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Abstract

Cognitive science research, much of it supported by the Office of Naval Research, is
bringing about a scientific revolution in our understanding of the human operator.  It is
yielding computational theories of human cognition and perceptual/motor activity that
provide precise quantitative predictions of important variables such as the times required
to complete tasks or to learn them in training.  Although the scope of coverage of these
theories is limited and basic research aimed at expanding them is on-going, they already
have much to offer in aiding the design of ship systems that will optimize the combined
effectiveness of human operators and the systems they will be using.  This presentation
discusses 1) what can be done now, 2) tools under development that will facilitate the use
of these theories, reducing the labor involved, and 3) a long-term vision for what might
be achieved in this area.
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The Navy is a high technology enterprise that makes extreme demands on the

human operators who operate its systems, both in performing their jobs and in learning to

perform them.  Given current goals to reduce manning levels on the Navy’s ships, these

demands are becoming still more extreme.  For that reason, it is important that future ship

systems be as well designed as possible to minimize the demands made on the human

operator.  As a reminder of the problem we face, Figure 1 is a picture of an actual

workstation aboard an AEGIS ship.

Figure 1:  Workstation on an AEGIS ship.

Computational Theories of Human Cognitive Architecture

The goal of this paper is to explain how ONR’s long range basic research

investments in computational theories of human cognitive architecture are now beginning
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to pay off by providing a sound scientific basis for operator centered design of ship

systems.  The term cognitive architecture is an analogy to the notion of computer

architecture and refers to the (relatively) fixed features of the human information

processing system, the basic characteristics of the typical human operator of Navy

systems.  These theories can be viewed as special kinds of computer “languages” in

which human skills are written.  They are special languages that embody the constraints

on what people can do, reflecting what we have learned in 100 years of psychological

research.  ONR has been involved in supporting several different variations on this

theoretical theme.  The different theories are differentiated primarily by the particular

problem areas or types of human performance that the researchers have chosen to focus

on.  All are efforts at theory unification, bringing together numerous factoids from past

psychological literature in a way that makes it possible to determine their joint

implications for practical applications.

The leading cognitive architectural theory at this time is that of John R. Anderson

of Carnegie-Mellon University, known as ACT-R1 (Anderson, 1993; act-r.psy.cmu.edu).

Anderson’s research and theorizing has emphasized human problem solving and the

learning of complex cognitive skills, with applications to artificially intelligent training

systems.  For example, a tutor of high school algebra based on his work is now

extensively used in schools throughout the country, including the DoD Dependent School

System.  A substantial national and international research community is now working in

Anderson’s theoretical framework modeling many different kinds of human cognitive

performance, including some applications to human computer interaction.  Two other

researchers at Carnegie-Mellon University, Carpenter and Just,  developed a cognitive
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architecture known as CAPS (Just, Carpenter & Varma, 1999) that emphasizes modeling

the capacity limitations on human information processing, as well as individual

differences in those capacities.  More recently, their research program has moved into

modeling of the associated brain activity as well, which is revealed by functional

magnetic resonance imaging (fMRI) during task performance.  The imaging of brain

activity provides an independent, triangulating source of evidence that strengthens these

cognitive theories.  David Meyer and David Kieras at the University of Michigan have a

cognitive architectural theory known as EPIC that has emphasized developing an

explanation for the complex results of experiments in which people are asked to do more

than one task at a time.  EPIC was also the first theory of this type to integrate models of

human perception and motor control, and Kieras has been particularly interested in

applications to human computer interaction.   The first major accomplishment of this

research effort was to show that the phenomena of interference between multiple tasks

that had been taken as evidence for limitations on the human’s central executive

processing capacity could actually be accounted for by competition for where the eyes

are looking, where the hands are moving, and what strategies people adopt to coordinate

the tasks (Kieras & Meyer, 1997).  People can do more than we have thought if task

inputs and outputs are designed to avoid these conflicts, and they adopt strategies that

take advantage of these possibilities. Gentner and  Forbus of Northwestern University

have a theory known as MAC/FAC (for “many are called but few are chosen”) that

emphasizes analogical reasoning and the retrieval of past experience from memory

(Forbus, Gentner & Law, 1995).  This theory has strong potential for applications in case-

based instruction and decision aiding.  In addition, ONR has supported a number of
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researchers modeling human cognition in Allen Newell’s cognitive architecture, SOAR,

the development of which was supported primarily by DARPA.  Notably, Bonnie John of

Carnegie-Mellon has used SOAR to study how humans interact with computer displays.

