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Abstract—Querying the content of images and video requires
expensive content extraction methods. Modern extraction tech-
niques are based on deep convolutional neural networks (CNNs)
and can classify objects within images with astounding accuracy.
Unfortunately, these methods are slow: processing a single image
can take about 10 milliseconds on modern GPU-based hardware.
As massive video libraries become ubiquitous, running a content-
based query over millions of video frames is prohibitive.

One promising approach to reduce the runtime cost of queries
of visual content is to use a hierarchical model, such as a cascade,
where simple cases are handled by an inexpensive classifier.
Prior work has sought to design cascades that optimize the
computational cost of inference by, for example, using smaller
CNNs. However, we observe that there are critical factors besides
the inference time that dramatically impact the overall query
time. Notably, by treating the physical representation of the input
image as part of our query optimization—that is, by including
image transforms, such as resolution scaling or color-depth
reduction, within the cascade—we can optimize data handling
costs and enable drastically more efficient classifier cascades.

In this paper, we propose TAHOMA, which generates and
evaluates many potential classifier cascades that jointly optimize
the CNN architecture and input data representation. Our ex-
periments on a subset of ImageNet show that TAHOMA’s input
transformations speed up cascades by up to 35 times. We also
find up to a 98x speedup over the ResNet50 classifier with no loss
in accuracy, and a 280x speedup if some accuracy is sacrificed.

I. INTRODUCTION

Recent developments in computer vision have made feasible
a long-term dream for the database community: a visual
analytics database, which stores image data and answers
user questions about its contents. For example, video frames
from a city’s traffic cameras could be used to count cars per
minute. Photos uploaded to photo storage web sites could be
automatically sorted and tagged based on their contents. The
sheer volume and diversity of data captured by cameras opens
up myriad analytical query possibilities, if the content hidden
behind opaque pixel values can be extracted at scale.

Deep convolutional neural networks (CNNs)—the family
of methods used in modern computer vision systems—have
enabled huge strides in image understanding in the last
few years through tasks like image classification and object
detection. For example, the classification error rate in the
annual ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [40] dropped from 25% to 18% in 2012 when a deep
CNN was first used [28]. Recent results have lowered the error
rate to 2% [20], rivaling or exceeding human performance.

Unfortunately, deep networks pose a considerable compu-
tational challenge when deployed in an analytical database
system: a model’s inference for a single image can require a
lengthy series of large tensor multiplications. For example,
YOLOv2, an object detection system designed for speed,
requires 8.52 billion operations per single 416x416 pixel
image, processing about 67 images per second on a modern
GPU [38]. Since GPU hardware is far more expensive than
most image sensors, any system requiring a dedicated GPU
to process a single video stream will never process more than
a fraction of the data produced in real-world, multi-camera
applications. Simply, to query huge amounts of image data,
we need drastically lower processing costs.

Processing queries over a corpus of image data fits a more
general loop-and-test pattern that is common to many machine
learning tasks: the processor loops over the data, executing an
expensive operator on each element to find those satisfying the
task’s constraints. In this case, content is extracted from each
image by the expensive inference stage of a deep network to
determine if the image satisfies a binary predicate specified in a
user’s query. While a loop-and-test process can be shortened by
processing fewer items overall—using simple sampling or more
sophisticated input selection [4]—we focus here on speeding
up the test phase by reducing the per-image inference cost.

Recent work has reduced inference times for these types of
deep learning systems (e.g., [17], [26]). However, we note that
all of the visual data system optimizations to date suffer from
a critical defect: they concentrate only on computation and
ignore the inevitable data-handling costs, such as loading and
transformation. Any query optimization method that focuses
only on reducing computational load cannot exploit complex
data-centric tradeoffs that weigh the amount of image data
available, the classifier accuracy, and data handling costs.

As an example, consider an optimizer choosing between
two image classification models (M1 and M2). M1 accepts
a 3-channel, full-color, 224x224 image as input while M2

accepts a 1-channel, grayscale, 224x224 image. M1 has fewer
convolutional layers and, despite the larger input, requires
fewer tensor operations than M2, so its inference is faster. M2

uses less rich data than M1, but is nonetheless able to obtain
comparable accuracy because of its additional convolutional
layers. An optimizer that considers only the inference speed
would choose M1. However, a data system using M2 might be
faster, as its inputs load in one-third the time of those of M1.



Such data-handling tradeoffs are important because visual
analytics systems are likely to be architecturally diverse. Some
systems may store multiple versions of the same image
data (high-res vs. low-res). Others may employ different
storage systems (local server vs. cloud vs. in-camera). In
some architectures—say, one in which connectivity conditions
change, or one in which GPUs are only intermittently available—
the highest-payoff query plan may change by the moment.
Ignoring data-centric tradeoffs can sacrifices substantial per-
formance. In this work, we propose a framework for handling
data-centric tradeoffs when optimizing visual analytical queries.
Technical challenge — We aim to optimize visual analytics
queries that might be run in a range of diverse architectures
and deployment settings. In this work, we ignore many
standard relational query optimization issues, such as query plan
rewriting or indexing. We focus exclusively on designing and
choosing the CNN-based operator that implements an image-
sensitive relational predicate. These operators can be chosen in
a manner that trades system throughput against classification
accuracy. Making that tradeoff of runtime vs. data quality is an
application-specific decision we leave to the user. This paper
offers a framework for identifying the best possible operator
implementation, subject to a user’s desired tradeoff.
Our approach — One method to speed up an expensive-
but-accurate CNN is to replace it with cascades of fast, high
precision (but low recall) image classifiers [26], [6], [43]. This
is effective but focuses exclusively on computational efficiency.
We start similarly, training a large number of specialized
candidate binary-classification CNN models by varying not
only CNN hyperparameters (as in prior work [26]), but also the
representations of the inputs; for example, we build an n-layer
CNN for large full-color inputs, another for small full-color
inputs, more for grayscale inputs, and so on.

From these core candidate models, we then construct a mas-
sive number of classifier cascades. All of these cascades have
different initially unknown runtime and accuracy characteristics.
Our optimization method efficiently evaluates the cascades’
accuracy using held-out data, and evaluates their runtime
characteristics for the system’s current deployment scenario.
Finally, it identifies the Pareto-optimal cascades that satisfy
the user’s application-specific speed and accuracy constraints.
Organization — After formally describing our problem in
Section IV we discuss the following contributions:
• We propose a method for identifying high-quality image

predicate implementations, by exploring CNN hyperpa-
rameters and varying input data representation (Section V).

