchical sparse coding algorithms based on our experiments.

Faced with such difficulties, we will describe an alternative approach to building sparse

hierarchical representations. The basic idea is to build upon so-called “deep learning” algo-

rithms, which have shown promise in building hierarchical representations. Indeed, the last

several years have seen significant interest in deep learning algorithms that learn layered,

hierarchical representations of high-dimensional data [65, 136, 16, 83]. Deep architectures

attempt to learn hierarchical structure and seem promising in learning simple concepts first

and then successfully building up more complex concepts by composing the simpler ones

together. For example, Hinton et al. [65] proposed an algorithm based on learning individ-

ual layers of a hierarchical probabilistic graphical model from the bottom up. Bengio et

al. [16] proposed a similarly greedy algorithm based on autoencoders. Ranzato et al. [136]

developed an energy-based hierarchical algorithm, using a sequence of sparsified autoen-

coders/decoders.

In this chapter, we will build upon restricted Boltzmann machines (RBMs) and deep be-

lief networks (DBNs) developed by Hinton et al. [65]. Compared to sparse coding, RBMs

can be easily stacked to form a hierarchical representation called DBNs. Further, approx-

imate inference for RBMs and DBNs is computationally efficient because the inference

can be performed in a feed-forward way without having to solve any iterative optimization

problems. Specifically, we develop a sparse variant of the deep belief networks. In exper-

iments, we train two layers of hidden nodes in the network, and demonstrate that the first

layer, similar to previous work on sparse coding and ICA, results in localized, oriented,

edge filters, similar to the Gabor functions (known to model V1 cell receptive fields). Fur-

thermore, the second layer in our model encodes correlations of the first layer responses in

the data. Specifically, it identifies both colinear (“contour”) features as well as corners and

junctions. In addition, it turns out that the sparsity regularization proposed in this chapter

results in improved (often the best) performance in many machine learning tasks.

For example, Koray et al. [77] proposed an algorithm for solving a variant of sparse coding using the en-
coder/decoder framework.
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4.2 Algorithm

In general, restricted Boltzmann machines and deep belief networks tend to learn dis-

tributed, non-sparse representations. In this section, we modify Hinton et al.’s learning

algorithm to enable these models to learn sparse representations.

4.2.1 Sparse restricted Boltzmann machines

We begin by describing the restricted Boltzmann machine (RBM) and present a modified

version of it. An RBM has a set of hidden units h, a set of visible units v, and symmetric

connections weights between these two layers represented by a weight matrix W . The

probabilistic semantics for an RBM is defined by its energy function as follows:

P (v,h) =
1

Z
exp(−E(v,h)), (4.1)

where Z is the partition function. If the visible units are real-valued, we define the energy

function as follows:2

E(v,h) =
1

2σ2

∑
i

v2
i −

1

σ2

(∑
i

civi +
∑
j

bjhj +
∑
i,j

viwijhj

)
, (4.2)

where σ is a constant, bj are hidden unit biases, and ci are visible unit biases. If the visible

units are binary-valued, we can similarly define the energy function as follows:

E(v,h) = − 1

σ2

(∑
i

civi +
∑
j

bjhj +
∑
i,j

viwijhj

)
. (4.3)

Under this model, we can easily compute the conditional probability distributions. If

2See also [66] for an alternative way of defining energy function for the real-valued visible units.
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the visible units are real-valued, the conditional probability can be written as:

P (vi|h) = N

(
ci +

∑
j

wijhj, σ
2

)
, (4.4)

P (hj = 1|v) = sigmoid

(
1

σ2
(bj +

∑
i

wijvi)

)
. (4.5)

Here, N (·) is the Gaussian density, and sigmoid(·) is the sigmoid function. Similarly, if

the visible units are binary-valued, the conditional probability can be written as:

P (vi|h) = sigmoid

(
1

σ2
(ci +

∑
j

wijhj)

)
, (4.6)

P (hj = 1|v) = sigmoid

(
1

σ2
(bj +

∑
i

wijvi)

)
. (4.7)

Therefore, we can perform efficient block Gibbs sampling by alternately sampling each

layer’s units (in parallel) given the other layer. We will often refer to a unit’s expected

value as its activation.

For training the parameters of the model, the objective is to maximize the log-likelihood

of the data. Informally speaking, the maximum likelihood parameter estimation problem

corresponds to learning wij, ci and bj to minimize the energy of states drawn from the

data distribution, and raise the energy of states that are improbable given the data. At the

same time, we want hidden unit activations to be sparse. However, it is not straightforward

to apply “L1” regularization (as in sparse coding) to enforce sparsity because the RBM

representation uses stochastic binary variables. Hence, we will define a regularizer that

will make the average hidden variable activation low over the entire training examples.

More specifically, we add a regularization term that penalizes any deviation of the expected

activation of the hidden units from a (low) fixed level p. Less formally, this regularization

ensures that the “firing rate” of the model neurons (corresponding to the latent random

variables hj) are kept at a certain (fairly low) level, so that the activations of the model

neurons are sparse. Similar intuition was also used in other models (e.g., see Olshausen

and Field [122]). Thus, given a training set {v(1), . . . ,v(m)} comprising m examples, we
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Algorithm 3 Sparse RBM learning algorithm
1. Update the parameters using contrastive divergence learning rule. More specifically,

wij := wij + α(〈vihj〉data − 〈vihj〉recon) (4.9)
ci := ci + α(〈vi〉data − 〈vi〉recon)

bj := bj + α(〈bj〉data − 〈bj〉recon),

where α is a learning rate, and 〈·〉recon is an expectation over the reconstruction data, esti-
mated using one iteration of Gibbs sampling.
2. Update the parameters using the gradient of the regularization term.
3. Repeat Steps 1 and 2 until convergence.

pose the following optimization problem:

minimize{wij ,ci,bj} −
m∑
l=1

log

(∑
h

P (v(l),h(l))

)
+ λ

n∑
j=1

∣∣∣∣∣p− 1

m

m∑
l=1

E[h
(l)
j |v(l)]

∣∣∣∣∣
2

(4.8)

where E[·] is the conditional expectation given the data, λ is a regularization constant, and

p is a constant controlling the sparseness of the hidden units hj . Thus, our objective is the

sum of a log-likelihood term and a regularization term (i.e., a tradeoff between “likelihood”

and “sparsity”). In principle, we can apply gradient descent to this problem; however,

computing the gradient of the log-likelihood term is expensive. Fortunately, the contrastive

divergence learning algorithm gives an efficient approximation to the gradient of the log-

likelihood [63]. Therefore, in each iteration we can apply the contrastive divergence update

rule, followed by one step of gradient descent using the gradient of the regularization term,

as summarized in Algorithm 3. In implementation detail, we made one additional change

to increase computational efficiency. Note that the regularization term is defined using

a sum over the entire training set; if we use stochastic gradient descent or mini-batches

(small subsets of the training data) to estimate this term, it results in biased estimates of the

gradient. To ameliorate this bias issue, we used mini-batches, but in the gradient step that

attempts to minimize the regularization term, we update only the bias terms bj’s (which

directly control the degree to which the hidden units are activated, and thus their sparsity),

instead of updating all the parameters bj and wij’s.

Specifically, the gradient of the sparsity regularization term over the parameters (W and
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b) can be written as follows:

− ∂

∂wij
Lsparsity ∝ (p− 1

m

m∑
l=1

p
(l)
j )

1

m

m∑
l=1

p
(l)
j (1− p(l)

j )v
(l)
i (4.10)

− ∂

∂bj
Lsparsity ∝ (p− 1

m

m∑
l=1

p
(l)
j )

1

m

m∑
l=1

p
(l)
j (1− p(l)

j ), (4.11)

where p(l)
j , sigmoid( 1

σ2 (
∑

i v
(l)
i wij + bj)), and Lsparsity is the regularization penalty term

in Equation (4.8). If we approximate the above gradient assuming that
∑

l p
(l)
j (1 − p

(l)
j )

term is roughly similar over j’s, the update rule can be written in a more simple, intuitive

way:

∆bj ∝ −
∂

∂bj
Lsparsity ≈ (p− 1

m

m∑
l=1

p
(l)
j ) · constant. (4.12)

This corresponds to an update rule that increases or decreases the bias of each hidden unit

based on the difference between the desired sparsity and the average posterior activation

(over training examples) of each hidden unit. In the original publication of this chapter [92],

we implemented our algorithm based on Equation (4.11); however, the implementation

based on Equation (4.12) also gave qualitatively the same results.

We also note that setting the λ parameter is fairly simple in practice. In our experiments,

we set the λ value moderately large to ensure that the average hidden unit activation (over

the training examples) is close to the desired sparsity p, yet each individual hidden unit

activation varies depending on individual input examples. Since there is a log-likelihood

term as an objective, the hidden unit activation is still encouraged to vary depending on the

individual training examples.

4.2.2 Learning deep networks using sparse RBM

Once a layer of the network is trained, the parameters wij, bj, ci’s are frozen and the hidden

unit values given the data are inferred. These inferred values serve as the “data” used to

train the next higher layer in the network. Hinton et al. [65] showed that by repeatedly

applying such a procedure, one can learn a multi-layered deep belief network. In some
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cases, this iterative “greedy” algorithm can further be shown to be optimizing a variational

bound on the data likelihood, if each layer has at least as many units as the layer below

(although in practice this is not necessary to arrive at a desirable solution; see [65] for a

detailed discussion). In our experiments using natural images, we learn a network with

two hidden layers, with each layer learned using the sparse RBM algorithm described in

Section 4.2.1.

4.2.3 Discussion

First, we clarify the similarities and differences between sparse RBM and sparse coding.

The sparse RBM and the sparse coding are somewhat similar in that both represent input

data using latent variables (i.e., combination of the basis vectors). Furthermore, although

the RBM representations are not sparse in general, the sparse RBM can learn very sim-

ilar representations as sparse coding, as will be shown in this chapter (e.g., representing

image patches as a combination of edges). On the other hand, there are a number of dif-

ferences between sparse RBM and sparse coding. Sparse coding is a directed graphical

model that has real-valued latent variables. The sparsity is controlled by L1 regularization

over the coefficients. However, posterior (MAP) inference conditioned on the input data

is computationally expensive for sparse coding because it requires solving L1-regularized

optimization problem. In contrast, sparse RBM is an undirected graphical model that has

binary-valued latent variables. The sparsity can be implicitly controlled by having a regu-

larization penalty over the average activation of hidden units. The posterior distribution is

computationally easy to compute because the hidden units are conditionally independent

given input variables.