However, SOAR is really an AI programming system inspired by human psychology, and

is unrealistic as a model of human psychology in several important ways.  John is now

working in the ACT-R theoretical framework.

All of these cognitive architectural theories can be seen as part of a larger

movement toward a unified theory of cognition, perception and action (Newell, 1991).

Psychology has been seen as a soft science, although there have been many “hard” bits,

scientific laws of small scope, for a long time.  In the development of these theories, we

are seeing a scientific revolution in progress that is making it possible to make precise

quantitative predictions about human performance in quite complex situations.

The EPIC Cognitive Architecture

Figure 2 is a cartoon representing the structure of the EPIC cognitive architecture

relating to a task environment.  It contains separate perceptual, cognitive and motor

systems operating in parallel.  In fact, there are 3 motor systems shown as operating in

parallel:  the oculomotor processor moving the eyes, the vocal motor processor

generating speech and a manual motor processor controlling the two hands.  These

features reflect research evidence of independence and interference.  The two hands do
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not operate independently of each other.  Note that the model has no feet.  It is still a

Figure 2:  Structure of the EPIC Cognitive Architecture

work in progress, and no tasks have yet been modeled that involve the use of the feet.

Similarly there are separate auditory, tactile, and visual processors.  The model of visual

processing is quite complex, reflecting what we know about what kinds of information

can be picked up at what positions in the visual field of the eye, and the fact that eye

movements may be required to access task information.   Task strategies are represented

in EPIC, and in the other cognitive architectures mentioned above, as production rules.

Production rules have an “if-then” structure.   If the necessary conditions are present,
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either in the external world, such as a display, or in the internal mental contents of what is

known as working memory, these rules execute.  The actions of these rules either control

motor actions or modify the contents of working memory.  These rules can be viewed as

continuously looking for the appropriate conditions, so a computational model built from

production rules is not like an ordinary computer program with a fixed sequence of

operations, but a program which can respond in very dynamic ways to the current

situation.  The central executive cognitive processor of EPIC has a working memory of

immediately available information as well as a production rule interpreter.  It is supported

by long term memory for factual (declarative) information and by a memory for

production rules that have been learned.  The cognitive processor allows for parallel

processing, overlapping the processing of different aspects of the task or tasks in time.

Addressing the Problems Posed by Novel Systems

Having these cognitive architecture “languages” enables us to address important

military applications in the area of human computer interaction that are beyond the

capability of past HCI development methods.   These are the challenge of designing

entirely new systems – as opposed to refining or improving existing systems, and the

challenge of developing training for systems that do not yet exist.  Ideally one would like

to have training available at the same time as the system is completed.  If you can write

the program for an operator skill in a cognitive architectural language, you can perform

evaluative analyses of designs before prototypes are even built.   You can also estimate

the operator’s cognitive workload, essentially as the density of cognitive operations going

on at a moment of time (Lebiere, 2001).  If it gets too high at any point, errors are likely

to occur, and redesign of the task is called for.  Based on this skill program, you can also
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develop an artificially intelligent tutor to train the operator, without having to study

experienced human operators who do not yet exist.   If the skill can be written in the

architectural language, then the human operator should be able to learn it, although the

resulting skill might be slightly different from what would have been developed

naturally, without the training.  A key part of the approach is writing the skill descriptions

by using a modeling approach that represents the full scope of the skill in its general

form, rather than just the activity required in a specific scenario.   This makes the

complete skill description available for training purposes, but it also means that the model

can be used to predict performance in a wide variety of different specific situations.  This

makes it easy to evaluate the system design comprehensively.

Relating to Drew’s paper in this same workshop, these languages could also be

used to program intelligent agents, although this has not been the practice to date.

(SOAR, originally designed as a programming approach for artificial intelligence rather

than as a veridical model of human cognition, is of course the exception.)  However,

some of the more advanced artificially intelligent training systems do incorporate task

experts written in such modeling languages, and there have been experiments in which

such models have served as artificial team members interacting with a trainee.  Such

models developed for training purposes might also be considered a step towards

automation of the functions performed by human team members.  The standards that

must be met by such artificial experts for training system use are not as high as for

turning decisive responsibility over to artificial experts.  In a training scenario, “truth” is

known, and one can test the system against the training scenarios to ensure that its

behavior is reasonable.  There might be some significant advantages to using cognitive
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architectural languages for writing intelligent agents or expert systems.  One of the

earliest lessons learned from work on expert systems for medical diagnosis is that their

lines of reasoning must be comprehensible to humans if the systems are to gain

acceptance.