• We show the dramatic impact on runtime when a system is
running in different deployment scenarios and is aware of
the deployment-specific data handling costs (Section VI).

• We prototype our methods in a system called TAHOMA
and show that it provides up to a 35x speedup to classifier
cascades through input data transformations. TAHOMA
also achieves up to a 98x speedup over the ResNet50
image classifier with no accuracy loss (Section VII).

We follow with a discussion of related work in Section VIII.
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Fig. 1: A multi-level classifier cascade. If the first classifier’s
output is uncertain, the input is classified by the second, etc.
If reached, the final classifier’s output is accepted as the label.

II. BACKGROUND

In this section, we will briefly give some background on
cascade classifiers, since these methods are core building blocks
of our work. Numerous systems have used cascades to speed
up classifier inference. One of the first was the Viola-Jones face
detector [45], which used a series of classifiers based on simple
image features to detect faces in subsections of photographs; if
any classifier had high confidence in its result, the result was
immediately accepted, avoiding the use of further classifiers.

Figure 1 illustrates the general cascade process: an image is
input into a classifier, whose output is accepted if it has high
confidence. Otherwise, a second classifier is used, where again,
a low-confidence result will send the input to a third, and so
on. If the final level of the cascade is reached, its output is
accepted. Ideally, the initial levels of a cascade are fast with
high precision, though they may suffer from low recall. In face
detection, for example, if most images have no human faces
at all, the first classifier may quickly eliminate most cases.
Only the few cases containing a face will be processed by the
remainder of the cascade, at correspondingly higher cost.

Recently, cascades have been used to accelerate the relatively
slow inference speeds of deep neural networks [26], [6], [43].
Our system takes these techniques further by exploiting the
representations of the inputs and finding optimal cascades for
a user’s deployment scenario.

III. DESIGN CONSIDERATIONS

Several key questions are important to TAHOMA’s design.
We touch on these issues below.
Issue 1: Object detection vs. image classification — In
general terms, an object detector (e.g., YOLOv2 [38]) finds
the location of particular object classes within an image, while
an image classifier (e.g., ResNet50 [16]) identifies the overall
contents of an image as one of a particular set of classes.
When implementing binary contains-object predicates
in a visual database application, the extra architectural and com-
putational complexity of object detectors is unnecessary. Our
cascades therefore use small and fast CNN image classifiers.
Applications requiring object location within images, however,
could build cascades from small and fast object detectors.
Issue 2: Online vs. offline classification — If a user’s
corpus is small or slow-growing enough to allow for offline
classification of the entire dataset with available resources,
this paper’s techniques are unnecessary. Also, our techniques
may be unneeded if query predicates are fixed and new ones



are unlikely to be introduced. In such cases, the user could
materialize the classification results for each image on ingest
and store them in a standard database for future queries.

However, there are many exciting real-world applications
where assumptions of a small or slowly growing dataset or
stable query predicates are unrealistic. Consider, for example,
a website for photo storage: Flickr has reported that days of
heavy usage can see 25 million photo uploads [1]. Facebook
had 350 million daily photo uploads as of 2013 [10]. Video
applications can be even more extreme. A single self-driving
car can have over a dozen cameras, each gathering 30 frames
per second for many hours on a daily basis; a fleet of such
cars can generate a huge amount of data.

Further, many applications require retrospective exploration
and analysis, where the query predicates may not be known in
advance. For example, a self-driving car engineer may wish to
find historical examples of a new failure case, requiring the
training of a new model to be run over an existing corpus. Or
consider a police investigation reviewing thousands of hours of
surveillance camera footage to find a local delivery van with a
unique logo: a trained object detector would be ideal, but such
a specific model is unlikely to already exist. In general, it is
unlikely that all possible query predicates can be enumerated
in advance for a visual analytics application.

Issue 3: Training costs — A deep CNN image classifier,
such as ResNet50 [16], can take days to fully train, due to
the model’s architectural complexity and the huge training
set needed for such a complex model. Such a burden is
incompatible with our use case, since requiring this amount of
time to install a new predicate in our system is unreasonable.
Thankfully, our simple binary predicates typically do not require
huge classifiers. The majority of our cascades consist solely
of small, specialized classifiers, which train in just minutes.

Further, in cases where a deep network may be needed,
training it from scratch is likely to be unnecessary. It is common
practice to fine-tune pre-trained deep networks to a particular
task [24]. Generally, when fine tuning, most of the deep network
is frozen and only the last several layers are modified and
retrained to a new task, taking advantage of already-learned
features from a similar problem domain. In our experiments,
we fine tuned ResNet50 for binary classification tasks using a
modern GPU in only 2 to 4 hours.

Issue 4: Deployment scenarios — A visual analytics system
may be deployed in a variety of scenarios, requiring accounting
for differing data handling costs, in addition to classifier
inference costs. Consider the following example scenarios,
also later used in our experiments:

• ARCHIVE – In this situation, a large archival corpus of
historical image data is stored on local drives. Each image
must first be loaded from the drive and then transformed
into an appropriate input format for the classifier.

• ONGOING – Here, video is continually ingested from its
source into a datacenter-based query system, where it
is transformed into appropriate representations that are
stored on SSD for later queries. Because this data is

TABLE I: Frequently used notation.

Notation Definition

I = (I1, . . . , In) Image data corpus
Ti = (ti1, . . . , tin) Content tuple for image Ii
K Image classifier, s.t. K(Ii) = tij
M = (M1, . . . ,Mm) Basic classification models
A = (A1, . . . , Ana) Model architecture specifications
F = (F1, . . . , Fnf ) Input transformation functions
C = (M1, . . . ,Mn) Cascade of n models belonging to M
C = (C1, . . . , Ck) Collection of cascades for a binary query
plow, phigh Cascade model decision thresholds

transformed as it is acquired, only the cost of loading the
representations from disk are considered at query time.

• CAMERA – If compute nodes are at the edge of the
network (e.g., connected to surveillance cameras), the
images can be directly provided to the classifiers. Only
the image transformation costs must be considered, since
transfer costs from camera to memory are negligible.

We show in Section VII-A that scenario-awareness while
evaluating of the accuracy and speed of classification systems
can lead to a large practical increase in a system’s throughput.

IV. DEFINITIONS AND NOTATION

This section formalizes the particular image classification
problem addressed here. Table I lists frequently used notation.