In terms of usage, sparse coding is better suited for applications that require good recon-

struction and a single layer only. Sparse coding is particularly useful when the input data

contains noise; for example, sparse coding shows state-of-the-art performance in image de-

noising [110]. Sparse coding also shows good performance in object recognition, using a

single layer representation [131, 167]. In contrast, the RBM is better suited for applications

that do not require accurate reconstruction since the RBM has binary latent variables. The

RBM can be particularly useful when we want to learn hierarchical representations, and we
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will show several state-of-the-art applications in the next chapters.

Furthermore, we note that the sparsity regularization described in this chapter can be

used for autoencoders as well. The autoencoder is a neural network for learning efficient

embeddings, and it encodes input data using the hidden representation (with a single layer

or multiple layers) so that the network can reconstruct the original input. In other words, it

tries to minimize the reconstruction error between the input and the output of the network.

Autoencoders can be trained by backpropagation; therefore, the sparsity regularization can

be simply implemented by taking gradient steps via backpropagation followed by updates

such as in Equation (4.12). For example, in the case of sigmoid activation function for

hidden units, the same sparsity update rule as in Equation (4.12) can be used. For other ac-

tivation functions (e.g., tanh or softmax), simply replacing “p” with the activation function

value works well in practice. We note that sparse autoencoders can be also implemented

using energy-based encoder/decoder networks [134, 136].

Empirically, sparse autoencoders learn qualitatively similar features as sparse RBMs

and thereby can be used for learning interesting features from unlabeled data [55, 134, 136].

See also [83, 82] for empirical comparisons on deep autoencoders and DBNs. Finally, we

emphasize that all of the above-mentioned algorithms are currently under active research,

so new connections and insights may be discovered in the near future.

4.3 Visualization

4.3.1 Learning “pen-strokes” from handwritten digits

We applied the sparse RBM algorithm to the MNIST handwritten digit dataset. The dataset

was downloaded from http://yann.lecun.com/exdb/mnist/. Each pixel was

normalized to the unit interval, and we used PCA-whitening to reduce the dimension to

69 principal components for computational efficiency. (However, similar results were ob-

tained without whitening.) We trained a sparse RBM with 69 visible units and 200 hidden

units. The learned bases are shown in Figure 4.1. Each basis corresponds to one column

of the weight matrix W left-multiplied by the unwhitening matrix. Many bases found by
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Figure 4.1: Bases learned from MNIST data using sparse RBM

the algorithm roughly represent different pen-strokes of which handwritten digits are com-

prised. This is consistent with results obtained by applying different algorithms to learn

sparse representations of this data set (e.g., [136, 64]).

4.3.2 Learning from natural images

We also applied the algorithm to a training set a set of 14x14 pixel natural image patches,

taken from a dataset compiled by van Hateren. The images were obtained from http:

//hlab.phys.rug.nl/imlib/index.html and preprocessed with whitened us-

ing 1/f whitening (see [122] for details of 1/f whitening procedure). We used 100,000

14x14 image patches randomly sampled from an ensemble of 2000 images; each subset of

200 patches was used as a mini-batch. We learned a sparse RBM model with 196 visible

units and 400 hidden units. The learned bases are shown in Figure 4.2; they are oriented,

Gabor-like bases and resemble the receptive fields of V1 simple cells.

4.3.3 Learning a two-layer model of natural images using sparse RBMs

We further learned a two-layer network by stacking one sparse RBM on top of another (see

Section 4.2.2 for details). After learning, the second layer weights were quite sparse—

most of the weights were very small, and only a few were either highly positive or highly

negative. Positive weights represent excitatory connections between the first layer units

and the second layer units, whereas negative elements represent inhibitory connections. By

visualizing the second layer bases as shown in Figure 4.3, we observed bases that encoded
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Figure 4.2: 400 first layer bases learned from the van Hateren natural image dataset, using
our algorithm.

co-linear first layer bases as well as edge junctions. This shows that by extending the sparse

RBM to two layers and using greedy learning, the model is able to learn bases that encode

contours, angles, and junctions of edges.

4.4 Experimental results

4.4.1 Biological comparison

We evaluated our sparse DBN model to biological measurements. Specifically, we took Ito

& Komatsu [70]’s characterization of V2 neurons in terms of its responses to a large class of

angled bar stimuli, and quantitatively measured the degree to which the deep belief network

algorithm generated similar responses. In the quantitative comparison, the encoding of

these more complex “corner” features using sparse DBN matched well with the results from

the Ito & Komatsu’s study of biological V2 responses. The detailed results are reported

in [92]. This result suggests that our sparse variant of deep belief networks may hold

promise for learning higher-order features from natural images.

4.4.2 Machine learning applications

The original publication of sparse DBN work [92] focused on biological comparison. How-

ever, since our original publication, many authors have used this sparsity regularization (or

its variants) and reported good results in a number of machine learning tasks, as described

below.
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Figure 4.3: Visualization of 200 second layer bases, learned from natural images. Each
small group of 3-5 (arranged in a row) images shows one second-layer unit; the leftmost
patch in the group is a visualization of the second-layer basis, and is obtained by taking a
weighted linear combination of the first layer “V1” bases to which it is connected. The next
few patches in the group show the first layer bases that have the strongest weight connection
to the second-layer basis.

Larochelle and Bengio (2008) [81] proposed a discriminative version of RBM. In the

experiments, their model combined with sparsity regularization gave the best classification

performance. In addition, Nair and Hinton [117] used a variant of update rule for sparsity

regularization (i.e., the average hidden unit activations were measured via moving averages

over the training examples) in training a third-order RBM and reported good results in 3D

object recognition. Moreover, conditional RBMs [154] are reported to have good perfor-

mance when using the sparsity regularization; see also [153] for implementation details.

As we will describe in Chapters 5 and 6, convolutional RBMs [93, 94, 45, 120] have

highly overcomplete representations (i.e., more than 20x overcomplete). In such settings,

sparsity is not only useful, but also necessary to learn meaningful representations. In other

words, without using the sparsity regularization, the learned representations produced much

worse results. In our related work, Goodfellow et al. [55] proposed a new evaluation metric

for deep networks by measuring invariance. In the experiments, autoencoders with sparsity

regularization gave significantly better invariance scores compared to autoencoders without
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using sparsity. Furthermore, a two-layer convolutional DBN (with sparsity regularization)

gave the best invariance score among the models evaluated.

In summary, sparsity regularization in RBMs and DBNs has effect of (1) making the

representation sparse and compact, thereby enabling to learn similar bases as those learned

from sparse coding; (2) producing bases that are often easier to interpret (i.e., edges in

image patches, pen-strokes in handwritten digits, etc.); and (3) leading to improved perfor-

mance in machine learning tasks (i.e., classification or invariance test).

4.5 Summary

We presented a sparse variant of the deep belief network model. When trained on natural

images, this model learns local, oriented, edge filters in the first layer. More interestingly,

the second layer captures a variety of both colinear (“contour”) features as well as corners

and junctions, that in a quantitative comparison to measurements of V2 taken by Ito & Ko-

matsu, appeared to give responses that were similar along several dimensions. This result

suggests that sparse deep belief networks can capture interesting high-order features from

natural image statistics, and we believe that the proposed method holds promise for learn-

ing higher-order features from various data types. Finally, sparsity regularization described

in this chapter improves performance of autoencoders, RBMs, and DBNs in many machine

learning tasks.



Chapter 5

Convolutional Deep Belief Networks

5.1 Introduction

The visual world can be described at many levels: pixel intensities, edges, object parts,

objects, and beyond. The prospect of learning hierarchical models that simultaneously

represent multiple levels has recently generated much interest. Ideally, such “deep” rep-

resentations would learn hierarchies of feature detectors and further be able to combine

top-down and bottom-up processing of an image. For instance, lower layers could sup-

port object detection by spotting low-level features indicative of object parts. Conversely,

information about objects in the higher layers could be highly specific (thus more infor-

mative for object recognition) and resolve lower-level ambiguities in the image or infer the

locations of hidden object parts. In this chapter, we build upon the deep belief networks

because we are interested in learning a generative model of images which can be trained in

a purely unsupervised manner.

While DBNs have been successful in controlled domains, scaling them to realistic-sized

(e.g., 200x200 pixel) images remains challenging for two reasons. First, images are high-

dimensional, so the algorithms must scale gracefully and be computationally tractable even

when applied to large images. Second, objects can appear at arbitrary locations in images;

thus it is desirable that representations be invariant at least to local translations of the input.

We address these issues by incorporating translation invariance. Like [89] and [61], we

learn feature detectors which are shared among all locations in an image because a feature
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detector which captures useful information in one part of an image can pick up the same

information elsewhere. Thus, our model can represent large images using only a small

number of feature detectors.

This chapter presents the convolutional deep belief network, a hierarchical generative

model that scales to full-sized images. We also present probabilistic max-pooling, a novel

technique that allows higher-layer units to cover larger areas of the input in a probabilisti-

cally sound way. To the best of our knowledge, ours is the first unsupervised, translation-

invariant deep learning model which scales to realistic image sizes and supports full prob-

abilistic inference. The first, second, and third layers of our network learn edge detectors,

object parts, and objects respectively. We show that these representations achieve excel-

lent performance on several visual recognition tasks and allow “hidden” object parts to be

inferred from high-level object information.

5.2 Algorithm

Both RBMs and DBNs ignore the 2-D structure of images, so weights that detect a given

feature must be learned separately for each location. This redundancy makes it difficult

to scale these models to full images. One possible way of scaling up is to use massive

parallel computation (such as using GPUs), as shown in [132]. However, this method may

still suffer from having a huge number of parameters. In this section, we present a new

method that scales up DBNs using weight-sharing. Specifically, we introduce our model,

the convolutional DBN, where weights are shared among all locations in an image. This

model scales well because inference can be done efficiently using convolution.