An Engineering Model Approach to Ensuring System Usability

Today it is possible to use model predictions instead of user testing for a large

fraction of the system design effort (Kieras, 1988, 1997, 1999, 2003).  In order to do this,

one must describe the interface design in detail and build a model of the user doing the

task.   The model can then be used to predict the time required to execute the task(s), the

time required to learn the task(s) – based on the number and complexity of production

rules that must be learned, and to estimate cognitive workload during task performance.

Based on these predictions, one can revise the interface design or chose from among

several proposed alternative designs.  One gets usability results before building a

prototype of the system.  Thus, the engineering model approach makes it economically

feasible to go through more design iterations with successive refinements.  It summarizes

the interface as seen from the operator’s point of view.  We are not yet able to model all

aspects of the operator’s interaction with the system, however, so empirical user testing

remains an important final check on the analysis, as well as insurance that mistakes have

not been made in building the model.

Why This is Worth Doing – The Tomahawk Story

A long time ago, Glenn Osga of SPAWAR Systems Center did a GOMS analysis

of a proposed new launch system for the Tomahawk missile.  GOMS stand for Goals,

Operators, Methods (sequences of operators), and Selection rules for choosing methods.
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GOMS (Card, Moran & Newell, 1983) is the earliest form of the type of analysis and user

modeling being advocated here, and includes a range of specific techniques, ranging from

hand or spreadsheet calculations (such as that done by Osga) to full simulations of the

human-computer interaction (John & Kieras, 1996 a&b).  On the basis of the analysis,

Osga predicted that the launch process would take too much time (task execution time) to

meet the requirement.  The customer did not like the message3.   The study was locked

deep in a safe, and the system was built as designed.  Years later, the system failed its

acceptance test.  This story was quite accidentally revealed in a moment of drama at

workshop with diverse participants brought together by the DD-21 program.  Osga was

speaking and mentioned having once done this analysis.  In the audience was the officer

assigned to investigate why the launch system had failed its acceptance test.  Not

surprisingly, the final report on his investigation recommended that GOMS analyses be

done on all proposed new systems.   Undoubtedly, it cost a great deal of money to ignore

that original prediction and built the system, only to have it fail the acceptance test. .

Today, fortunately, Osga is again working on the Tomahawk system interface.

An Instructive Example of Cognitive Modeling:  The NRL Automation Deficit Task

Many of the ideas about how to use cognitive modeling for advance design of

usable systems were developed through work modeling human performance on a

simplified laboratory task developed at the Naval Research Lab by James Ballas to study

the phenomenon of “automation deficit.”   In the DARPA Pilot’s Associate program,

automation deficit emerged as a significant problem.  When some function has been

handled by an automated system for a period of time and then the human pilot is asked to

take it over, the human pilot’s performance is initially inferior to what would ordinarily
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be expected.  This is automation deficit.  Ballas developed a simplified analog of a fighter

cockpit task to study this phenomenon.  It combines target classification and target

tracking, and it did succeed in demonstrating automation deficit when the target

classification task was automated.  The task interface is illustrated in Figure 3.

Figure 3:  Interface of the NRL task.

The Process of Building a Cognitive Model

There are three major elements that go into the building of a cognitive model of

task performance.  One is the (relative) constant of the human cognitive architecture.

Secondly, one must identify the mandatory requirements of the task, what the operator

absolutely must do to perform the task.   The third, and most difficult element, is

specifying the strategy that the operator will use to meet those requirements.  Usually

there are several, or even many, options for the operator’s task strategy.   In modeling

human performance in the NRL task, Kieras and Meyer found that matching the speed of
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actual human performance in the task required a great deal of overlapped parallel

processing.  These have not been typical assumptions about human cognitive processing,

and they were not the first hypotheses considered, by any means.  Ultimately the

researchers realized that human operators also changed strategies depending upon task

workload.  When the workload was light, there was less overlapping and parallel

processing.  Not surprisingly, humans do not choose to perform at maximal possible

speed if the task does not require it.

