
A New Approach to Maximum Matching in General Graphs
Extended Abstract

Norbcrt Blum
Informatik IV, Universlt~t Bonn

RSmerstr. 164, D-5300 Bonn, West Germany

Abstract
We reduce the problem of finding an augmenting path in a general graph to a teachability problem and show

that a slight modification of depth-first search leads to an algorithm for finding such paths. As a consequence,
we obtain a straightforward algorithm for maximum matching in general graphs of time complexity O(x/ffm),
where n is the number of nodes and m is the number of edges in the graph.

1 I n t r o d u c t i o n a n d m o t i v a t i o n
Although since Berge's theorem in 1957 [4] it is well known that for constructing a maximum matching it suffices
to search for augmenting paths, until 1965 only exponential algorithms for finding a maximum matching in general
graphs were known. The reason was that one did not know how to handle with odd cylces in alternating paths.

In his fundamental paper [6] Edmonds solved this problem by shrinking these odd cylces. The straightforward
implementation of his approach led to an O(n 4) algorithm for maximum matching in general graphs. In the
suhsequence more sophisticated implementations of his approach led to O(n s) or O(nm) algorithms [2, 8, 14, 20].

In 1973 Hoperoft and Karp [12] proved the following fact. If one computes in one phase a maximal set of
shortest augmenting paths, then O(vrff) such phases would be sufficient. For the bipartite case they showed that
a phase can be implemented by a breath-first search followed by a depth-first search. This led to an O(n + m)
implementation of one phase and hence to an O(v~m) algorithm for maximum matching in bipartite graphs.

In 1975 Even and Kariv [7, 13] presented a min(u 2, m log n) implementation of a phase leading to an O(min(n 25 ,
v"ffmlog n)) algorithm for maximum matching in general graphs. Galil [9] called the full paper [13] "a strong
contender for the ACM Longest Paper Award." Tarjan [18] called their paper "a remarkable tour-de-force." In
1978 Bartnik [3] has given an alternative O(n 2) implementation in his unpublished Ph.D. thesis (see [11]).

In 1980 Mieali and Vijay Vazirani [15] claimed to have an O(m) implementation of a phase without the
presentation of a proof of correctness. Although their result is cited in many papers and also in some textbooks
no proof of correctness was available. Also the paper of Peterson and Loui [17] does not clarify the situation,
since their paper contains only an "informally proof of correctness" which cannot be accepted as correctness proof.
Possibly this shortcoming is recently repaired in [19].

The first reason, why I attempted a new approach to maximum matching in general graphs was from a
didactical point of view. When I t ired lectures on algorithms for maximum matching problems I asked myself
having the beautiful well-known approach for the bipartite case in mind, which first reduces the problem of
finding an augmenting path to a teachability problem in a directed graph and then solves this problem by depth-
first search: Why also in the general case, we cannot reduce the problem of finding an augmenting path to a
teachability problem in a directed graph and then solve this problem by something like depth-first search? I hoped
then to get an approach for which it is easier to get any intuition than in the known approach. Also I hoped to
get simpler algorithms.

Secondly I believed that if I have sucess with this attempt, I get a straightforward O(m) implementation of a
phase by something like a breath-first search followed by the new algorithm.

Indeed we get simple and efficient algorithms for maximum matching in general graphs. Only the proof of
correctness are more involved.

In chapter 2 definitions and the general method are given. In chapter 3 the reduction to a teachability problem
in a directed graph is given. This teachability problem is solved in chapter 4. The correctness proof is sketched

587

in chapter 5. In chapter 6 we outline how to implement the solution effciently. We explain how the new approach
leads to a straightforward implementation of a phase using only O(m) time in chapter 7.

2 D e f i n i t i o n s a n d t h e g e n e r a l m e t h o d

A graph G = (V, E) consists of a finite nonempty set of nodes V mad a set of edges E. Either G is directed or
undirected. In the (un-)directed case each edge is an (un-)ordered pair of distinct nodes.

A graph G = (V, E) is bipartite, if V can be partit ioned into disjoint nonempty sets A and B, such that for all
(u,v) E E it holds u E A and v E B or vice versa. We then write often G = (A,B,E) . A path P from v E V to
w E W is a sequence of nodes v = v0, vl, v2 , . . . , vk = w satisfying (vi, vi+l) E E for 0 < i < k.