5.2.1 Notation

For notational convenience, we will make several simplifying assumptions. First, we as-

sume that all inputs to the algorithm are NV ×NV images, even though there is no require-

ment that the inputs be square, equally sized, or even two-dimensional. We also assume
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that all units are binary-valued, while noting that it is straightforward to extend the formu-

lation to the real-valued visible units (see Section 4.2). We use ∗ to denote convolution,1

and • to denote element-wise product followed by summation, i.e., A • B = trATB. We

place a tilde above an array (Ã) to denote flipping the array horizontally and vertically.

5.2.2 Convolutional RBM

First, we introduce the convolutional RBM (CRBM). Intuitively, the CRBM is similar to the

RBM, but the weights between the hidden and visible layers are shared among all locations

in an image. The basic CRBM consists of two layers: an input layer V and a hidden layer

H (corresponding to the lower two layers in Figure 5.1). The input layer consists of an

NV × NV array of binary units. The hidden layer consists of K “groups,” where each

group is an NH × NH array of binary units, resulting in NH
2K hidden units. Each of the

K groups is associated with a NW × NW filter (NW , NV − NH + 1); the filter weights

are shared across all the hidden units within the group. In addition, each hidden group has

a bias bk and all visible units share a single bias c.

We define the energy function E(v,h) as:

P (v,h) =
1

Z
exp(−E(v,h))

E(v,h) = −
K∑
k=1

NH∑
i,j=1

NW∑
r,s=1

hkijW
k
rsvi+r−1,j+s−1 −

K∑
k=1

bk

NH∑
i,j=1

hkij − c
NV∑
i,j=1

vij. (5.1)

Using the operators defined previously,

E(v,h) = −
K∑
k=1

hk • (W̃ k ∗ v)−
K∑
k=1

bk
∑
i,j

hki,j − c
∑
i,j

vij.

As with standard RBMs (Section 4.2), we can perform block Gibbs sampling using the

1The convolution of an m ×m array with an n × n array may result in an (m + n − 1) × (m + n − 1)
array or an (m − n + 1) × (m − n + 1) array. Rather than inventing a cumbersome notation to distinguish
between these cases, we let it be determined by context.
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following conditional distributions:

P (hkij = 1|v) = σ((W̃ k ∗ v)ij + bk)

P (vij = 1|h) = σ((
∑
k

W k ∗ hk)ij + c),

where σ is the sigmoid function. Gibbs sampling forms the basis of our inference and

learning algorithms.

5.2.3 Probabilistic max-pooling

In order to learn high-level representations, we stack CRBMs into a multi-layer architecture

analogous to DBNs. This architecture is based on a novel operation that we call probabilis-

tic max-pooling.

In general, higher-level feature detectors need information from progressively larger in-

put regions. Existing translation-invariant representations, such as convolutional networks,

often involve two kinds of alternating layers: “detection” layers, where responses are com-

puted by convolving a feature detector with the previous layer, and “pooling” layers, which

shrink the representation of the detection layers by a constant factor. More specifically,

each unit in a pooling layer computes the maximum activation of the units in a small region

of the detection layer. Shrinking the representation with max-pooling allows higher-layer

representations to be invariant to small translations of the input and reduces the computa-

tional burden.

Max-pooling was intended only for deterministic and feed-forward architectures, and it

is difficult to perform probabilistic inference (e.g., computing posterior probabilities) since

max-pooling is a deterministic operator. In contrast, we are interested in a generative model

of images which supports full probabilisctic inference; hence, we designed our generative

model so that inference involves max-pooling-like behavior.

To simplify the notation, we consider a model with a visible layer V , a detection layer

H , and a pooling layer P , as shown in Figure 5.1. The detection and pooling layers both

have K groups of units, and each group of the pooling layer has NP × NP binary units.

For each k ∈ {1, ..., K}, the pooling layer P k shrinks the representation of the detection



CHAPTER 5. CONVOLUTIONAL DEEP BELIEF NETWORKS 65

v

Wk

hk
i,j

pk
α

V  (visible layer)

Hk (detection layer)

Pk (pooling layer)

NH

NV

C

NW

NP

Figure 5.1: Convolutional RBM with probabilistic max-pooling. For simplicity, only group
k of the detection layer and the pooling layer are shown. The basic CRBM corresponds
to a simplified structure with only visible layer and detection (hidden) layer. See text for
details.

layer Hk by a factor of C along each dimension, where C is a small integer such as 2 or 3.

In other words, the detection layer Hk is partitioned into blocks of size C × C, and each

block α is connected to exactly one binary unit pkα in the pooling layer (i.e., NP = NH/C).

Formally, we define Bα , {(i, j) : hij belongs to the block α.}.
The detection units in the block Bα and the pooling unit pα are connected in a single

potential which enforces the following constraints: at most one of the detection units may

be on, and the pooling unit is on if and only if a detection unit is on. By adding this

constraint, we can efficiently sample from the network without explicitly enumerating all

2C
2 configurations, as we show later. With the constraint, we can consider these C2 + 1

units as a single random variable which may take on one of C2 + 1 possible values: one

value for each of the detection units being on, and one value indicating that all units are off.
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We formally define the energy function of this simplified probabilistic max-pooling-

CRBM as follows:

E(v,h) = −
∑
k

∑
i,j

(
hki,j(W̃

k ∗ v)i,j + bkh
k
i,j

)
− c

∑
i,j

vi,j

subject to
∑

(i,j)∈Bα

hki,j ≤ 1, ∀k, α.

We now discuss sampling the detection layer H and the pooling layer P given the visible

layer V . Group k receives the following bottom-up signal from layer V :

I(hkij) , bk + (W̃ k ∗ v)ij. (5.2)

Now, we sample each block independently as a multinomial function of its inputs. Suppose

hki,j is a hidden unit contained in block α (i.e., (i, j) ∈ Bα), the increase in energy caused

by turning on unit hki,j is −I(hki,j), and the conditional probability is given by:

P (hki,j = 1|v) =
exp(I(hki,j))

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′))
(5.3)

P (pkα = 0|v) =
1

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′))
. (5.4)

Sampling the visible layer V given the hidden layer H can be performed in the same way

as described in Section 5.2.2.

5.2.4 Training via sparsity regularization

Our model is overcomplete in that the size of the representation is much larger than the

size of the inputs. In fact, since the first hidden layer of the network contains K groups

of units, each roughly the size of the image, it is overcomplete roughly by a factor of K.

In general, overcomplete models run the risk of learning trivial solutions, such as feature

detectors representing single pixels. One common solution is to force the representation to

be “sparse,” meaning only a tiny fraction of the units should be active in relation to a given

stimulus. In our approach, following Section 4.2.1, we regularize the objective function
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(log-likelihood) to encourage each hidden unit group to have a mean activation close to a

small constant. Specifically, we found that the following simple update (followed by each

contrastive divergence update) worked well in practice:

∆bk ∝ p− 1

N2
H

∑
i,j

P (hkij = 1|v), (5.5)

where p is a target sparsity, and each image is treated as a mini-batch. The learning rate

for sparsity update was chosen as a value that makes the hidden group’s average activation

(over entire training data) close to the target sparsity, while allowing variations depending

on specific input images.

5.2.5 Convolutional deep belief network

Finally, we are ready to define the convolutional deep belief network (CDBN), our hierar-

chical generative model for full-sized images. Analogously to DBNs, this architecture con-

sists of several max-pooling-CRBMs stacked on top of one another. The network defines

an energy function by summing together the energy functions for all the individual pairs

of layers. Training is accomplished with the same greedy, layer-wise procedure described

in Section 4.2: once a given layer is trained, its weights are frozen, and its activations are

used as input to the next layer. There is one technical point about learning the biases for

each intermediate hidden layer. Specifically, the biases of a given layer are learned twice:

once when the layer is treated as the “hidden” layer of the CRBM (using the lower layer

as visible units), and once when it is treated as the “visible” layer (using the upper layer as

hidden units). We resolved this problem by simply fixing the biases with the learned hidden

biases in the former case (i.e., using only the biases learned when treating the given layer

as the hidden layer of the CRBM). However, we note that a possibly better solution would

be to train jointly all the weights for the entire CDBN, using the greedily trained weights

as the initialization.
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5.2.6 Hierarchical probabilistic inference

Once the parameters have all been learned, we compute the network’s representation of an

image by sampling from the joint distribution over all of the hidden layers conditioned on

the input image. To sample from this distribution, we use block Gibbs sampling, where

each layer’s units are sampled in parallel (see Sections 4.2 & 5.2.3).

To illustrate the algorithm, we describe a case with one visible layer V , a detection layer

H , a pooling layer P , and another, subsequently-higher detection layer H ′. Suppose H ′

has K ′ groups of nodes, and there is a set of shared weights Γ = {Γ1,1, . . . ,ΓK,K
′}, where

Γk,` is a weight matrix connecting pooling unit P k to detection unit H ′`. The definition can

be extended to deeper networks in a straightforward way.

Note that an energy function for this sub-network consists of two kinds of potentials:

unary terms for each of the groups in the detection layers, and interaction terms between V

and H and between P and H ′:

E(v,h,p,h′) = −
∑
k

v • (W k ∗ hk)−
∑
k

bk
∑
ij

hkij

−
∑
k,`

pk • (Γk` ∗ h′`)−
∑
`

b′`
∑
ij

h′
`
ij

To sample the detection layer H and pooling layer P , note that the detection layer Hk

receives the following bottom-up signal from layer V :

I(hkij) , bk + (W̃ k ∗ v)ij, (5.6)

and the pooling layer P k receives the following top-down signal from layer H ′:

I(pkα) ,
∑
`

(Γk` ∗ h′`)α. (5.7)

Now, we sample each of the blocks independently as a multinomial function of their inputs,
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as in Section 5.2.3. If (i, j) ∈ Bα, the conditional probability is given by:

P (hki,j = 1|v,h′) =
exp(I(hki,j) + I(pkα))

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′) + I(pkα))

P (pkα = 0|v,h′) =
1

1 +
∑

(i′,j′)∈Bα exp(I(hki′,j′) + I(pkα))
.