Content-based Queries — A query system that operates over
images can perform queries over two main types of information:
image metadata (e.g., GPS or acceleration information that
may accompany frames from dashcams) and content extracted
from images themselves (e.g., the image contains a bicycle).
Metadata queries are easily handled by existing methods, so
we focus this work on processing content-based queries.

Definition 1 (Content-based query): Given a corpus of
image data I containing images I1, . . . , In, the tuples Ti =
(ti1, . . . , tim) represent the visual contents for each image Ii,
where each element tij in this tuple represents a content object
present in image Ii. A content-based query is constructed of
predicates that can be evaluated with the elements of Ti.

We restrict content-based queries to binary queries, which
can be combined into a full query over all TI tuples.

Definition 2 (Binary query): Given an image’s content tuple
Ti, a binary query involves a single contains-object
predicate evaluated with a single tuple element, tij . A binary
query thus asks if image Ii contains object tij .

Despite this restriction, our envisioned system will support
complicated queries that can be rewritten as a combinations
of metadata and binary query predicates. For example, the
query “Find images from Detroit containing a bicycle” can be
decomposed into a metadata predicate (location = ‘Detroit’)
and a binary query predicate (contains_object(bicycle)).
Our focus is on choosing the best classifiers to implement a
given contains_object predicate. While further query op-
timization could be done considering multiple binary predicates
in concert, we leave that for future work and here concentrate
on optimizing single predicates.



Image Classification — The content tuples are generally
not available upon image acquisition and must be extracted
from the image. In this work, we focus on extraction via
image classification. In particular, we focus on queries where
classification has not been performed in advance, so that
classification must be performed as part of query execution.

Definition 3 (Image classification): Given a corpus of image
data I, for each image Ii ∈ I, we wish to generate a binary
label L using a classifier K, such that Li = K(Ii). The label
Li corresponds to a member tij of content tuple Ti.

The output of a classifier model can be thought of as a
virtual column in a relation describing the content objects
in images. For example, processing the query predicate
contains_object(bicycle) would populate the bicycle
column of this relation with the output of Kbicycle. The classifier
K could be generated by a range of methods, including basic
models like logistic regression or deep CNNs, or may be a
collection of basic models, such as classifier cascades.

Definition 4 (Basic model): A basic model M implements a
classification method that accepts image I as input and outputs
a binary classification result. Our system generates a large set
of such CNN-based models M = (M1, ...,Mm).

Two factors parameterize a model M : model architecture
specification A and input transformation function F .

Definition 5 (Model architecture specification): The internal
architecture of a model M is specified by A. For the CNNs
used in our system, Am describes network hyperparameters,
such as the number and size of layers. A = (A1, . . . , Ana

)
gives all potential architectural options for models in M.

Definition 6 (Input transformations): Before the classification
of an image I by model M , the raw image data is processed
by an image transformation function F , such that input image
I is transformed into output image I ′. Such a function may
perform one or more operations such as resizing, normalizing,
or reducing color depth. The set F = (F1, . . . , Fnf

) gives all
functions available to pre-process image data for models in M.

We use the cross product of F and A as the model design
space, resulting, in practice, in several hundred individual
models in M for each binary query. A goal of this work is to
determine which models are most suitable for a user’s accuracy
and runtime constraints and current deployment scenario.
Classifier cascades — Classification models can be aggregated
into collections or ensembles to improve either accuracy or
speed. One such method designed to improve classification
speed is the classifier cascade [45].

Definition 7 (Classifier cascade): A classifier cascade C =
(M1, . . . ,Mn) is a list of n basic models with probabilistically
interpretable output. The models are run in series: image Ii
is classified by M1, and if the output is between two given
decision thresholds, plow and phigh, it is uncertain. If so, Ii is
then classified by M2. Otherwise, the cascade is stopped and
M1’s output is accepted as the label of Ii. This continues to
the final classifier Mn, whose output is always accepted.

Given a set of classification models M, we can construct
a large set of cascades C = (C1, . . . , Ck) with up to n levels
each, to be evaluated in terms of accuracy and throughput.
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Fig. 2: TAHOMA architecture

Model evaluation — The quality of classifier—either a model
M or a cascade K—is given by its accuracy and its throughput.
Accuracy gives the fraction of labels produced by M that are
correct. Throughput is the number of classifications per unit
time and measures how fast the model’s relation is populated.

For a set of classifiers, we can find a subset that is Pareto-
optimal over these two criteria. That is, there is a subset that
is non-dominated in terms of accuracy and throughput, from
which users can select a classifier to meet application needs.
Problem statement — With the preceding definitions, we can
formally describe the problem addressed in this paper thusly:

For an image corpus I and a set of binary classification
models M = (M1, . . . ,Mm) parameterized by architectural
specifications A = (A1, . . . , Ana

) and input transformation
functions F = (F1, . . . , Fnf

), find the set of classifier cascades
C = (C1, . . . , Ck) constructed from models in in M that are
Pareto-optimal in terms of accuracy and throughput over I.

V. CASCADE METHODOLOGY

In this section, we give an overview of system architecture
and discuss the details of our models and cascades.

A. System Architecture

Figure 2 sketches out TAHOMA’s architecture. TAHOMA
has two main modes of operation: system initialization and
query execution. During system initialization, model repository
is prepared for each binary predicate, which requires a set
of labeled data. This dataset is small compared to what is
generally used to train deep CNNs: per binary predicate,
TAHOMA requires 3,000–4,000 labeled images, with equal
numbers of positive and negative examples. The labeled data is
split into three sets for training, configuration, and evaluation.
Training set Itrain, transformation functions F, and architecture
specifications A are provided as input to the model trainer.

For a given binary predicate, a set of models M (each
implementing the contains_object operator) is trained
and provided to the cost profiler and to the cascade builder.
The cost profiler measures the throughput of each model in
the current deployment scenario (see Section VI). The cascade
builder constructs TAHOMA’s cascade set C, using all possible
combinations of size n of the models in M and the configuration
set Iconfig (see Section V-C). Using the evaluation set Ieval,
the cascade evaluator measures each cascade’s accuracy and
throughput (see Section V-E). With this, the system determines
the set of Pareto-optimal cascades for use at query time.