The cognitive modeling did provide a very simple, comprehensible explanation

for the automation deficit phenomenon.  When people are responsible for performing

both components of the NRL task and are executing the tracking task, they nevertheless

notice the appearance of targets on the target screen and form a mental queue of the

targets in the order and location of their appearance.  So, when they switch to execution

of the target classification task, they know what to process, in what order.  However,

when the target classification task has been automated, they do not attend to the

appearance of the targets and do not form that mental queue.  So, when they are asked to

resume responsibility for the target classification, people must catch up on the situation,

perhaps doing things out of order, leading to a period of relatively poor performance.

Many lessons were learned from the modeling of performance in the NRL task,

but for system design, the critical question is what to do if you don’t have human

performance data to model.

The Bracketing Approach to the Problem of Unknown Strategies

Kieras and Meyer (2000) proposed a bracketing approach to the problem of

unknown strategies that the human operator will use to perform a task in a proposed
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future system design.  One can determine the fastest possible strategy, given the

constraints of the human perceptual/cognitive/motor architecture:  often eyes or even the

head must move to see vital information (Marshall, 2002; Marshall, Morrison, Allred,

Gillikin, & McAllister, 1997; Morrison, Marshall, Kelly & Moore, 1997).  These

movements take substantial, approximately known amounts of time.  A hand cannot type

and move a mouse or trackball at the same time, so these actions cannot go on in parallel,

and so on.   One can also determine the slowest reasonable strategy that meets the

mandatory requirements of the task but does not involve much overlapping or parallel

processing.  It can be assumed that actual operator performance will lie in between these

two extremes.  As Figure 4 shows, the bracketing approach did work for the NRL task

data.   In this case, as in a number of others that have been modeled, actual human

performance seemed to lie somewhat closer to the fastest possible strategy.  True

prediction also worked for another version of the NRL task with a touch screen interface,

where the human performance data had not been previously modeled (Kieras, Meyer, &

Ballas, 2001).
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Figure 4:  Actual human performance times in the NRL task (filled squares) are

bracketed by the fastest possible times (small open squares) and the slowest reasonable

times (large open squares).

If the fastest possible strategy isn’t fast enough to meet the requirements, then you

have a serious design problem calling for serious redesign efforts.  This appears to have

been the situation with the Tomahawk launch system.  In most cases, furthermore, you do

not want to design so that only the fastest possible strategy will suffice.  This could get

you into the territory where the relatively small individual differences in processing speed

could become critical.  Furthermore, people usually will not choose to work at maximum

possible speed, especially if they must perform the task over long periods of time.  The

ideal system would have functionality and an interface that are good enough to permit
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even the slowest reasonable strategy to be fast enough.  This would give the operator

considerable reserve capacity to deal with unexpected problems or high stress.

At this point, only the full-fledged cognitive architectural models such as EPIC

can easily represent the bracketing strategies.  This is a bit of a problem because simpler

approaches like GOMS are currently easier to work with.  Both types of approach,

however, permit exploration of system redesign with much less effort than traditional

usability evaluation methods.

The Payoffs of Detailed Analysis and Modeling

We have been emphasizing the capability and value of quantitative prediction of

execution times, cognitive workload and learning times.   The Tomahawk story

highlighted the importance of predicting task execution times, and both execution times

and learning times often have important economic implications.   However, the

qualitative evaluation that detailed GOMS analysis or cognitive modeling enables is at

least as important.  This can pick up the problems that bother us with most of the

computer systems we all must use and that can lead to catastrophic performance failures

in the worst cases.  Given a GOMS analysis, one can ask these questions:

1) Is the system complete?  Is there a method available for every goal that the user

will pursue?

2) Is the system natural?  Will the goals make sense to a new user?

3) Is the system cleanly designed?  Is each method in the system actually useful,

with a clear rule for selecting it to use at the right time?  (Most readers will be

familiar with the tendency for Microsoft products to have many ways of doing the

same thing.  Having just one good way makes a system easier to learn.)
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4) Is the system consistent?  Do similar goals have similar or the same method for

achieving them?

5) Is the system efficient?  Do frequent goals have short, fast methods?   You don’t

want to have the most frequently used functions buried in the fourth level of a

menu, for example.

6) Is there a good method for error recovery?  Error is frequent, and system

designers often overlook the need to provide for operators to recover from error,

such as “undoing” the last action.  All too often, users find themselves in

completely unknown and bewildering territory when they make a small error.