As an alternative to block Gibbs sampling, mean-field can be used to approximate the

posterior distribution. In all our experiments except for Section 5.3.5, we used the mean-

field approximation to estimate the hidden layer activations given the input images.2

5.2.7 Discussion

Our model used undirected connections between layers. This approach contrasts with Hin-

ton et al. (2006) [65], which used undirected connections between the top two layers, and

top-down directed connections for the layers below. Hinton et al. [65] proposed approxi-

mating the posterior distribution using a single bottom-up pass. This feed-forward approach

often can effectively estimate the posterior when the image contains no occlusions or am-

biguities, but the higher layers cannot help resolve ambiguities in the lower layers. This

is due to feed-forward computation, where the lower layer activations are not affected by

the higher layer activations. Although Gibbs sampling may more accurately estimate the

posterior, applying block Gibbs sampling would be difficult because the nodes in a given

layer are not conditionally independent of one another given the layers above and below. In

contrast, our treatment using undirected edges enables combining bottom-up and top-down

information more efficiently, as shown in Section 5.3.5.

In our approach, probabilistic max-pooling helps to address scalability by shrinking the

higher layers. Moreover, weight-sharing (convolutions) further speeds up the algorithm.

For example, convolutions between K filters and an input image are more efficient both in

memory and time than repeating KNH
2 times of innder products between the input image

and each of basis vectors (without weight sharing). As a result, inference in a three-layer

network (with 200x200 input images) using weight-sharing but without max-pooling was

2We found that a small number of mean-field iterations (e.g. five iterations) sufficed.
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about 10 times slower. Without weight-sharing, it was more than 100 times slower.

In contemporary work that was done independently of ours, Desjardins and Bengio [45]

also applied convolutional weight-sharing to RBMs and experimented on small image

patches. Our work, however, developed more sophisticated elements such as probabilis-

tic max-pooling to make the algorithm more scalable.

In another contemporary work, Salakhutdinov and Hinton (2009) [142] proposed an

algorithm to train Boltzmann machines with layer-wise connections (i.e., the same topo-

logical structure as in deep belief networks, but with undirected connections). They called

this model the deep Boltzmann machine (DBM). Specifically, they proposed algorithms for

pretraining and fine-tuning DBMs. Our treatment of undirected connections is related with

DBMs. However, our model is different from theirs because we apply convolutional struc-

tures and incorporate probabilistic max-pooling into the architecture. Although their work

is not convolutional and does not scale to as large images as our model, we note that their

pretraining algorithm (a modification of contrastive divergence that duplicates the visible

units or hidden units when training the RBMs) or fine-tuning algorithm (joint training of

all the parameters using a stochastic approximation procedure [170, 174, 157]) can be also

applied to our model to improve the training procedure.

5.3 Experimental results

5.3.1 Learning hierarchical representations from natural images

We first tested our model’s ability to learn hierarchical representations of natural images.

Specifically, we trained a CDBN with two hidden layers from the Kyoto natural image

dataset.3 The first layer consisted of 24 groups (or “bases”)4 of 10x10 pixel filters, while

the second layer consisted of 100 bases, each one 10x10 as well. Since the images were

real-valued, we used Gaussian visible units for the first-layer CRBM. The pooling ratio C

for each layer was 2, so the second-layer bases covered roughly twice as large an area as

the first-layer bases. We used 0.003 as the target sparsity for the first layer and 0.005 for

3http://www.cnbc.cmu.edu/cplab/data_kyoto.html
4We will call one hidden group’s weights a “basis.”
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Figure 5.2: The first layer bases (top) and the second layer bases (bottom) learned from
natural images. Each second layer basis (filter) was visualized as a weighted linear combi-
nation of the first layer bases.

the second layer.

As shown in Figure 5.2 (top), the learned first layer bases are oriented, localized edge

filters; this result is consistent with much previous work [122, 14, 136, 125, 64, 160]. We

note that sparsity regularization during training was necessary for learning these oriented

edge filters; when this term was removed, the algorithm failed to learn oriented edges. The

learned second layer bases are shown in Figure 5.2 (bottom), and many of them empirically

responded selectively to contours, corners, angles, and surface boundaries in the images.

This result is qualitatively consistent with previous work [70, 92, 67].

5.3.2 Self-taught learning for object recognition

In the self-taught learning framework [131], a large amount of unlabeled data can help

supervised learning tasks, even when the unlabeled data do not share the same class la-

bels or the same generative distribution with the labeled data. In previous work, sparse

coding was used to train single-layer representations from unlabeled data, and the learned

representations were used to construct features for supervised learning tasks.
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We used a similar procedure to evaluate our two-layer CDBN, described in Section 5.3.1,

on the Caltech-101 object classification task. More specifically, given an image from the

Caltech-101 dataset [50], we scaled the image so that its longer side was 150 pixels, and

computed the activations of the first and second (pooling) layers of our CDBN. We repeated

this procedure after reducing the input image by half and concatenated all the activations

to construct features. We used an SVM with a spatial pyramid matching kernel for clas-

sification, and the parameters of the SVM were cross-validated. We randomly selected 15

or 30 images per class for training test and testing set, and normalized the result such that

classification accuracy for each class was equally weighted (following the standard proto-

col). We report results averaged over 10 random trials, as shown in Table 5.1. First, we

observe that combining the first and second layers significantly improves the classification

accuracy relative to the first layer alone. Overall, we achieve 57.7% test accuracy using 15

training images per class, and 65.4% test accuracy using 30 training images per class. Our

result is competitive with state-of-the-art results using a single type of highly-specialized

features, such as SIFT, geometric blur, and shape-context [88, 18, 175]. In addition, recall

that the CDBN was trained entirely from natural scenes, which are completely unrelated

to the classification task. Hence, the strong performance of these features implies that our

CDBN learned a highly general representation of images.

We note that current state-of-the-art methods use multiple kernels (or features) together,

instead of using a single type of features. For example, Gehler and Nowozin (2009) [54]

reported better performance than ours (77.7% for 30 training images/class), but they com-

bined many state-of-the-art features (or kernels) to improve performance. In another ap-

proach, Yu et al. [173] used kernel regularization using a (previously published) state-of-

the-art kernel matrix to improve the performance of their convolutional neural network

model (achieving 67.4% for 30 training examples/class). However, we expect our features

can be also used in both settings to further improve the performance.

5.3.3 Handwritten digit classification

We also evaluated the performance of our model on the MNIST handwritten digit classifi-

cation task, a widely-used benchmark for testing hierarchical representations. We trained
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Training Size 15 30
CDBN (first layer) 53.2% 60.5%
CDBN (first+second layers) 57.7% 65.4%
Raina et al. (2007) [131] 46.6% -
Ranzato et al. (2007) [135] - 54.0%
Mutch and Lowe (2006) [116] 51.0% 56.0%
Lazebnik et al. (2006) [88] 54.0% 64.6%
Zhang et al. (2006) [175] 59.0% 66.2%

Table 5.1: Classification accuracy for the Caltech-101 data

Labeled training samples 1,000 2,000 3,000 5,000 60,000
CDBN 2.62% 2.13% 1.91% 1.59% 0.82%
Ranzato et al. (2007) [135] 3.21% 2.53% - 1.52% 0.64%
Hinton and Salakhutdinov [66] - - - - 1.20%
Weston et al. (2008) [164] 2.73% - 1.83% - 1.50%

Table 5.2: Test error for MNIST dataset

40 first layer bases from MNIST digits, each 12x12 pixels, and 40 second layer bases, each

6x6. The pooling ratio C was 2 for both layers. The first layer bases learned pen-strokes

that comprise the digits, and the second layer bases learned bigger digit-parts that com-

bine the pen-strokes. We constructed feature vectors by concatenating the first and second

(pooling) layer activations, and used an SVM for classification using these features. For

each labeled training set size, we report the test error averaged over 10 randomly chosen

training sets, as shown in Table 5.2. For the full training set, we obtained 0.8% test error.

Our result is comparable to the state-of-the-art [135].

5.3.4 Unsupervised learning of object parts

We now show that our algorithm can learn hierarchical object-part representations with-

out knowing the position of the objects and the object-parts. Building on the first layer

representation learned from natural images, we trained two additional CDBN layers using

unlabeled images from single Caltech-101 categories. Training was on up to 100 images,

and testing was on different images than the training set. The pooling ratio for the first
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faces cars elephants chairs faces, cars, airplanes, motorbikes

Figure 5.3: Columns 1-4: the second layer bases (top) and the third layer bases (bottom)
learned from specific object categories. Column 5: the second layer bases (top) and the
third layer bases (bottom) learned from a mixture of four object categories (faces, cars,
airplanes, motorbikes).

layer was set as 3. The second layer contained 40 bases, each 10x10, and the third layer

contained 24 bases, each 14x14. The pooling ratio in both cases was 2. We used 0.005 as

the target sparsity level in both the second and third layers. As shown in Figure 5.3, the

second layer learned features that corresponded to object parts, even though the algorithm

was not given any labels that specified the locations of either the objects or their parts. The

third layer learned to combine the second layer’s part representations into more complex,

higher-level features. Our model successfully learned hierarchical object-part represen-

tations of most of the other Caltech-101 categories as well. We note that some of these

categories (such as elephants and chairs) have fairly high intra-class appearance variation,

due to deformable shapes or different viewpoints. Despite this variation, our model still

learns hierarchical, part-based representations fairly robustly.

Higher layers in the CDBN learn features which are not only higher level, but also more

specific to particular object categories. We quantitatively measured the specificity of each

layer by determining how indicative each individual feature is of object categories. (This

setting contrasts with most work in object classification, which focuses on the informative-

ness of the entire feature set, rather than individual features.) More specifically, we consid-

ered three CDBNs trained on faces, motorbikes, and cars, respectively. For each CDBN, we

tested the informativeness of individual features from each layer for distinguishing among

these three categories. For each feature, we computed the area under the precision-recall
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curve (larger means more specific). In detail, for any given image, we computed the layer-

wise activations using our algorithm, partitioned the activation into L× L regions for each

group, and computed the q% highest quantile activation for each region and each group.

If the q% highest quantile activation in region i is γ, we then defined a Bernoulli random

variable Xi,L,q with probability γ of being 1. To measure the informativeness between a

feature and the class label, we computed the mutual information between Xi,L,q and the

class label. We report results using (L, q) values that maximized the average mutual infor-

mation (averaging over i). Then for each feature, by comparing its values over positive and

negative examples, we obtained the precision-recall curve for each classification problem.