Similar to how approximate query systems like BlinkDB [3]
and VerdictDB [34] allow users to specify approximation
constraints as part of their queries, a TAHOMA user provides
their constraints on accuracy (Uacc) and throughput (Uthru) at
query time (in the form of the highest tolerable loss in either of
those parameters). The cascade selector chooses which of the
Pareto-optimal cascades best suits the user’s desired tradeoff.
For example, the user may wish to maximize throughput as
long as the resulting cascade does not suffer more than a 5%
loss in accuracy over the most accurate cascade available. The
user would set Uacc = 0.05 and provide no constraint for Uthru.
The system would select the cascade from the set of Pareto-
optimal cascades has an accuracy closest to (but not below)
95% of that of the most accurate cascade. Because this is a
Pareto-optimal choice, there will be no faster cascades at that
(or a higher) accuracy level. The selected cascade processes
the data in the corpus, extracting the notional relation for the
binary predicate in the user’s query.

Integration considerations — Because our goal was to
explore the optimization methods discussed in this paper,
we implemented TAHOMA as a standalone query system.
However, we believe future deployments of TAHOMA’s ideas
will likely be embodied in RDBMS software. The execution
of a contains_object operator is analogous to that of a
user-defined function (UDF) in a database such as PostgreSQL,
and could be wrapped in the RDBMS CREATE FUNCTION
statement. RDBMS query optimizers could leverage additional
metadata relations, such as image location and capture date,
to reduce the number of expensive TAHOMA UDFs calls for
a specific query. Further, UDF output could be stored as a
partially materialized table, enabling further query optimization.

TAHOMA’s initialization process is run at the installation
of each new binary predicate. During this, the profiled speeds
could be used to inform the RDBMS query optimizer of
the execution cost of the UDF (like the PostgreSQL’s COST
parameter for CREATE FUNCTION, if each Pareto-optimal
cascade was implemented as a separate UDF). While indexing
or materializing the output of the UDFs at system installation is
not practical in our envisioned deployment scenarios, database
triggers could be used to execute the TAHOMA UDFs over
newly ingested data after system initialization to pre-materialize
the output for future queries. In such situations, slower
processing may be tolerated for more accurate results, allowing
a different Pareto-optimal cascade choice than at query time.

B. Building Models

With TAHOMA, we create a huge number of cascades C by
first training a large number of individual classification models
M. We build the collection of models in two ways: by varying
the internal architecture of our CNN-based classifiers with our
model architecture specifications A and by transforming the
input images using the input transformation functions F.

Model architecture variations — TAHOMA uses convolu-
tional neural networks for its models. Goodfellow et al. provide
in-depth discussion on CNNs and deep learning [15]. Our
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Fig. 3: CNN architecture used by TAHOMA. The number of
layers, as well as the number of nodes in each layer is varied
as part of the model architecture specifications A.

CNNs follow the basic architectural pattern shown in Figure 3.
Input values are fed into one or more layers of convolutional
nodes. Each convolutional layer is followed by a max pooling
layer, connected by rectified linear activations (ReLu). The
final convolutional layer feeds into a fully connected ReLu
layer. A sigmoid output node provides the inferred label. A
key point is that our CNNs are small (and thus fast), typically
having only one to four convolutional layers. When creating
models, we vary these architectural details according to A; for
our experimental settings of A, see Section VII-A.

Input transformations — We also vary the physical repre-
sentation of the input to each model. The set of input transfor-
mation functions F comprises functions that perform one or
more image processing operations, such as resolution scaling
and color channel modification. These types of transformations
are useful for building fast, small models: reducing image size
and color depth can greatly reduce the number of model input
values, directly reducing the size of the CNN’s tensor operations.
For our experiments, we scaled the image resolution (30x30,
60x60, 120x120, and 224x224 pixels), and for each image size,
we used five different color variations (full 3-channel color,
each of the individual red, green, and blue color channels, and
single-channel grayscale).

The design space defined by these model architecture
variations and input transformation functions result in hundreds
of different model configurations (360 in our experiments).
Once each model is trained on a labeled subset of I, we can
compose the models into cascades. Training can take less than
a minute for the smallest networks (one convolutional layer
with few nodes) with the smallest inputs (30x30 pixels, 1 color
channel) to nearly an hour for the largest. Overall, training 360
models for a single binary predicate requires about 12 hours
when done serially on an NVIDIA Tesla K80 GPU. Training is
parallelizable, so this cost can be greatly reduced in practice.

C. Computing Decision Thresholds

Each model in M provides a probabilistic output for a binary
classification problem, a real number ranging from 0 to 1. Each
model has a pair of decision thresholds, plow and phigh, which
determine whether the model’s labelling decision should be
trusted. If the output o ≤ plow or o ≥ phigh, the model’s output is
accepted as the output of the cascade. If plow < o < phigh, then
we consider the model’s output to be uncertain and reclassify
the image with the next model in the cascade.

These thresholds are chosen on a per-model basis, such that
the precision of classification results with o ≤ plow or o ≥ phigh



matches a predefined constraint while recall is maximized.
Using a small configuration dataset distinct from the training
set, the thresholds are determined via a grid search that sweeps
through the potential thresholds to find those that provide a
precision value greater than or equal to the target precision
and selects the thresholds from those that maximize recall.

D. Constructing Cascades

Each model has its decision thresholds determined indepen-
dently, rather than in the context of a specific cascade. This
assumption of independence allows us to quickly instantiate
and evaluate the millions of possible multi-level cascades that
can be constructed from the models in M.

To determine the accuracy and throughput of our cascades,
we first classify a set of labeled images Ieval with each model in
M. (The images in Ieval are distinct from those for training and
determining decision thresholds so that the resulting accuracy
measurements are not the product of overfitting.) Since the
cascades in C comprise combinations of the models in M, the
above evaluation need only be done once per model (360 times
in our experiments) and not once per cascade (1.3 million).

Ensuring the independence of both model evaluations and
decision thresholds (as described in Section V-C) enables
extremely fast evaluation of cascades: our evaluation required
just over one minute to determine the accuracy and throughput
values for 1.3 million cascades. As such, once models have
been trained and classified, the selection of a cascade can be
part of query planning at query execution time and can thus
incorporate query-specific performance criteria (e.g., which
storage devices are providing input images).

Using the pre-computed classification results for Ieval for
each model in the cascade, the cascade execution is simulated
to obtain its label predictions for Ieval. The cascade’s accuracy
is then computed by comparing with true labels for Ieval.

E. Evaluating Cascade Sets

Each cascade in C can be displayed on a plot of accuracy
versus throughput, as shown in Figure 4. Those with the best
tradeoffs between accuracy and throughput belong to the Pareto
frontier. Points on the Pareto frontier are those not dominated by
any other points [33]. Computing the Pareto frontier over two
attributes, as we do, is O(n log n) in the number of points [30].
Here, n is the number of cascades, and while this numbers in
the millions, this is a fast computation, as just described.