The length IPI of P is the number k of edges o n P . P i s simple i fv i ~ vj for 0 < i < j < k. By abuse
of notation, P will denote the path vo,vl , . . . ,vk , the set of nodes {vo, v l , . . . , vk} and also the set of edges
{(~0, ~1), (vl, ~) (vk-1, ~k)}.

If there exits a path from v to w (of length 1) v is called (direct) predecessor of w and w is called (direct)
successor of v.

Let G = (V, E) be an undirected graph. M C_ E is called a matching of G if

Ve = (u,v),e' = (z,y) e M,e ~: e' =~ {u,v} A {z,y} = $

i.e. no two edges in M have a common node.
A matching M is maximal if there exists no e E E \ M, such that M U {e} is a matching. A matching M is

maximum if there exists no matching M' C E such that IMq >]M I. Given an undirected graph G = (V,E) the
maximum matching problem is finding a maximum matching M C E.

A path P = v0, vl vk is M-alternating, if

(vl, vi+l) E M ~ (v i+ l , v i+~)eE \M, O < i < k - 2 .

A node v • V is called M-free if ~u E V : (v, u) • M. Let P = v0, v l , . . . , vk be a simple M-alternating path.
P is called M-augmenting if v0 and vk are M-free.

. a , gme s in M ~ P u~**,~e~ the symmetric difference of M and P , i.e.
M $ P = M \ P tO P \ M. It is easy to see that M @ P is a matching of G and [M ~ P[= [M[+ 1.

The key of most algorithms for finding maximum matching in a graph is the following theorem of Berge [4].

T h e o r e m 1 Let G = (V,E) be an undirected graph and M C E be a matching. Then M is maximum if and only
if there exists no M-augmenting path in G.

The theorem of Berge implies directly the following general method for finding a maximum matching in a graph
G.

A l g o r i t h m 1
I n p u t : undirected graph G = (V, E)

matching M C_ E (possibly M = 0)
O u t p u t : a maximum matching Mmax
M e t h o d :

w h i l e there exists an M-augmenting path do
b e g i n
construct such a path Pi;
M : = M S P
e n d

The key problem is now: How to find an M-augmenting path P , if such exists?
We solve this key problem in the following way:

1. We reduce the key problem to a reachable problem in a directed graph GM : (V t, E t)

2. We solve this teachability problem constructively.

588

3 R e d u c t i o n t o a reachability problem
In the bipartite case we construct from G = (A, B, E) and matching M C E a directed graph GM = (V', E') by
directing the edges in M from A to B and the edges in E \ M from B to A. Additionally we add two nodes s and
t to A U B and add for each M-free node b E B the edge (s,b) to E ' and for each M-free node a E A the edge (a,t)
to EC

It is easy to prove that there exists an M-augmenting path in G if and only if there exists a simple path from s
to t in GM.

This teachability problem can be solved by a depth-first search (DFS) of GM with start node s.
Let G = (V,E) be an undirected graph and M C E be a matching. Let VM = {x E V I x is M-free}. For the

definition of GM we have the following difficulty.
A priori we cannot divide the set of nodes V into two sets A and B such that the following holds. There

exists an M-augmenting path in G if and only if there exists an M-augmenting path, which uses alternately nodes
from A and B. Hence for defining GM, we introduce for each node v E V two nodes [v,A] and [v,B] such that a
contruction of a graph GM, analogously to the bipartite case, is possible.

Let GM = (V I, E I) where

V' = {[v,A],[v,B]lvEV}O{s, t } s , t •V , s • t
E' = {([v,A],[w, Bl),([w,A],[v,B])l(v,w) e M}

U {(x, B], [y, A]), ([y, B], [x, A])l(x , y) e E \ M}
U {(s, [v, Bl)lv E VM } U {([x,A],t)Ix e VM }

Analogously to the bipartite case, we have directed the edges in M "from A to B" and the edges in E \ M
"from B to A". Since the distinct nodes [v, A] and [v, B] in V' correspond to the same node v in V, it does not
suffice to find a simple path from s to t in GM for fil~ding an M-augmenting path in G. Hence we define strongly
simple paths in GM.