As shown in Figure 5.4, the higher-level representations are more selective for the specific

object class.

We further tested if the CDBN can learn hierarchical object-part representations when

trained on images from several object categories (rather than just one). We trained the sec-

ond and third layer representations using unlabeled images randomly selected from four

object categories (cars, faces, motorbikes, and airplanes). As shown in Figure 5.3 (far

right), the second layer learns class-specific and as shared parts, and the third layer learns

more object-specific representations. The training examples were unlabeled, so in a sense,

the third layer implicitly clusters the images by object category. As before, we quanti-

tatively measured the specificity of each layer’s individual features to object categories.

Since the training was completely unsupervised, whereas the AUC-PR statistic requires

knowing which specific object or object parts the learned bases should represent, we com-

puted the conditional entropy instead. Specifically, we computed the quantile features γ for

each layer as previously described, and measured conditional entropy H(class|γ > 0.95).

Informally speaking, conditional entropy measures the entropy of the posterior over class

labels when a feature is active. Since lower conditional entropy corresponds to a more

peaked posterior, it indicates greater specificity. As shown in Figure 5.5, the higher-layer

features have progressively less conditional entropy, suggesting that they activate more se-

lectively to specific object classes.
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Features Faces Motorbikes Cars
First layer 0.39±0.17 0.44±0.21 0.43±0.19

Second layer 0.86±0.13 0.69±0.22 0.72±0.23
Third layer 0.95±0.03 0.81±0.13 0.87±0.15

Figure 5.4: (top) Histogram of the area under the precision-recall curve (AUC-PR) for three
classification problems using class-specific object-part representations. (bottom) Average
AUC-PR for each classification problem.

5.3.5 Hierarchical probabilistic inference

Lee and Mumford (2003) [100] proposed that the human visual cortex can be modeled

conceptually as performing “hierarchical Bayesian inference.” For example, if you observe

a face image with its left half in dark illumination, you can still recognize the face and

further infer the darkened parts by combining the image with your prior knowledge of

faces. In this experiment, we show that our model can tractably perform such (approximate)

hierarchical probabilistic inference in full-sized images. More specifically, we tested the

network’s ability to infer the locations of hidden object parts.

To generate examples for evaluation, we used Caltech-101 face images (distinct from

the ones the network was trained on). For each image, we simulated an occlusion by

zeroing out the left half of the image. We then sampled from the joint posterior over all

the hidden layers by performing Gibbs sampling. Figure 5.6 shows a visualization of these

samples. To ensure that the filling-in required top-down information, we compare with a

“control” condition where only a single upward pass was performed.

In the control (upward-pass only) condition, since there is no evidence from the first
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Figure 5.5: Histogram of conditional entropy for the representation learned from the mix-
ture of four object classes.

layer, the second layer does not respond to the left side. However, with full Gibbs sam-

pling, the bottom-up inputs combine with the context provided by the third layer which has

detected the object. This combined evidence significantly improves the second layer rep-

resentation. Selected examples are shown in Figure 5.6. We note that our method may not

be competitive to state-of-the-art face completion algorithms using much prior knowledge

and heuristics (e.g., using symmetry). However, we find these results promising and view

them as a proof of concept for top-down inference.

5.4 Multi-class image segmentation

In previous sections, we have seen that the CDBN can learn high-level features that are

useful image classification tasks. In this section, we consider object segmentation tasks

and show that the CDBN feature representations can be also useful for object segmentation

tasks.5

Image segmentation is a task where we want to partition an image into multiple seg-

ments (set of pixels). Specifically, we want to classify each pixel in the image into a specific

object class or the background. The multi-class image segmentation can be considered as

an object recognition task that requires more detailed labels (such as pixel-label correspon-

dences).
5This is unpublished joint work with Daphne Koller and Stephen Gould.
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Figure 5.6: Hierarchical probabilistic inference. For each column: (top) input image. (mid-
dle) reconstruction from the second layer units after single bottom-up pass, by projecting
the second layer activations into the image space. (bottom) reconstruction from the second
layer units after 20 iterations of block Gibbs sampling.

Typically, most object segmentation algorithms use low-level features, such as local

gradient, texture, and color. Therefore, if we can obtain higher-level features (e.g., object

parts), these features can be helpful in image segmentation because they are more informa-

tive to class labels. (See [25] for related work using combining high-level and low-level

information.) The main idea here is to first learn class-specific, higher-level representation

such as object parts in the images and then use the learned features in a state-of-the-art

computer vision algorithm. Specifically in our experiments, we use a region-based object

segmentation algorithm by Gould et al. (2009) [57].

It is beyond the scope of this thesis to provide full details of the region-based image

segmentation algorithm. Briefly speaking, the region-based segmentation algorithm incor-

porates interactions between many factors, such as interactions between pixels and regions,

interactions between pixels, and interactions between regions. Given an input image, the

algorithm first over-segments an image into many superpixels (adjacent coherent groups of

pixels), computes features for each superpixel, and then tries to assign class labels for each

pixel. The algorithm initially may make some mistakes; therefore, the algorithm will try

to refine the segmentation via greedy hill-climbing approach based on the energy function.

Specifically, the algorithm iteratively proposes a new move and then accepts the move if it

improves the energy function.

In our experiments, we used the MSRC-21 dataset, a standard benchmark for image
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Method Test segmentation accuracy
Pixel 75.5%
Region 75.8%
Pixel + CDBN 77.7%
Region + CDBN 78.0%

Table 5.3: Test accuracy on the MSRC-21 segmentation task. Table shows mean pixel
accuracy over all semantic classes.

Figure 5.7: Visualization of the learned class-specific second layer bases from MSRC im-
ages (books, bicycles, airplanes, and chairs).

segmentation task. Given the 591 images, we randomly split into 296 training and 295

testing images. For each image, we scaled the image so that its longer side was 180 pix-

els. Then, we trained the second layer CDBN features from the MSRC training images

(on top of the first layer bases learned from natural images), with the same setting as in

Section 5.3.4. Specifically, we trained 40 bases from each of the seven object classes (air-

planes, faces, cars, bicycles, flowers, books, and chairs).6 Figure 5.7 visualizes the learned

object-part representations from MSRC-21 dataset. Note that the MSRC-21 datasets have

significantly more variations than Caltech-101 images, in terms of scale, position, shape,

and appearance. It appears that CDBNs discover meaningful higher-level features even

though no information about bounding boxes of the objects was used for training.

After training the CDBNs, we computed the CDBN features (by rescaling the activa-

tions of the second layers to match the input image size) for each image and used these

features to augment the original feature set of the Gould et al. implementation. For evalu-

ation metric, we used “mean pixel accuracy” which is an average over the pixel-wise seg-

mentation accuracies over all semantic classes. Here, the pixel-wise segmentation accuracy

6This choice was arbitrary since the baseline implementation used in this experiment required saving all
the features into a non-compressed file format and thereby required a huge disk space.
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is defined as (number of correctly classified pixels)/(number of all pixels) for each class.

We measured the test segmentation accuracy in two settings, one with pixel information

only and the other with pixel and region information together, using the region-based seg-

mentation implementation. The summary results are shown in Table 5.3. In both settings,

augmenting the CDBN features achieves about 10% error reduction over a state-of-the-art

algorithm.

5.5 Summary

We presented the convolutional deep belief network, a model for automatically learning

hierarchical representations of images from unlabeled data. Our algorithm scales up to

realistic image sizes, such as 200x200 pixels. We showed that our CDBN can learn the parts

of objects in an unsupervised way. In addition, we showed that our model performs very

well in object recognition and multi-class segmentation tasks. We believe our approach

holds promise as a scalable algorithm for learning hierarchical representations from high-

dimensional, complex data.



Chapter 6

Convolutional DBNs for Audio
Classification

6.1 Introduction

Understanding how to recognize complex, high-dimensional audio data is one of the great-

est challenges of our time. Previous work [148, 122] has revealed that learning a sparse

representation of auditory signals leads to filters that closely correspond to those of neu-

rons in early audio processing in mammals. For example, when sparse coding models were

applied to natural sounds or speech, the learned representations (basis vectors) showed a

striking resemblance to the cochlear filters in the auditory cortex. In related work, Grosse et

al. [61] proposed an efficient sparse coding algorithm for auditory signals and demonstrated

its usefulness in audio classification tasks.

However, the proposed methods have been applied to learn relatively shallow, one-layer

representations. Learning more complex, higher-level representation is still a non-trivial

and challenging problem. Recently, many promising approaches have been proposed to

learn the processing steps of the “second stage and beyond” [65, 136, 16, 83, 92]. However,

to the best of our knowledge, “deep learning” approaches have not been yet extensively

applied to auditory data.

In this chapter, we will apply convolutional deep belief networks to unlabeled auditory

data (such as speech and music) and evaluate the learned feature representations on several

81
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audio classification tasks. In the case of speech data, we will show that the learned features

correspond to phones/phonemes. In addition, our feature representations outperform other

baseline features (spectrogram and MFCC) for multiple audio classification tasks. In par-

ticular, our method compares favorably to other state-of-the-art algorithms for the speaker

identification task. For the phone classification task, MFCC features can be augmented

with our features to improve accuracy. We also show for certain tasks that the second-layer

features produce higher accuracy than the first-layer features, which justifies the use of

deep learning approaches for audio classification. Finally, we show that our features give

better performance in comparison to other baseline features for music classification tasks.

In our experiments, the learned features often performed much better than other baseline

features when there were only a small number of labeled training examples. To the best

of our knowledge, we are the first to apply deep learning algorithms to a range of audio

classification tasks.

6.2 Algorithm

6.2.1 Convolutional deep belief networks for time-series data

We will follow the CRBM formulation of Chapter 5 and adapt it to a one-dimensional

setting. For the purpose of this explanation, we assume that all inputs to the algorithm are

single-channel time-series data with NV frames (an NV -dimensional vector); however, the

formulation can be straightforwardly extended to the case of multiple channels.