Returning to the subject of quantitative prediction, we will give an example of what

was actually achieved in the redesign of a commercial CAD system for biomechanical

safety analysis of factory jobs, using GOMS analysis.   The GOMS analyses predicted

that the redesign would achieve a 40% reduction in the time required to execute a set of

typical tasks and a 46% reduction in the time to learn the system.  Actual human data

showed a 39% reduction in execution time and a 46% reduction in learning time (Gong &

Kieras, 1994).  Obviously these large improvements have economic significance.  Such

accurate predictions have occurred in other applications of GOMS analysis.

Often, unfortunately, it seems that those who are paying for the design of systems do

not want to invest the resources required for a detailed human factors analysis.  They

often believe that user interface design should be easy, cheap and non-technical.  They

hope that somebody else, somewhere, will invest a small amount of money in a

psychological research project and guidelines will be produced that will take care of all
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these problems for all time.  This is not the case.  First, when confronted with the myriad

design decisions involved in developing complex software, traditional guidelines for

usable design have proved to be vague and conflicting.  A more rigorous design

discipline is needed.  Second, like the design of a bridge or design of the ship itself,

design of the systems that the operators will use requires getting the details right, and this

requires a significant design effort using the most advanced science available to address

the problem.  Nobody would suggest that a fire-control radar system could be

successfully designed in a few days by non-technical people following informal

guidelines based on sketchy or obsolete theory, but that is often how interface design is

approached.  Reasonable funding must be allocated to operator centered design of the

ship’s systems if the ship is to achieve its performance goals.   For its part, the R&D

community is working on developing tools that will reduce the costs of doing this work

(eg. Byrne et al., 1994; John et al., 2004).

A Vision for the Future of Operator Center Design of Systems

Today cognitive modeling approaches enable us to compare alternative designs

and predict the combined performance of the total system that combines the human

operator with the non-human components.  However, this capability is not being used by

the Department of Defense on any significant scale2.  In the future, we hope that the

predictive evaluation of systems will become routine.   Tools are now being developed

that will significantly reduce the labor involved in doing these model-based evaluations.

For example, Williams’ CAT-HCI (Williams, 2000) is a program that aids and records

GOMS style task analysis, automatically computing execution times and estimated
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learning times.  It incorporates the information from the psychological research literature

about the time required for various component actions and cognitive processes.  Kieras’

GLEAN tool for GOMS analysis (Kieras, 1999) uses a simplified cognitive architecture

to allow powerful human performance simulation models, including models of teams of

operators (Kieras & Santoro, 2004; Santoro, Kieras, & Pharmer, in press), to be

constructed much more easily (though with lower fidelity) than with the full-fledged

cognitive architectures such as EPIC or ACT-R.   Most recently, some experimental tools

developed by Bonnie John and her colleagues (John, Prevas, Salvucci, & Koedinger,

2004) enabled extremely fast model development for certain simple cases.   The next few

years are likely to see rapid development and improvement of such modeling tools.

Continuing basic research on the computational theories of human cognitive

architecture will be bringing us more strongly validated and more complete models of

human perceptual/cognitive/motor architecture.   For example, today we cannot model

the complex three-dimensional reasoning and problem solving such as that involved in

the task of a submarine attack officer, although we can model his interaction with the

system that provides information supporting this task.   Two younger researchers are now

working on extending the ACT-R cognitive architecture to handle such spatial thinking

and reasoning.  Today we are best at modeling the relatively simple forms of perception

and motor action that are typically involved in interacting with computer displays and

computer input devices, as opposed to the full complexity of perception and action in the

natural world.  Fortunately, however, that capability covers a great deal of the territory of

interest in the design of military systems.  A few are also beginning to work on

representing how stress, fatigue, and other such variables of a physiological character
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affect human performance within the framework of cognitive architectural theories.  This

is obviously important for the design of military systems, whose operators may not be

functioning at their best.  We believe that individual differences in cognitive capacities

can probably be represented as variations in some of the key parameters in these

cognitive architectural theories, such as the size of working memory.  This remains to be

seen through future research.  Although individual differences are always of high interest

to people, what we almost all have in common as humans is most important to system

design.  The differences are small variations on the common theme.