Let P be a path in GM. P is strongly simple if the following hold

a) P is simple.

b) V[v, A] E Y ' : [v, ,4] E P =V [v, B] ¢ P.

Now we can formulate the reachability problem, which is aquivalent to the problem of finding an M-augmenting
path.

T h e o r e m 2 Let G = (V, E) be an undirected graph, M C E be a matching and GM = (V', E') defined as above.
Then there exists an M-augmenting path in G if and only if there exists a strongly simple path from s to t in GM.

Proof:
"4=": Let P = s, [vl, B], [v2, A], Ira, B] , . . . , [vk-1, B], [vk, A],t be a strongly simple path in GM. Then vl ~ vj,
1 < i < j _< k and vl,vk E VM. Hence

pt = V l ~ Y 2 , . , , ~ V k

is an M-augmenting path in G.
"=~" : Let Q = w 1 , w2,. . . , wt- 1, wt be an M-augmenting path in G. Then wi ¢ w i , 1 _< i < j < I and wl, w~ E VM.
Hence by construction of GM

Q' = s, [wl, B], [w~, A] , [wi_l, B], [w~, A], t
is a strongly simple path in GM. I

4 The solution of the reachability problem
Depth-first search finds simple paths in a directed graph. Hence we cannot use DFS directly for the solution of the
reachability problem in GM. We modify the usual DFS such that the modified depth-first search (MDFS) finds
exactly the strongly simple paths in GM.

Let [v,~] = [v, B] and [v, B---] = [v, A]. Remember that DFS partitions the edges of the graph into four categories
[1]. Similiary the edges of GM are partioned into five categories by a MDFS of GM:

1. Tree edges, which are edges leading to new nodes [v,X], X E {A,B}, for which [x,~] is not a predecessor
during the search.

589

2. Weak back edges, which are edges leading to new nodes Iv, A], for which Iv, B/ is not a predecessor during
the search.

3. Back edges, which go from descendants to ancestors.

4. For~ward edges, which go from ancestors to proper descendants but are neither tree edges nor weak back
edges.

5. Gross edges, which go between nodes what are neither ancestors nor descendants of one another.

Like DPS, MDFS uses a stack K for the organisation of the search. Analogously to DFS, the MDFS-stack K
defines a tree, the MDFS-tree T. Before describing MDFS in detail, we describe the algorithm informally. TOP(K)
denotes the last node added to the MDPS-stack K. In each step MDFS considers an edge (TOP(K), [w, Y]) which
was not considered previously.

Let e = (Iv,X/, [w,X--]) be the edge considered. We distinguish two cases:

ease 1: X = A, i.e. (v,w) E M.
case 2: X = B, i.e. (v, w) E E \ M

2.1 [w , A] E K
2.2 [w, A] t / g but [w, B] E K
2.3 [w, A] ~ K and [w.S] q[K

i) [w, A] was in K previously
ii) [w, A] was not in K previously

Note that these are all cases. Only in the cases 2.2 and 2.3 i) MDFS differs from DFS. We discuss both cases.

case 2.2 If [w, A/was not in K before, DFS would perform the operation PUSII([w, A]), since [w, A / # [w, B].
Since [w, B / E K and MDFS should only construct strongly simple paths in GM, MDPS does not perform
the operation PUStt([w, A]).

case 2.3 i) Since [w, A] was in K before, DFS would not perform any PUSii-operation. But the different
treatment of case 2.2 can cause the following situation for MDFS. MDFS has found a strongly simple
path from [w,A] to a node [u,A]. But the node [u,B] was in K and hence, by ease 2.2, the operation
PUSIt([w,A]) was not performed. But now, [u,B] qL K. As we will prove later, the paths P from s to
[v, B] and Q from [w, A] to [u, A] are strongly disjoint, i.e. there is no [r, X] in P such that [r, Y] E Q, for
X, Y E {A, B}. IIence the path P,Q is strongly simple. Since MDFS has found a strongly simple path
from s to [u, A], MDFS performs the operation PUSIt([u, A]).

Next we describe MDFS more in detail. We have to solve the following problem: How does MDFS find the
node [u,A] in case 2.3 i)?

For solving this problem assume that MDFS is organized such that for all nodes [w, A] E W, the following
hold.