Consider the input layer consisting of an nV -dimensional array of binary units. To

construct the hidden layer, consider K nW -dimensional filter weights WK (also referred

to as “bases” throughout this chapter). The hidden layer consists of K “groups” of nH-

dimensional arrays (where nH , nV − nW + 1) with units in group k sharing the weights

W k. There is also a shared bias bk for each group, as well as a shared bias c for the visible

units. The energy function can then be defined as:

E(v,h) = −
K∑
k=1

NH∑
j=1

NW∑
r=1

hkjW
k
r vj+r−1 −

K∑
k=1

bk

NH∑
j=1

hkj − c
NV∑
i=1

vi. (6.1)
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Similarly, the energy function of CRBM with real-valued visible units can be defined as:

E(v,h) =
1

2

NV∑
i

v2
i −

K∑
k=1

NH∑
j=1

NW∑
r=1

hkjW
k
r vj+r−1 −

K∑
k=1

bk

NH∑
j=1

hkj − c
NV∑
i=1

vi. (6.2)

The joint and conditional probability distributions are defined as follows:

P (v,h) =
1

Z
exp(−E(v,h)) (6.3)

P (hkj = 1|v) = sigmoid((W̃ k ∗v v)j + bk) (6.4)

P (vi = 1|h) = sigmoid(
∑
k

(W k ∗f hk)i + c) (for binary visible units) (6.5)

P (vi|h) = Normal(
∑
k

(W k ∗f hk)i + c, 1) (for real visible units), (6.6)

where ∗v is a “valid” convolution, ∗f is a “full” convolution,1 and W̃ k
j , W k

NW−j+1. Since

all units in one layer are conditionally independent given the other layer, inference in the

network can be efficiently performed using block Gibbs sampling. Further, as described in

the previous chapter, we use CRBMs with probabilistic max-pooling as building blocks for

convolutional deep belief networks.

To train the convolutional RBMs, we use contrastive divergence to compute the approx-

imate gradient. Since a typical CRBM is highly overcomplete, a sparsity penalty term is

added to the log-likelihood objective, as in the previous chapters. Specifically, the training

objective can be written as:

minimizeW,b,c Llikelihood(W, b, c) + Lsparsity(W, b, c), (6.7)

where Llikelihood is a negative log-likelihood that measures how well the CRBM approxi-

mates the input data distribution, and Lsparsity is a penalty term that constrains the hidden

units to having sparse average activations. This sparsity regularization can be viewed as

limiting the “capacity” of the network, and it often results in more easily interpretable

feature representations. Once the parameters for all the layers are trained, we stack the

1Given an m-dimensional vector and an n-dimensional kernel (where m > n), valid convolution gives a
(m− n+ 1)-dimensional vector, and full convolution gives a (m+ n− 1)-dimensional vector.
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CRBMs to form a convolutional deep belief network. For inference, we use feed-forward

approximation.

6.2.2 Application to audio data

To apply CDBNs to audio data, we first convert time-domain signals into spectrograms.

Since the dimensionality of the spectrograms is large (e.g., 160 channels), we apply PCA-

whitening to the spectrograms and create lower-dimensional representations. Specifically,

given a matrix X ∈ Rd×m, where d is the original dimensionality of the single-frame

spectrograms, and m is the number of frames. Here, X is constructed by concatenating the

spectrograms over randomly selected training examples. Then, we compute the eigenvalue

decomposition of X>X = EDE>, where E is an orthogonal matrix, and D is a (non-

negative) diagonal matrix. We define submatrices Ê and D̂ by taking columns and digonal

entries that correspond to the nc largest eigenvalues. Based on this eigen-decomposition,

we compute the whitened components for each spectrogram frame x ∈ Rd as follows:

xwhitened = (D̂ + εI)−1/2Ê>x, (6.8)

where ε is a small constant to prevent over-amplification of the PCA components with

small eigenvalues. (We fixed ε = 3 in all of our experiments.) After whitening, we use

the whitened spectrogram as input for the CDBN. Thus, the data we feed into the CDBN

consists of nc channels of one-dimensional vectors of length NV , where nc is the number

of PCA components in our representation. Similarly, the first-layer bases are comprised of

nc channels of one-dimensional filters of length NW .

6.3 Unsupervised feature learning

6.3.1 Training on unlabeled TIMIT data

We trained the first and second-layer CDBN representations using a large, unlabeled speech

dataset. First, we extracted the spectrogram from each utterance of the TIMIT training
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data [51]. The spectrogram had a 20 ms window size with 10 ms overlaps. The spec-

trogram was further processed using PCA-whitening (with 80 components) to reduce the

dimensionality. Then, we trained 300 first-layer bases with a filter length (nW ) of 6 and

a max-pooling ratio (local neighborhood size) of 3. We further trained 300 second-layer

bases using the max-pooled first-layer activations as input, again with a filter length of 6

and a max-pooling ratio of 3. We used target sparsity 0.05 in the first layer and 0.02 in the

second layer.

6.3.2 Visualization

In this section, we illustrate what the network “learns” through visualization. We visualize

the first-layer bases by multiplying the inverse of the PCA-whitening on each first-layer

basis (Figure 6.1). Each second-layer basis is visualized as a weighted linear combination

of the first-layer bases.

high freq.

 low freq.

Figure 6.1: Visualization of randomly selected first-layer CDBN bases trained using the
TIMIT data. Each column represents a “temporal receptive field” of a first-layer basis in
the spectrogram space. The frequency channels are ordered from the lowest frequency
(bottom) to the highest frequency (top). All figures in this chapter are best viewed in color.

Phonemes and the CDBN features

In Figure 6.2, we show how our bases relate to phonemes by comparing visualizations of

each phoneme with the bases that are most activated by that phoneme.

For each phoneme, we show five spectrograms of sound clips of that phoneme (top five

columns in each phoneme group), and the five first-layer bases with the highest average
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Example phones ("ah") Example phones ("oy") Example phones ("el") Example phones ("s")

First layer bases First layer bases First layer bases First layer bases

Figure 6.2: Visualization of the four different phonemes and their corresponding first-layer
CDBN bases. For each phoneme: (top) the spectrograms of the five randomly selected
phones; (bottom) five first-layer bases with the highest average activations on the given
phoneme.

activations on the given phoneme (bottom five columns in each phoneme group). Many

first-layer bases closely match the shapes of phonemes. There are prominent horizontal

bands in the lower frequencies of the first-layer bases that respond most to vowels (e.g.,

“ah” and “oy”). The bases that respond most to fricatives (e.g., “s”) typically take the form

of widely distributed areas of energy in the high frequencies of the spectrogram. Both of

these patterns reflect the structure of the corresponding phoneme spectrograms.

A closer inspection of the bases provides slight evidence that the first-layer bases also

capture more fine-grained details. For example, the first and third “oy” bases reflect the

upward-slanting pattern in the phoneme spectrograms. The top “el” bases mirror the inten-

sity patterns of the corresponding phoneme spectrograms: a high intensity region appears

in the lowest frequencies, and another region of less intensity appears a bit higher up.

Speaker gender information and the CDBN features

In Figure 6.3, we show an analysis of two-layer CDBN feature representations with respect

to the gender classification task (Section 6.4.2). Note that the network was trained on

unlabeled data; therefore, no information about the speaker’s gender was given during
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training.

Example phones (female) First layer bases ("female") Second layer bases ("female")

Example phones (male) First layer bases ("male") Second layer bases ("male")

Figure 6.3: (Left) five spectrogram samples of “ae” phoneme from female (top)/male (bot-
tom) speakers. (Middle) Visualization of the five first-layer bases that most differentially
activate for female/male speakers. (Right) Visualization of the five second-layer bases that
most differentially activate for female/male speakers.

To compare with the CDBN features, we show randomly selected spectrograms of fe-

male (top left five columns) and male (bottom left five columns) pronunciations of the “ae”

phoneme from the TIMIT dataset. Spectrograms for the female pronunciations are quali-

tatively distinguishable by a finer horizontal banding pattern in low frequencies, whereas

male pronunciations have more blurred patterns. This gender difference in the vowel pro-

nunciation patterns is typical across the TIMIT data.

We also show the bases that are most biased to activate on either male or female speech.

The bases that are most active on female speech encode the horizontal band pattern that is

prominent in the spectrograms of female pronunciations. On the other hand, the male-

biased bases have more blurred patterns, which again visually matches the corresponding

spectrograms.
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6.4 Application to speech recognition tasks

In this section, we demonstrate that the CDBN feature representations learned from the un-

labeled speech corpus can be useful for multiple speech recognition tasks, such as speaker

identification, gender classification, and phone classification. In most of our experiments,

we followed the self-taught learning framework [131], since one of our main interests was

to evaluate the different feature representations given a small number of labeled training

examples (as often assumed in self-taught learning or semi-supervised learning settings).

More specifically, we trained the CDBN on unlabeled TIMIT data (as described in Sec-

tion 6.3.1); then we used the CDBN features for classification on labeled training/test data2

that were randomly selected from the TIMIT corpus. However, in the case of phone clas-

sification, we followed the standard protocol (e.g., [37]) instead of the self-taught learning

framework to evaluate our algorithm against other methods.

6.4.1 Speaker identification

We evaluated the usefulness of the learned CDBN representations for the speaker identi-

fication task. The subset of the TIMIT corpus that we used for speaker identification has

168 speakers and 10 utterances (sentences) per speaker, resulting in a total of 1680 utter-

ances. We performed 168-way classification on this set. For each number of utterances

per speaker, we randomly selected training utterances and testing utterances and measured

the classification accuracy; we report the results averaged over 10 random trials. That

said, there were some exceptions; for the case of eight training utterances, we followed the

same procedure as Reynolds (1995) [138]. More specifically, we used eight training utter-

ances (2 sa sentences, 3 si sentences and first 3 sx sentences); the two testing utterances

were the remaining 2 sx sentences. We used cross validation to select hyperparameters

for classification, except in the case of 1 utterance per speaker, where we used a randomly

selected validation sentence per speaker. To construct training and test data for the clas-

sification task, we extracted a spectrogram from each utterance in the TIMIT corpus. We

2There are two disjoint TIMIT data sets (one with 462 speakers and the other with 168 speakers). We
drew unlabeled data from the larger of the two for unsupervised feature learning, and we drew labeled data
from the other data set to create our training and test set for the classification tasks.
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denote this spectrogram representation as the “RAW” features. We computed the first and

second-layer CDBN features using the spectrogram as input. We also computed MFCC

features, widely-used standard features for generic speech recognition tasks. As a result,

we obtained spectrogram/MFCC/CDBN representations for each utterance with multiple

(typically, several hundred) frames. In our experiments, we used simple summary statistics

for each channel (such as the average, max, or standard deviation) over all the frames. We

evaluated the features using standard supervised classifiers, such as SVM, GDA, and KNN.