In the hands of clever experimental psychologists who know how to design the

critical revealing experiments, relatively new and rapidly advancing brain imaging

technology is beginning to provide triangulating evidence for the cognitive architectural

theories that have been based on other kinds of evidence.  For example, recent research

under a large Multidisciplinary University Research Initiative grant to Carnegie Mellon

and the University of Pittsburgh has provided evidence identifying the “executive control

system of the human brain” that is active when people are learning new skills or dealing

with unfamiliar problems.   When skills are highly practiced, “overlearned”, they become

much less subject to disruption and the associated activity in these brain areas is greatly

reduced.   See Figure 5, from a poster presentation of recent results from this research.  In

the near future, we can expect to be learning much more about how activity in these

regions of the brain is related to perceived cognitive workload and performance in

multitasking situations.  Similarly, such imaging allows us to see whether different tasks,

or different components of a complex task, are calling upon the same processing

resources in the brain and are therefore likely to conflict with each other, or whether they
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are calling upon different processing resources and are likely to proceed successfully in

parallel.

Figure 5:  Recent results from Cognitive, Biological & Computational Analyses of

Automaticity in Complex Cognition: MURI-ONR Grant N000140110677 PI  Marcel Just

(Carnegie Mellon University), Cleotilde Gonzalez (Carnegie Mellon University) &

Walter Schneider (University of Pittsburgh) .  The same reductions in control system

activity were found in a simulated AEGIS task as in simpler laboratory tasks.

Background:  Schneider, W. & Chein, J. M.  (2003)

For the specific problem of cognitive engineering of operator centered systems,

one gleaming prospect for the future is the possibility of automating the design process.

One can view the human cognitive architecture as a very complex function that converts

prospective system designs into performance figures of merit that interest us.  Perhaps we

could invert that complex function and automatically generate an optimal design.  This

would certainly be difficult.  It might be impossible.  But Barnsley (1994) did succeed in

inverting fractals and yielding impressive image compression techniques.  Maybe this

vision of the future is possible too.

Novice Activation Skilled Activation

Posterior
Parietal

Dorsolateral
Prefrontal

ACC

Thalamus

Posterior
Parietal

Dorsolateral
Prefrontal

ACC

Thalamus

Training Effect on Brain Activation
Training can reduce 85% of brain
activation of executive control areas
as automaticity develops indicating
greater capacity for time sharing and
executive control.

Brain Executive
Control Network

Radius 126NM

Ball Tab G 0229, 0253
          Range 341.2

BRG 222

Track

Brain Activation
AEGIS Radar Control Task

Control of AEGIS Air
Intercept Activates
Executive Control
Network

Dorsolater
alPrefront
al

AC
CPosterio

rParieta
l

Posterio
rParieta
l



21

For those who would like to pursue these applications, in addition to the

references cited in this paper, there are training opportunities.  An ACT-R Summer

School is held annually at Carnegie Mellon University and there are also training

materials that can be downloaded for self study:  http://act-

r.psy.cmu.edu/workshops/workshop-2004/summerschool_2004_announce.htm.

Kieras has proposed a workshop for the International Conference on Cognitive Modeling

that will take place July 29-August 1, 2004, in Pittsburgh:

http://simon.lrdc.pitt.edu/~iccm/.   Similar workshops are likely to be presented at the

annual CHI conference.  ONR plans to sponsor a virtual workshop by Kieras sometime in

the next fiscal year that would be available over the Internet.  Persons wanting to be

notified of that workshop when it happens should send an email message to Susan

Chipman, chipmas@onr.navy.mil.

Notes

Note:  Most of the specific ideas about operator centered design in this paper are from the

work of David Kieras, although this particular presentation of them was primarily

prepared and written by Susan Chipman.   Susan Chipman manages the Cognitive

Science program at the Office of Naval Research, which has supported much of that

work.

1. The names of the cognitive architectures are better thought of as names than as

acronyms.  The translation of ACT has changed over time.  One translation is

“adaptive control of thought.”  SOAR was once an acronym but is now a name.
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EPIC stands for “Executive-Process/Interactive Control.”  CAPS or 3CAPS is

“Capacity-Constrained Collaborative Activation–based Production System.”

2. There is some significant use of MicroSaint modeling that reflects an older

generation of cognitive theory without the same inherent predictive capability that

models based on theories of cognitive architecture have.

3. Osga now believes that the negative reaction was largely due to the fact that the

system design process had already gone too far by the time the analysis was done;

change at that point would have been quite costly.  It is important to do these

analyses from the very beginning of a project.
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