VI. DATA HANDLING COSTS

An often overlooked part of image classification is the cost
of loading and preparing the data prior to inference. Of the rare
projects in the computer vision field that report inference speeds
(e.g., the YOLO family of object detectors [37], [38]), none
report video decoding or image loading time. Likewise, the
NoScope video query system [26] explicitly ignores these costs,
claiming that GPU-based decoding is so fast as to be negligible
or that decoding might be avoided altogether by obtaining raw
video frames directly from the generating camera sensor.

Fig. 4: Cascades (gray) and Pareto frontier (blue) for an
example deployment scenario, compared to the Pareto frontier
for a scenario only considering inference costs (orange).

This last point hints at why image loading or decoding costs
should be included when evaluating these systems: deployment
scenarios for a given query system may differ drastically. Some
may use top-of-the-line GPUs for video decoding, others may
store video frames as individual image files on disk, while
some may require video to be transported over a network
prior to processing. Further, if multiple classification models
with a variety of input representations might be used for
classification, data handling costs—including preprocessing—
must be included in throughput evaluations when deciding
which classifier will be used at query time.

More concretely, for accurate model comparisons to be made,
the throughput must be measured as the reciprocal of the
average classification time, tclassify, defined as follows:

tclassify = tload + ttransform + tinfer

where each time t above is the average recorded over some
typical set of input images, measured on the deployed system.

Our experiments in Section VII-D demonstrate that choos-
ing among cascades with incorrect cost assumptions can
lead to a large decrease in throughput. This throughput
loss can be seen in Figure 4. The gray points depict all
possible cascades for an example binary predicate (e.g.,
contains-object(semitruck)) in a deployment scenario
where image loading costs are negligible (full size raw data is
already present in memory), but image preprocessing costs are
incurred to transform the images into the appropriate resolutions
and color representations for each model. The points on the
Pareto frontier (shown in blue) represent the cascades that
present the best tradeoffs between accuracy and throughput
under this deployment scenario. The orange points show the
cascades that would be on the Pareto frontier for this binary
predicate if only inference costs were considered (pre-processed
images are already present in memory). If the preprocessing
costs were not considered, the query throughput would be far
below its potential for most accuracy levels.



VII. EXPERIMENTS

We have implemented TAHOMA as a prototype system,
and in this section, we discuss our experiments that compare
TAHOMA’s performance against existing baseline methods,
investigate the effects of data handling costs of different deploy-
ment scenarios, evaluate the effects of input transformations,
and analyze the effects of increasing cascade depth.

A. Experiment Setup

To evaluate the methods and components used in TAHOMA,
we designed a series of experiments with the following setup.

Binary predicates — We evaluated TAHOMA’s performance
over a set of 10 queries with a single contains-object
binary predicate, randomly chosen from the 1,000 categories in
the ImageNet dataset [40]. Each query is of the form “SELECT
* FROM images WHERE contains-object(category)”,
where category is one of those shown in Table II. The ImageNet
dataset provides about 1,200 training images for each category.
We held out 200 of each category’s images as a validation set.
The remaining images were labeled as positive examples. We
then selected a matching number of random images drawn from
the remaining 999 ImageNet categories and labeled them as
negative examples. Because these training sets were relatively
small, we followed common data augmentation practice by
creating a copy of each image that was flipped left-to-right,
doubling the amount of training data.

We performed similar labeling for the validation set. For
performance evaluation, we collected an additional dataset
for each category using the image search functionality of
the Google and Bing search engines, resulting in roughly
500 positive images per category. To find negative examples,
we first created a large collection of images by performing
image searches on Google and Bing for each of the remaining
999 ImageNet categories. From that, we randomly chose our
negative examples to match the number of positive ones.

Cascade configurations — We used the Keras [8] deep
learning library running TensorFlow[2] to train and execute
the CNNs used in our cascades. We varied several network
architecture hyperparameters to create a range of models for
each binary predicate: the number of convolutional layers (1, 2,
4), the number of convolutional nodes in each layer (16, 32),
and the number of nodes in the final dense layer (16, 32, 64).
These hyperparameters provide a range of reasonable options
similar to those used in other systems (e.g., [26]). We also
varied the size of the input images (30x30, 60x60, 120x120,
224x224). For each input size, we used five different image
representations: full 3-channel color, each of the individual red,
green, and blue color channels, and single-channel grayscale. In
all, we constructed 360 simple CNNs for each binary predicate.

We also included in our pool of classifiers a fine-tuned
implementation of ResNet50 [16] that had been pre-trained on
ImageNet. Fine-tuning was done using standard techniques; the
final 1000-class classification layer was replaced with 64-node
ReLu dense layer, followed by a 2-node softmax layer for the

TABLE II: ImageNet categories randomly selected for use as
our experimental binary predicates.

Predicate ImageNet ID Query ImageNet ID

1. acorn n12267677 6. ferret n02443484
2. amphibian n02704792 7. komondor n02105505
3. cloak n03045698 8. pinwheel n03944341
4. coho n02536864 9. scorpion n01770393
5. fence n03930313 10. wallet n04548362

output of the binary prediction. These layers were trained using
the same training set as the smaller, specialized classifiers.

For each classifier, we calibrated its decision thresholds
using the validation dataset for five precision settings: 0.91,
0.93, 0.95, 0.97, and 0.99. We use each classifier variation to
construct cascades of one and two levels, as well as three-level
cascades with ResNet50 as the final layer (see Section VII-F),
resulting in 1,301,405 possible cascades per predicate.

Deployment Scenarios — The data handling and prepro-
cessing costs of particular deployment scenarios can have a
large effect on the optimal choices in classifier cascades. To
demonstrate this, we analyzed our cascades under four different
scenarios, corresponding to those in Section III:

• INFER ONLY — This scenario ignores data handling
and transformation costs—only inference costs (i.e., only
the time required to evaluate the CNN) are considered
when computing throughput, a practice commonly used
in computer vision literature. However, as we show, the
fastest inference often does not imply the fastest end-to-
end query performance in practical deployments.

• ARCHIVE — This scenario includes the cost of loading
a full-size image off an SSD hard disk, as well as the
cost of resizing that image to the appropriate input size
for a given classifier, as might be done when querying an
existing corpus of archived image or video data.

• ONGOING — This scenario corresponds to deployments
where images are resized on ingest before saving to
disk. Load times are smaller, since the full-sized image
is not loaded from disk if not needed for a particular
classification. This scenario may occur when setting up
a data collection system in tandem with a query system;
proper image sizes for object detectors are known and
initial transform costs can amortized over many queries.