After performing the operation POP([w, A]) MDFS has always computed a set L[to,Al of nodes such that: L[w,A]
contains exactly the nodes [u, A]E V I satisfying:

1. MDFS has found a path from [w, A] to [u, A], not containing [u, B].

2. PUSH([u,A]) is not performed.

3. POP([u, S]) is performed.

Note that MDFS has found a path Q from [w, A] to [u, A] if and only if for all [v, X] e Q, MDFS has performed
the operation PUSH([v,X]) and all edges on Q are considered.

In the description of MDFS we assume for all [w,A] E W, that LI~,A] is computed correctly. The computation
of L[tv,A], as well as an efficient implementation of MDFS can be found in section 6.

A l g o r i t h m 2 (M D F S)

I n p u t : GM = (V I, E')
O u t p u t : An M-augmenting path P, i/such exists.
M e t h o d :

590

begin
PUSH(s);
while K # 0 and no path from s to t is found do

SEA R CII(TOP(K))
end.

SEARCH is a call of the following procedure. Let h E V'.

p rocedure SEARCH(h);
begin
if h = t then

contruct the M-augmenting path P which is found by the algorithm
else

begin
mark h "pushed"
for all nodes [w,Y] E N[h] do

begin
(case 1) if Y = B then

begin
PUSH([w, B])
SEARCH([w, B])
end

(case 2) else
(case 2.1) i f [w, A] • g then

no PUSH-operation is performed
else

(case 2.2) if [w, B] • g then
no PUSH-operation is performed

(case 2.3) else
(case 2.3 i) if [w, A] is marked "pushed" then

while L[~,AI # 0 do
begin
choose any [u, A] • L[w,A];
PUSH([u, A]);
SEARCH([u,A])
end

(case 2.3 ii) else
begin
PUSH([w, A]);
SEARCH([w, A])
end

end
POP
end

end.

5 The correctness proof of the algorithm MDFS
The correctness proof of MDFS is inspired by the correctness proof of DFS. But the proof is much more involved.
First we prove two fundamental lemmas. The first lemma shows that MDFS =finds a path from s to a node, if a
strongly simple path exists. With help of the second lemma we shall prove that MDFS finds only strongly simple
paths.

Lemma 1 Let [w, B] E V' be a node, for which MDFS performs the operation PUSH([w, B]). Let [z, A] E V' such
that there exists a strongly simple path P = [w, B] = [v~, B], [vl, A], [vi, B] [v~_x, B], [vt, A] = [z, AI with the
following property: In the moment when PUSH([w, B]) is performed, it holds [v, X], [z,X--] ~ K, for all [v, X] 6 P.
Then P USH([z, A]) is performed before the performance of the operation POP([w, B]).

591

Igemark: Lemma 1 implies that either PUSH([z, .4]) and also POP(Ix, A]) are performed before the performance
of PUSH([w,/3]) or both operations are performed between the operations PUSH([w, B]) and POP([w, B]).

Proof: (by induction on the length t of the path P).
See the full paper [5]. It

Lemma 2 Let [w, X], [u, B] E V' and assume that MDFS performs the operation PUSH([u, B]). I f there exists a
strongly simple path P = [vl, A], Iv2, B] , . . . , [vj, X], [vj+l, ~ , Iv,-1, A], Iv,, B] such that

1. (In, B], iv1, AI), (Iv,, B], [u, A]) e E'

e. lye,x] = [w,X]
3. [vl, A] and [vl, B] are not predecessors of [u, B] in the MDFS-tree T for 1 < i < r.

Then P USH([w,X---~) is performed before POP([u, B]).

Proof: Consider the following path P ' = [u, B], [vr, A], [vr_l, B] [vj ,X---]. Then P' fulfills the assumptions to
lemma 1. Hence the assertion follows directly from lemma 1. II

Now we can prove the correctness of the algorithm MDFS.

Theo rem 3

a) MDFS finds a path from s to t, if a strongly simple path from s to t exists.

b) MDFS finds only strongly simple paths.