The choices of summary statistics and hyperparameters for the classifiers were done using

cross-validation. We report the average classification accuracy (over 10 random trials) with

a varying number of training examples.

Table 6.1 shows the average classification accuracy for each feature representation.

Throughout this chapter, we use “CDBN L.1” to denote CDBN layer 1 features, “CDBN

L.2” to denote CDBN layer 2 features, and “CDBN L.1+L.2” to denote the concatenation

of layer 1 and layer 2 features. The results show that the first and second CDBN representa-

tions both outperform baseline features (RAW and MFCC). The numbers compare MFCC

and CDBN features with as many of the same factors (such as preprocessing and classi-

fication algorithms) as possible. Furthermore, to make a fair comparison between CDBN

features and MFCC, we used the best performing implementation3 among several stan-

dard implementations for MFCC. Our results suggest that without special preprocessing or

postprocessing (besides the summary statistics needed to reduce the number of features),

the CDBN features outperform MFCC features, especially in a setting with a very limited

number of labeled examples.

We further experimented to determine if the CDBN features can achieve competitive

performance compared to more sophisticated, state-of-the-art methods. For each feature

representation, we used the classifier that achieved the highest performance. For example,

we evaluated four possible combinations, in other words, either MFCC or CDBN for fea-

tures and either Gaussian mixture or SVM for the classifier. As a result, MFCC performed

the best with Gaussian mixtures, and CDBN features performed the best with SVM. We

report the best results for each feature type and describe the corresponding algorithm (for

3We used Dan Ellis’ implementation available at: http://labrosa.ee.columbia.edu/
matlab/rastamat.
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#training utterances per speaker RAW MFCC CDBN L.1 CDBN L.2 CDBN L.1+L.2
1 46.7% 54.4% 74.5% 62.8% 72.8%
2 43.5% 69.9% 76.7% 66.2% 76.7%
3 67.9% 76.5% 91.3% 84.3% 91.8%
5 80.6% 82.6% 93.7% 89.6% 93.8%
8 90.4% 92.0% 97.9% 95.2% 97.0%

Table 6.1: Test classification accuracy for speaker identification using summary statistics

each feature type) in detail.

For the MFCC features, we replicated Reynolds (1995)’s method [138]. Specifically,

MFCC features (with multiple frames) were computed for each utterance; then a Gaussian

mixture model was trained for each speaker (treating each individual MFCC frame as an in-

put example to the GMM. For a given test utterance, a prediction was made by determining

the GMM model that had the highest test log-likelihood. For the CDBN features, we used a

SVM-based ensemble method, treating each single-frame CDBN features as an individual

example. Specifically, we first trained a multi-class linear SVM for these individual frames.

For testing, we computed the SVM prediction score (probability output) for each speaker,

and then aggregated (i.e., summed over) prediction ouputs from all the frames. Overall, the

highest scoring speaker was selected for the final prediction.

As shown in Table 6.2, the CDBN features consistently outperformed MFCC features

when the number of training examples was small. We also combined both methods by

taking a linear combination of the two classifier outputs (scores for individual speakers

before taking the final classification prediction from each algorithm). We fixed the constant

for the linear combination across all the numbers of training utterances, and it was selected

using cross validation. The resulting combined classifier performed the best, achieving

100% accuracy in the case of 8 training utterances per speaker.

6.4.2 Speaker gender classification

We also evaluated the same CDBN features which were learned using the unlabeled TIMIT

data on the gender classification task. We report the classification accuracy for various
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#training utterances per speaker MFCC ([138]’s method) CDBN MFCC ([138]) + CDBN
1 40.2% 90.0% 90.7%
2 87.9% 97.9% 98.7%
3 95.9% 98.7% 99.2%
5 99.2% 99.2% 99.6%
8 99.7% 99.7% 100.0%

Table 6.2: Test classification accuracy for speaker identification using all frames

#training utterances per gender RAW MFCC CDBN L.1 CDBN L.2 CDBN L.1+L.2
1 68.4% 58.5% 78.5% 85.8% 83.6%
2 76.7% 78.7% 86.0% 92.5% 92.3%
3 79.5% 84.1% 88.9% 94.2% 94.2%
5 84.4% 86.9% 93.1% 95.8% 95.6%
7 89.2% 89.0% 94.2% 96.6% 96.5%

10 91.3% 89.8% 94.7% 96.7% 96.6%

Table 6.3: Test accuracy for gender classification problem

quantities of training examples (utterances) per gender. For each number of training ex-

amples, we randomly sampled training examples and 200 testing examples; we report the

test classification accuracy averaged over 20 trials. As in the speaker identification task, we

used simple summary statistics (such as the average, max, or standard deviation) to aggre-

gate features over all the frames, and we evaluated the features using standard supervised

classifiers. As shown in Table 6.3, both the first and second CDBN features outperformed

the baseline features, especially when the number of training examples was small. In ad-

dition, the second-layer CDBN features consistently performed better than the first-layer

CDBN features. This suggests that the second-layer representation learned more invariant

features that are relevant for speaker gender classification, which justifies the use of “deep”

architectures.

6.4.3 Phone classification

Finally, we evaluated our learned representation on phone classification tasks. In this ex-

periment, we treated each phone segment as an individual example. For MFCC features,
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#training utterances RAW MFCC ([37]’s method) CDBN L.1 MFCC+CDBN L.1 ([37])
100 36.9% 66.6% 53.7% 67.2%
200 37.8% 70.3% 56.7% 71.0%
500 38.7% 74.1% 59.7% 75.1%
1000 39.0% 76.3% 61.6% 77.1%
2000 39.2% 78.4% 63.1% 79.2%
3696 39.4% 79.6% 64.4% 80.3%

Table 6.4: Test accuracy for phone classification problem

we replicated Clarkson and Moreno’s method [37]. Specifically, we divided each phone

segment into sub-regions and then aggregated (by averaging) within these regions to com-

pute features for an SVM with RBM kernels. For the spectrogram and CDBN features,

we simply averaged over the frames (corresponding to a given phone segment) to com-

pute features for an SVM. Then, following the standard protocol (as described in [37]), we

report the 39 way phone classification accuracy on the test data (TIMIT core test set) for

various numbers of training sentences. For each number of training examples, we report

the average classification accuracy over 5 random trials. The summary results are shown in

Table 6.4. Here, “MFCC+CDBN L.1 ([37])” denotes Clarkson and Moreno [37]’s SVM-

based method using the concatenation of MFCC and the CDBN features as input. In this

experiment, the first-layer CDBN features performed better than spectrogram features, but

they did not outperform the MFCC features. However, by combining MFCC features and

CDBN features, we consistently achieved about 0.7% accuracy improvement over all the

numbers of training utterances. In the realm of phone classification, where significant re-

search effort is often needed to achieve even improvements well under one percent, this is

a significant improvement [147, 151, 129, 171].

This suggests that the first-layer CDBN features learned informative features for phone

classification tasks in an unsupervised way. In contrast to the gender classification task, the

second-layer CDBN features did not offer improvement over the first-layer CDBN features.

This result is not unexpected considering that the time-scale of most phonemes roughly

corresponds to the time-scale of the first-layer CDBN features.
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Train examples RAW MFCC CDBN L.1 CDBN L.2 CDBN L.1+L.2
1 51.6% 54.0% 66.1% 62.5% 64.3%
2 57.0% 62.1% 69.7% 67.9% 69.5%
3 59.7% 65.3% 70.0% 66.7% 69.5%
5 65.8% 68.3% 73.1% 69.2% 72.7%

Table 6.5: Test accuracy for 5-way music genre classification

6.5 Application to music classification tasks

In this section, we assess the applicability of CDBN features to various music classification

tasks.

6.5.1 Music genre classification

For the task of music genre classification, we trained the first and second-layer CDBN rep-

resentations on an unlabeled collection of music data.4 First, we computed the spectrogram

(20 ms window size with 10 ms overlaps) representation for individual songs. The spectro-

gram was PCA-whitened (with 80 components) and then fed into the CDBN as input data.

(See Section 6.2.2 for details of whitening.) We trained 300 first-layer bases with a filter

length of 10 and a max-pooling ratio of 3. In addition, we trained 300 second-layer bases

with a filter length of 10 and a max-pooling ratio of 3. As in the speech data, we used target

sparse 0.05 in the first layer and 0.02 in the second layer.

We evaluated the learned CDBN representation for the 5-way genre classification tasks.

The training and test songs for the classification tasks were randomly sampled from 5

genres (classical, electric, jazz, pop, and rock) and did not overlap with the unlabeled data.

We randomly sampled 3-second segments from each song and treated each segment as an

individual training or testing example. We report the classification accuracy for various

numbers of training examples. For each number of training examples, we averaged over

20 random trials. The results are shown in Table 6.5. In this task, the first-layer CDBN

features showed the best overall performance.

4Available from http://ismir2004.ismir.net/ISMIR_Contest.html.
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6.5.2 Music artist classification

Furthermore, we evaluated whether the CDBN features are useful in identifying individ-

ual artists. In our experiments, we found that artist identification task was more difficult

than the speaker identification task because the local sound patterns can be highly variable

even for the same artist. Following the same procedure as in Section 6.5.1, we trained

the first and second-layer CDBN representations from an unlabeled collection of classical

music data. Some representative bases are shown in Figure 6.4. Then we evaluated the

learned CDBN representation for 4-way artist identification tasks. (The four artists were

Edward Martin, Vito Paternoster, Jacob Heringman, and Trevor Pinnock.) The disjoint sets

of training and test songs for the classification tasks were randomly sampled from the songs

of four artists. The unlabeled data and the labeled data did not include the same artists. We

randomly sampled 3-second segments from each song and treated each segment as an in-

dividual example. We report the classification accuracy for various quantities of training

examples. For each number of training examples, we averaged over 20 random trials.