• CAMERA — This scenario only includes the computation
costs of resizing the images, as in deployments where
loading costs are negligible (e.g., images are loaded to
memory directly from a connected camera sensor).

Data handling costs for the above scenarios only occur once
for a given input: if a cascade includes two classifiers that
use, for example, a 30x30 pixel red channel input, the costs to
create that input are incurred only once per image.

Cascade evaluation — To compare two sets of cascades in
terms of throughput, we compute the area to the left of the curve
(ALC) created by those points in this plot over a given accuracy
range. Because a Pareto frontier is a collection of points and not
a curve, we interpolate the curve as a step function. Dividing
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Fig. 6: Average speedup values of TAHOMA over baselines.
ResNet50 and Baseline (fastest) comparisons use the optimal
cascade with the nearest higher accuracy to ResNet50 and
the fastest Baseline cascade, respectively. Baseline (average)
shows average speedups over the Baseline accuracy range.

the ALC by the size of the accuracy range give the average
throughput for cascades in the Pareto frontier. Dividing the
ALC of one frontier by another gives the speedup of the former
over the latter. For fair comparisons, we use the accuracy range
for the full set of cascades for each configuration and choose
the smallest said range. In some cases, we compute the ALC for
a Pareto frontier’s cascades in a different cost context. These
cascades are no longer a strict Pareto frontier, but we can still
compute ALC for comparisons. When comparing TAHOMA
to a single classifier, such as against our ResNet50 baseline
system, we choose the optimal cascade whose accuracy is both
higher and closest to the accuracy of the single classifier.
Hardware — We used an Amazon EC2 p2.xlarge instance
with an NVIDIA Tesla K80 GPU to do training, inference,
and throughput measurements for all CNNs. For operations
suited to parallel CPU processing—such as finding the Pareto
frontiers for our cascade sets—we used a 32-core (2.8GHz)
Opteron 6100 server with 512GB RAM.

B. Comparison Against Baselines

Overview — We compare TAHOMA against a fine-tuned, pre-
trained ResNet50 implementation [16], as well as a set of non-
optimized cascades, which comprise a subset of TAHOMA’s
design space. These two-level cascades terminate in a full-cost
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Fig. 7: Throughput of TAHOMA and ResNet50 of fastest cas-
cades for each cost model, averaged over 10 binary predicates.
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Fig. 8: Comparison with NoScope. TAHOMA+DD is TAHOMA
with a simulated NoScope-style difference detector.

classifier (i.e., ResNet50) and use full-color 224x224 images
as input. These are similar to design to CNN-based cascades
in previous work [26]. An illustration of the difference in the
design spaces is shown in Figure 5, with TAHOMA’s available
cascade options being markedly larger due both the use of data
transformations on the inputs and the additional cascade depth.
Throughput gains — Figure 6 shows the performance of
TAHOMA compared to our baselines for the four deployment
scenarios from Section VII-A. When only considering inference
speed (i.e., INFER ONLY), TAHOMA yielded a 98x speedup over
using a fine-tuned ResNet50 classifier alone, averaged over our
10 predicates. TAHOMA showed a 35x average speedup over
the accuracy range provided by the Baseline cascades. At the
accuracy level provided by the fastest Baseline cascade for each
predicate, TAHOMA yielded a 59x speedup on average. For the
other scenarios, data handling overheads reduce the speedup
gains. Nevertheless, TAHOMA achieves substantial speedup
in all scenarios, and even the most expensive scenario that
requires costly loading and transformation costs (ARCHIVE)
shows a nearly 2x speedup versus both ResNet50 and Baseline.

If speed is the priority, TAHOMA allows a user to trade
accuracy for a large throughput boost. Figure 7 shows
TAHOMA’s fastest optimal cascade compared to ResNet50.
Across all predicates, the fastest cascades were not true
cascades at all: they comprised a single specialized classifier
with adequate accuracy and high throughput. In the INFER
ONLY scenario, TAHOMA achieved an average throughput of
20,926 frames per second—280 times faster than our fine-tuned
ResNet50 models, which had an average throughput of about
75 frames per second. The more realistic ONGOING scenario
still achieves 5484 frames per second—an 81x speedup. These
large speedups come at a price, though: under INFER ONLY, the
TAHOMA’s fastest cascade was on average 12% less accurate
than ResNet50. Of course, as Figure 5 shows, the optimal
cascades provide a rich space of throughput and accuracy
tradeoffs, so users can find the right balance for their needs.



0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y
amphibian

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y

fence

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y

scorpion

0 500 1,000 1,500

0.6

0.8

Throughput (fps)

A
cc

ur
ac

y

wallet

All Cascades CAMERA INFER ONLY

Fig. 9: Pareto frontiers for several of our binary predicates, under the CAMERA deployment scenario (blue), compared to
cascades that would be in the Pareto frontier for the INFER ONLY scenario (orange). Optimal cascades under one deployment
scenario can significantly underperform those in another, so consideration of realistic deployment scenario costs is crucial.

C. Comparison with NoScope

Because NoScope [26] is the existing system most closely
aligned with our work, we ran experiments to directly compare
the two systems. For these experiments, we used the code and
datasets (coral and jackson) provided by the NoScope authors1.
The other datasets presented in the NoScope paper were not
publicly available. We used the default parameters provided in
the NoScope code for each dataset and report results for both
systems with a target precision of 0.95 used to select cascade
thresholds. YOLOv2 [38] was used as the final, expensive
classifier for both systems. Both NoScope and TAHOMA were
run on AWS p2.xlarge instances. Note that CPU and GPU
specifications differ between our NoScope installation and the
one in the NoScope paper, so raw performance numbers differ
between our experiments and theirs.

To compare NoScope and TAHOMA on an equal footing, we
implemented TAHOMA+DD, which is TAHOMA with a simu-
lated difference detector equivalent to that used by NoScope.
The difference detector measures the similarity between the
current frame and previously seen ones and reuses previous
results if the compared frames meet a similarity threshold. This
mechanism is orthogonal to our work and increase NoScope’s
throughput by avoiding many classifier executions. To create
TAHOMA+DD, we recorded frame similarity using NoScope’s
difference detector and reused TAHOMA’s results for frames
meeting NoScope’s threshold instead of classifying them.