Proof."

a) Assume that MDFS does not find a path from s to t.
Let P = s, [v~, B], [vl, A], [v~,/3] lye_l, B], [v,, A], t be a strongly simple path from s to t. It is clear that
MDFS considers the edge (s, lye, B]) and performs the operation PUSH(lYe, B]) after the consideration of the
edge (s, [v~, B]) (note that v~ is M-free). Hence lye, S] and [vr,A] fulfill the assumptions of lemma 1 with
respect to the path lye, B], Iv l, A], . . . , [v~r_ 1, B], [vr, .4]. Hence by Lemma 1, M DFS performs the operation
PUSH([vr, A]) and hence also PUSH(t).

b) We prove by induction on the number of PUSH-operations that no PUSH-operation destroys the property
"strongly simple".
See the full paper [5] It

6 An implementation of the algorithm MDFS
Now we sketch how to implement the algorithm MDFS efficiently. For a detailed description see [5]. Only the
following two parts of the algorithm are nontrivial to implement.

1. The manipulation of the sets L[w,A], [lv,A] E V p.

2. The reconstruction of the M-augmenting path P, which is found by the algorithm.

For the solution of both subproblems it is useful to perform the POP-operations not explicitety and to maintain
the whole MDFS-tree-T.

Since we are interested on efficient solutions of our subproblems, it is useful to investigate the properties of
MDFS.

L e m m a 3 For all [w,A] E V', the following always holds:]L[t0,al] _< 1.

Proof." see [5] |

In the following we write Llw,A] = [p,A] instead of L[w,A] = {[p,A]}. The following lemma is the key for an
efficient implementation of our method.

592

L e m m a 4 Assume that the algorithm performs the assignment L[w,at := [u,A]. Then after the performance of
PUSH([u,A]) always LIw,A l = Llu,A] is fulfilled.

Proof: see [5] II

Now we describe, how to update the sets Llw,A]. By the definition of LI~o,A], we have only to change L[w,A]
after a PUSH- or after a POP-operation. More exactly, we have to perform:

Af te r PUSH([u ,A]) Lfto,A l := 0, if Liw,al = [u,A]

After POP([u ,B]) Lifo,a] := [u,A], if MDFS has found a path from [w,A] to [u,A] not containing [u,B], and
PUSH([u,.4]) is not performed previously.

Hence after the performance of the operation POP([u, B]), the algorithm MDFS has to find all nodes [w, A],
for which MDFS has found a path Q to [u, A] previously.

For [q, A]E V', for which the operation PUSH([q, A]) is performed, we define

Dtq,A] = {[P, A]E V' I Lip,A] = [q, A]in the moment when the operation PUSH([q, A]) is performed} .

By lemma 4 for all [p, A]E Dlq,A], the computation of LL,,A] can be reduced to the computation of L[q,A]. Hence
under the assumption that the sets D[q,A] are given, the following problem remains. After the performance of the
operation POP([u,B]), we have to find all nodes [w,A], for which Lt,o,A] was not # 0 previously and for which
MDFS has found a path Q to [u, A] previously.

Let us consider such a path Q = [w, A] = [v0, A], [vl, B], lye, A] [vt-1, B], [vt, A] = [u, A], found by MDFS.
Let el, 1 < i < t be the edges of Q. Let us characterize the path Q backwards.
By construction, it is clear that et is a weak back edge. Then we have a sequence of tree edges, a single cross,

forward or back edge, a sequence of tree edges and so on. Note that all edges which correspond to an edge in the
actual matching, are tree edges. Hence Q can considered as a sequence of blocks of tree edges, which are separated
by single cross, forward or back edges. The last block is concluded by the weak back edge et = ([vt-1, B], [vt, it]).

Let L = {[p,A] e V'lL[p,a] # $ previously}.
A simple way to compute the nodes [w, A] with [w, A] ~ L and for which we have to perform the assignment

L[w,a] := [u, A], is by constructing the paths Q backwards.
For doing this, first we construct Ml such paths Q without any cross, forward or back edge. This is done by

following backward a weak back edge and then the tree edges until a node in L O {[u, B]} is reached. Then we
construct all paths Q with exactly one cross, forward or back edge. For doing this, we follow backwards a cross,
forward or back edge ([v, B], [w, A]), such that we have found a path from [w, A] to [u, A] before and then tree
edges until a node in L U {[u, B]} is reached. Then we construct all paths Q with exactly two cross, forward or
back edge, and so on.

The considerations above lead to an O(n + m) implementation of the manipulation of the set Llto.A] (see [5]).
The M-augmenting path P found by MDFS can be reconstructed in time O(tPt) [5]. Altogether we have obtained
the following theorem.