The results are shown in Table 6.6. The results show that (a) both the first and second-layer

CDBN features performed better than the baseline features, and (b) either using the second-

layer features only or combining the first and the second-layer features together yielded the

best results. This suggests that the second-layer CDBN representation might have captured

somewhat useful, higher-level features than the first-layer CDBN representation.

high freq.

 low freq.

Figure 6.4: Visualization of randomly selected first-layer CDBN bases trained on classical
music data.
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Train examples RAW MFCC CDBN L.1 CDBN L.2 CDBN L.1+L.2
1 56.0% 63.7% 67.6% 67.7% 69.2%
2 69.4% 66.1% 76.1% 74.2% 76.3%
3 73.9% 67.9% 78.0% 75.8% 78.7%
5 79.4% 71.6% 80.9% 81.9% 81.4%

Table 6.6: Test accuracy for 4-way artist identification

6.6 Discussion and summary

Modern speech datasets are much larger than the TIMIT dataset. While the challenge of

larger datasets often lies in considering harder tasks, our objective in using the TIMIT data

was to restrict the amount of labeled data from which our algorithm had to learn. It remains

an interesting problem to apply deep learning to larger datasets and more challenging tasks.

In this chapter, we applied convolutional deep belief networks to audio data and evalu-

ated on various audio classification tasks. By leveraging a large amount of unlabeled data,

our learned features often equaled or surpassed MFCC features, which are hand-tailored to

audio data. Even when our features did not outperform MFCC, we achieved higher classi-

fication accuracy by combining both. Also, our results showed that a single CDBN feature

representation can achieve high performance on multiple audio recognition tasks. We be-

lieve that our approach hold promise in automatically learning deep feature hierarchies for

audio data.



Chapter 7

Conclusion

7.1 Summary of contributions

Efficient sparse coding algorithms

We formulated sparse coding problem as a well-defined objective, proposed efficient al-

gorithms, and showed how it can be applied to machine learning tasks. Specifically, we

presented efficient sparse coding algorithms that are based on iteratively solving two con-

vex optimization problems: an L1-regularized least squares problem and an L2-constrained

least squares problem. We then proposed novel algorithms to solve both of these optimiza-

tion problems. Our algorithms result in a significant speedup for sparse coding, allowing us

to learn larger sparse codes than possible with previously described algorithms. We applied

these algorithms to natural images and demonstrate that the inferred sparse codes exhibit

end-stopping and non-classical receptive field surround suppression and, therefore, may

provide a partial explanation for these two phenomena in V1 neurons. Further, in related

work on self-taught learning, we showed that sparse coding can learn succinct, higher-level

feature representations (from unlabeled data) that can improve supervised classification

tasks.
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Extension of sparse coding to a broad range of input data

In addition, we developed generalized sparse coding algorithms that extend the range of

data types that sparse coding can be applied. Specifically, drawing on ideas from general-

ized linear models (GLMs), we presented a generalization of sparse coding to learning with

data drawn from any exponential family distribution (such as Bernoulli, Poisson, etc.). This

gives a method that is arguably much better suited to model other data types than Gaussian.

We presented an algorithm for solving the L1-regularized optimization problem defined

by this model, and showed that it is highly efficient when the optimal solution is sparse.

We also showed that the new model results in significantly improved self-taught learning

performance when applied to text classification and to robotic perception.

Sparsity regularization for deep belief networks

We developed a sparse variant of the deep belief network model. This is the first work

that incorporated sparsity into deep belief networks. Specifically, we developed a form of

regularization that encourages sparsity in RBMs and DBNs. This regularization produces

similar sparse feature representations that can be obtained from sparse coding, but with an

additional advantage that posterior inference is very fast. When trained on natural images,

this model learns local, oriented edge-filters in the first layer. More interestingly, the sec-

ond layer captures a variety of both colinear (or contour) features as well as corners and

junctions that appeared to give responses that were similar to biological V2 neurons along

several dimensions. This result suggests that sparse deep belief networks can capture inter-

esting high-order features from natural image statistics, and we believe that the proposed

method holds promise for modeling higher-order features from various data types. Further-

more, the sparsity regularization can be applied to not only to RBMs and DBNs, but also

to autoencoders and neural networks, often improving discriminative power of the learned

features in many tasks.
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Scaling up for deep belief networks

We developed convolutional deep belief networks, an algorithm that scales up deep belief

networks. Our method is the first algorithm that scales up the unsupervised deep learn-

ing algorithms to enable learning directly from realistic-sized images (e.g., 200x200 pix-

els). This model is translation-invariant and supports full probabilistic inference. We also

presented probabilistic max-pooling, a novel technique which shrinks the representations

of higher layers in a probabilistically sound way. Our experiments show that the algo-

rithm learns useful high-level visual features, such as object parts, from unlabeled images

of objects and natural scenes. We demonstrate excellent performance on several visual

recognition tasks, such as object recognition and multi-class segmentation. The experi-

mental results also show that our model can perform approximate posterior inference over

realistic-sized images.

We applied convolutional deep belief networks for audio recognition and demonstrated

excellent performance in speech and music classification tasks. Interestingly, in the case

of speech data, we found that the learned features corresponded to phonemes. The learned

feature representations showed comparable or superior performance to the MFCC features

for multiple speech and music classification tasks. Specifically, the learned features lead

to state-of-the-art performance in speaker identification. We also showed that the learned

features can be combined with MFCC features to improve upon a state-of-the-art phone

classification result.

7.2 Future work and open questions

Learning more invariant feature representations

In this thesis, we showed that incorporating invariance (e.g. translation invariance in con-

volutional DBNs) allows to learn useful high-level features and achieve good performance

in multiple recognition tasks. In fact, our related work [55] show that convolutional DBN

shows modest invariance to other types of transformations as well (such as 2D-rotations

and 3D-rotations).

It is highly desirable for a good feature representation to be invariant. Invariance for
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a feature mapping means that: given optimal input for that feature mapping, the feature

values are close to the maximal value when the input data is slightly transformed from the

optimal input (i.e., the feature values are high in the “vicinity” of optimal inputs), and yet

at the same time the feature mapping is also selective to the optimal input (i.e., the feature

values are not always high). (See [55] for a more quantitative definition.) For example, let’s

consider a hypothetical binary classification problem, and we assume that the positive ex-

amples are similar to each other (i.e., they are “connected” through some transformations).

If we have a perfectly invariant feature that takes the value of 1 for all positive examples

and 0 for all negative examples, then we would have solved this classification task by using

this single feature! Another example will be visual object recognition, where we want the

feature representation selective to class labels, yet be invariant to other confounding factors,

such as illumination, viewpoints, translation, scale, and rotation. These examples suggest

that making the feature representation invariant will enable machine algorithms to learn

from a smaller amount of training data and to achieve good generalization performance.

One question is whether we want to model these invariances explicitly or not. One

obvious way of achieving more invariance is to explicitly encode these invariances. For

example, in the case of images, we may want to make the feature representation to be in-

variant to scale and rotation. However, designing feature learning algorithms that explicitly

achieve such invariances is not trivial and requires domain-expert knowledge. Further, the

invariances in one domain will not be relevant to other domains.

Therefore, an ideal approach will be to learn invariance from data. One promising

way is learning invariance from a large amount of unlabeled data, by making the learned

feature representations invariant to various transformations (such as from video or similar

input pairs). Several promising directions are exploiting temporal coherence or using to-

pographic representations. However, there are many challenges in order for these methods

to be applicable to real-world problems (e.g., object detection and scene understanding)

because real-world data (e.g., images available from the internet) is very complex and

highly-variable. Therefore, achieving more invariant feature representations will be one

of the fundamental questions that we need to continuously address.
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Multi-modal learning

Another challenges is developing a unified, multi-modal learning framework that uses mul-

tiple input domains (e.g., visual inputs and audio inputs together) for learning and infer-

ence. For example, when it is ambiguous to recognize phonemes in the speech data, it can

be helpful to recognize lip movement and infer about the corresponding phonemes. As an-

other example, when it is difficult to identify a person’s face by just using images, it can be

useful to also examine the person’s speech data. In addition to advancing computer vision

and audio scene understanding, this multi-modal learning approach has particular relevance

to understanding robotic sensor inputs that do not correspond to the natural human senses,

such as thermo-infrared imaging, hyperspectral imaging, sonar, and radar. For these types

of input, human intuition is particularly weak, which makes hand-engineering features dif-

ficult. It will be much easier to apply a unified learning framework rather than manually

engineering features for each sensor type. This multi-modal learning framework will also

make it easier to use unlabeled data because the learning algorithm can more robustly infer

about the underlying labels.

Large-scale learning

Suppose that we want to learn high-level features from millions of unlabeled images, to-

gether with a small number of labeled images. How can we discover hierarchical represen-

tations for all object categories including shared representations? This is probably one of

the most challenging tasks that can be envisioned in the context of feature learning. Un-

fortunately, we do not have yet a solution to this problem. For example, there are several

limitations of the current convolutional DBN model: (1) it becomes computationally ex-

pensive to learn more than several hundred filters in each layer; (2) the algorithm lacks

other forms of invariance (such as rotational and scale invariance), and thereby the algo-

rithm works less well for deformable shaped objects. Possible ways of addressing these

issues will be (1) using massively parallel computation (such as GPUs) for convolutional

DBNs to speed up the learning algorithms (e.g., [132]), (2) learning more invariance from

data, and (3) exploiting labeled data (together with unlabeled data) by incorporating the

semi-supervised learning framework for convolutional DBNs.
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7.3 Closing remarks

This thesis has explored the problems of learning features from unlabeled data. As one

solution for this problem, I explored algorithms that exploit sparsity, hierarchy, and convo-

lutional structure, while demonstrating good performance in many AI problems. Given that

the quality of features significantly affects the performance of machine learning systems,

feature engineering is one of the most fundamental issues in machine learning. I believe

that algorithms that can automatically learn good feature representations from unlabeled

data will potentially revolutionize machine learning and AI. Such general purpose algo-

rithms will allow machine learning systems to be much more easily applied to problems

in vision, audio understanding, text understanding, robotic sensor understanding, and other

problems, and to achieve superior performance without the manual feature engineering

while using significantly less labeled data.



Bibliography

[1] A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Training hierarchical feed-forward

visual recognition models using transfer learning from pseudo-tasks. In Proceedings

of the European Conference on Computer Vision, 2008.
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