Additionally, both systems used basic frame skipping, only
processing one of every 30 frames. The results shown here
include only those frames actively processed by each system,
not those skipped this way. TAHOMA+DD results are measured
in the INFER ONLY deployment scenario, which matches
NoScope’s throughput measurements. TAHOMA+DD results
use the Pareto-optimal cascade with the closest but higher
accuracy level to that of the NoScope for each dataset.

Figure 8 compares the throughput for NoScope and
TAHOMA+DD for the two public NoScope datasets. For both
datasets, TAHOMA+DD significantly outperformed NoScope.
On coral, TAHOMA+DD system reached a throughput of

1https://github.com/stanford-futuredata/noscope

10,700 fps, while NoScope’s throughput was 3494 fps, giving
TAHOMA+DD a 3.1x speedup over NoScope. On jackson,
TAHOMA+DD system reached a throughput of 7,150 fps, while
NoScope’s throughput was 260 fps, giving TAHOMA+DD a
27.5x speedup over NoScope2.

D. Deployment Scenario Awareness

Figure 9 shows (in blue) the Pareto frontier of all classifier
cascades for the CAMERA cost model for several of our binary
predicates. Additionally, the cascades that would be Pareto-
optimal for each query under the INFER ONLY model are
shown in orange. These orange points form a non-convex
curve, since they are not a Pareto frontier under the depicted
CAMERA cost model. Each cascade may be impacted differently
by loading and transformation costs, so their throughputs can
change relative to one another in different deployment scenarios.
With few exceptions, the optimal cascades under CAMERA are
different than the INFER ONLY ones. It is clear that if the data
handling costs of a scenario like CAMERA were ignored and
the “optimal” cascades were chosen only considering inference
costs, considerable throughput gains would be missed.

Table III shows the difference in throughput in our de-
ployment scenarios when cascades are chosen in a scenario-
oblivious way (i.e., when only inference costs are considered,
as in INFER ONLY) versus when the cascades are chosen taking
scenario costs into consideration. Because TAHOMA provides
a tradeoff between accuracy and throughput, we show results
for four different levels of permissible accuracy loss. A user,
for example, may decide that a 5% decrease in accuracy is
acceptable in order to process images faster. Then, in the
CAMERA scenario, the system’s throughput would increase by
59.5% if cascades were chosen taking data handling costs into
consideration, instead of being oblivious to these costs and
only considering the classifier’s inference.

2 As may be apparent from the results, the coral dataset was a much simpler
classification task than jackson, with far more reused results from the difference
detector for coral (25.2% reused) than for jackson (3.8% reused). NoScope
used the expensive YOLOv2 model for a significant number of frames on
jackson, as well, leading to its slow performance. TAHOMA+DD’s much larger
cascade design space allowed it to find an accurate cascade that was able to
avoid calling YOLOv2 for all but a few frames.

https://github.com/stanford-futuredata/noscope


TABLE III: Throughputs for various deployment scenarios when the cascade choices chosen in either oblivious or aware of
scenario data handling costs. Here, permissible accuracy loss indicates how much accuracy the user is willing to trade for an
increase in throughput. Scenario awareness can lead to significant throughput increases, shown in parentheses.

Permissible
accuracy loss

Scenario: ARCHIVE Scenario: CAMERA Scenario: ONGOING

Oblivious Aware Oblivious Aware Oblivious Aware

0% loss 57.5 fps 58.3 fps (+1.4%) 107.1 fps 107.1 fps (+0.0%) 111.9 fps 111.9 fps (+0.0%)
2% loss 85.1 fps 91.1 fps (+7.1%) 267.5 fps 324.6 fps (+21.3%) 985.2 fps 985.3 fps (+0.0%)
5% loss 103.1 fps 117.1 fps (+13.5%) 344.7 fps 549.9 fps (+59.5%) 1938.7 fps 2000.8 fps (+3.2%)

10% loss 130.6 fps 142.0 fps (+8.7%) 568.0 fps 806.8 fps (+42.0%) 3669.1 fps 3669.1 fps (+0.0%)
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Fig. 10: Average throughput of optimal cascades for cascade sets that use different input transformations.
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Fig. 11: Evolution of Pareto frontier as cascades depth increases,
shown for our fence predicate in the CAMERA scenario. Other
predicates and scenarios showed similar results. As cascades
get deeper, Pareto frontier improvements become negligible.

E. Analysis of Input Transformations

TAHOMA uses several different input transformations to
expand the space of simple classifiers used to construct
cascades. To see how these affect TAHOMA’s performance,
we constructed four cascade sets that used varying subsets of
the transformations: None, which used no input transformations
(i.e., all inputs are 224x224 three-color-channel images); Color
Variations, which used only the transformations that extract the
color channels or create grayscale images; Resizing, which used
only transformations that reduce resolution; and Full, which
used the full set of transforms included in TAHOMA.

Figure 10 shows the average throughput for each cascade
set for each binary predicate, computed using the ALC method
described in Section VII-A. We computed these values over
the accuracy range of the Full cascade set for each predicate.
Image resizing operations by far have the largest impact on
throughput, giving nearly a ten-fold increase over None. The
resized 3-channel, 30x30 pixel input images equate to 2,700

input values, while the full-sized 3-channel, 224x224 pixel
images equate to 150,528 values; this huge reduction in input
size results in orders of magnitude fewer tensor operations
during CNN inference. Likewise, reducing the color depth
of an image from three channels to one reduces the CNN’s
computational requirement by two thirds. These transforms,
especially resolution reduction, are critical to high query
throughput; they enable much smaller CNNs, more than paying
for the transforms’ computational costs.

F. Analysis of Increased Cascade Depth

Each additional level added to the cascade exponentially
increases the size of the cascade design space. Evaluating
the 1.3 million cascades used in results reported elsewhere
in this section is fast, taking about 1 minute on average per
binary predicate. However, this cascade set includes a full cross-
product only for one- and two-level cascades, with three-level
cascades restricted to those with fine-tuned ResNet50 as the
final classifier. If we considered all possible three-level cascades
from all available models, our cascade set balloons to about
45 million distinct cascades, requiring about 40 minutes of
evaluation time per predicate. Evaluating a full cross-product of
four-level cascades is intractable (roughly 3604 total cascades).

Figure 11 shows how a cascade set’s Pareto frontier evolves
as the maximum depths of the cascades increase. Each set of
cascades includes all depths up to its maximum. A “one level”
cascade simply corresponds to our set of basic classification
models. Where a cascade depth indicates “+ ResNet50”, we
append ResNet50 as an additional final level of the cascade.
That is, ”Two level + ResNet” cascades comprise two levels
populated by any model from our collection, followed by a final
ResNet50 level. The addition of a ResNet50 level effectively
doubles the number of cascades in a cascade set. Adding a full
additional level (drawn from our full set of models) increases
the cascade set size and evaluation time exponentially.



As can be seen, increasing the depth of the cascades has
diminishing returns to throughput at query time, while greatly
increasing computational cost of cascade evaluation during
system initialization. Moving from “Two level + ResNet50” to
“Three level (full)” only increases average throughput by 1.0%,
while increasing evaluation time nearly 40-fold to just over 40
minutes. Thus, for our experiments, we have restricted cascades
to at most “Two level + ResNet50”.The minimal increase in
throughput capabilities of additional layers is not worth the
huge increase in evaluation time.

VIII. RELATED WORK

TAHOMA builds upon a rich history of work in the database,
image processing, and machine learning communities.
Query systems for visual data — A number of database and
query systems targeted at visual data have been developed over
the past two decades [21], [42]. Early approaches involved
manual textual labeling (e.g. [41]) or extracting rudimentary
low-level features (e.g. [13], [39]). Later systems performed
additional semantic object extraction, using hand-written func-
tions and statistical methods to define objects [35], [36]. That
work, however, precedes the recent deep learning revolution in
computer vision and relies on highly manual object extraction
methods that limit system applicability and scale.

Work that extended relational query methods over visual
data [32], [31], [14] may be useful in extending query
capabilities in a system like ours. Fagin’s work with the
Garlic system [11], for example, deals with a number of issues
particular to querying multimedia databases and the fuzziness of
data extracted from multimedia data. However, the data handled
by TAHOMA does not exhibit the same kind of fuzziness as
Garlic, which is concerned with approximate matches and
image similarity. Our system deals with binary predicates that—
while based on probabilistic classifier output—are considered
strictly true or false at query time.

There has been a recent explosion of interest in query
systems for visual data due to advances in classifier accuracy
made possible by convolutional neural networks and to the
massive datasets made possible by cheap storage and image
sensors. NoScope [26], for example, uses several techniques,
including classifier cascades, to accelerate query processing
over video. Our key departure from this prior work is to include
transformations of the input image representation within our
query plans, drastically expanding the design space of classifier
cascades and enabling much smaller models and order-of-
magnitude throughput improvements. We compare our our
system with NoScope in Section VII-C.

BlazeIt [25] optimizes queries for objects found in video, in
part by using small, specialized CNNs to quickly answer queries
where possible. Like NoScope, these specialized CNNs do not
make use of Tahoma’s input transformations. The rich space
of Tahoma’s specialized CNNs, however, could potentially be
integrated into a query optimizer like BlazeIt. Focus [19] is a
system that indexes objects in live video. It too, uses specialized
CNNs to speed up queries. Focus varies the resolution of
input images when creating the set of specialized CNNs,

though it does not use TAHOMA’s other input transformations.
Additionally, TAHOMA’s use of cascades of multiple specialized
CNNs (rather than a single CNN) creates a design space
of millions of possible specialized cascades and a much
richer set of Pareto-optimal choices. Further, TAHOMA can
quickly evaluate its cascades in deployment-specific settings,
determining the cascades optimal for the deployment’s current
operating characteristics. This could be particularly useful
in dynamic scenarios, such as with networked cameras with
varying bandwidth constraints. VideoStorm [46] is recent video
analytics system that automatically adjusts parameters like
video resolution and frame rate to maximize output quality
of computer vision algorithms, based on computing resource
availability in large clusters.

Image classification — Deep CNNs have revolutionized the
field of computer vision, leading to breakthroughs in image
classification and detection capabilities in recent years. The
ImageNet competition [40] has had as one of its core challenges
a 1000-category, million image classification task. A deep
CNN was first used in 2012 and greatly reduced the best error
rate [17], and the error rate has dropped in the subsequent years
to near or better than human performance on the same task
(e.g, [23], [16], [20]). Deep CNNs can now facilitate semantic
content extraction from images and videos, supporting the
development of large scale visual analytics databases. Deep
CNNs are too slow, however, in their current incarnations to be
applied at scale. Research in speeding up CNNs has seen some
recent interest (e.g., SqueezeNet [22] and MobileNets [18]).
TAHOMA is essentially classifier-agnostic, so these and future
networks can be incorporated into our cascading techniques.

Classifier cascades — Our work leans heavily on previous
research into classifier cascades. One of the first works to
use the technique was the Viola-Jones face detector [45],
which used a series of classifiers based on simple image
features to detect faces in photographs. More recently, cascades
have been used to accelerate the slow inference speeds of
deep neural networks [26], [6], [43]. Other work has used
cascades to improve accuracy, rather than speed [44]. Chen et
al. [7] used classifier cascades to reduce the cost of expensive
feature extraction for text data. Our system, rather, uses feature
extraction (in the form of input transformations) to accelerate
cascades by creating smaller, faster models. We show how
classifier cascade-driven query optimization can be exploited
in a visual data analytics system.

Model selection and management — TAHOMA’s general
method of generating a large number of model (and cascade)
variations and selecting among those can be seen as a form
of model selection [29]. A number of recent data systems
have been proposed or developed to assist in machine learning
model creation, management, and deployment [12], [9], [5],
[27]. These systems have been developed with general machine
learning tasks in mind, while TAHOMA focuses directly on
performing queries and analytics over visual data. Because
of this tight focus, we can take advantage of characteristics
of CNN architectures and properties of image and video



data. Our model generation and selection methods could be
integrated with systems like Velox [9] or MacroBase [5], whose
functionality in serving models and handling large amounts of
fast data would be complementary to our work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented a method of accelerating
content extraction from large corpora of visual data, with the
aim of supporting visual analytics queries. We showed how
constructing a huge number of classifier cascades from a wide
variety of CNN-based classification models can yield large
speedups in content extraction. Our cascades applied input
transformations on the raw image corpus to further reduce
classification costs. We also demonstrated the necessity of
being deployment scenario-aware—that is, considering costs
such as those for data loading and image transformation—when
evaluating the accuracy and throughput tradeoffs of classifiers.

While this paper primarily focused on image classification
tasks, it is just the beginning of series of work that will develop
a data analytics for visual data that will take full advantage
of spatio-temoporal locality present in adjacent video frames
to further accelerate content extraction. We hope to include
new state-of-the-art computer vision methods to extract more
complex data, which will then allow the processing of complex
analytical queries over video.
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