T h e o r e m 4 MDFS can be implemented such that it uses only linear time and linear space in (n + m).

7 A n O(v/'ffm) algorithm for maximum matching in general graphs
In their excellent paper Hopcroft and Karp [12] present the following algorithm for the computation of a maximum
matching.

" A l g o r i t h m 3 (M a x i m u m m a t c h i n g a lgor i thm)

Step 0 M *-- 0
Step 1 Let l(M) be the length of a shortest augmenting path relative to M. Find a maximal set of

paths { Q1, Q2, . . . , Qt } with the properties that
1. for each i, Qi is an augmenting path relative to M and]Qi[= I(M);
2. the Qi are vertex-disjoint.

Halt if no such paths exist.
S tep2 M ~ M @ Ql @ Q2 (9 . , . $ Qt; go to l"

593

They proved the following theorem.

T h e o r e m 5 "If the cardinality of a maximum matching is s, then Algorithm 3 constructs a maximum matching
within 2[vqJ + 2 executions of Step I."

They concluded

"This way of describing the construction of a maximum matching suggests that we should not re-
gard successive augmenting steps as independent computations, but should concentrate instead on the
efficient implemenatation of an entire phase (i.e., the execution of Step 1 in Algorithm 3)."

In the bipartite case, they describe an elegant and also simple implementation of an entire phase, which has
time complexity O(m). Hence they have obtained an O(v~m) algorithm for maximum matching in bipartite
graphs.

Let us sketch the implementation of Hopcroft and Karp. First they reduce the problem of finding augmenting
paths to the reachability problem as described in section 3.

Then by performing a breath-first search (BFS) on GM with start node s until the goal node t is reached,
they obtained a layered directed graph ~ m , for which the paths from s to t correspond exactly to the shortest
M-augmenting paths in G. Using depth-first search they find a maximal set of disjoint M-angmenting paths.
Whenever an M-augmenting path is found, the path and all incident edges are deleted and the depth-first search
is continued. Since breath-first search and also depth-first search takes only O(m) time, it is easy to see that the
implementation of Hopcroft and Karp has time complexity O(m).

Since M-augmenting paths can be found in general graphs by a slightly modified depth-first search (MDFS),
the following question suggests itself. In the general case can we get an implementation of an entire phase by
performing a breath-first search followed by a modified depth-first search?

We cannot give an affirmative answer to this question. But we shall show that we can give all affirmative
answer, if we replace breath-first search by a sfight modification of breath-first search.

Let G = (V,E) be graph, M be a matching of G and GM = (W , E j) be the directed graph as defined in
section 3.

Our goal is to construct from GM a layered directed graph GM = (V ' ,E) such that

1. the / - th layer contains exactly the nodes [v, X] E V r with the property that the shortest strongly simple path
from s to Iv, X] in GM has length I.

2. ~M contains all shortest strongly simple paths from s to t in GM.

It is clear t h a t , is the only node in the layer with number zero i.e., level(s) = 0. Note that by the structure of GM
X = B (X = A) implies that level(Iv, X]) is odd (even).

Since breath-first search on GM with start node s finds shortest simple distances form s and not shortest
strongly simple distances, we cannot apply BFS directly for the construction of ~ m . But by applying similary
methods as in the case of DFS, we can modify BFS such that the modified breath-first search (MBFS) finds the
shortest strongly simple distances.

Remember that for the construction of the (l + 1)-th level BFS needs only to consider the nodes in t he / - th
level and to insert all nodes to into the (1 + 1)-th level which fulfill the following properties.

1. There exists a node v in the l-th level with (v, w) E E.

2. Level(to) is not defined before.

In the case of finding strongly simple distances from s, the construction of the (l + I)-th is a little bit harder.
Note that by structure of GM, the level of a non-free node [w, B] is well-defined by the level of the unique

node Iv, A] with ([~,A], [to, B]) e E' . Let us consider how MBFS constructs the (l + 1)-th level where (1 + 1) is
even under the assumption that the levels 0,1, 2 , . . . ,1 are constructed previously.

It is clear that similary to BFS MBFS can insert all nodes [w,A] E V ~ into the (1 + 1)-th level which fulfill the
following properties.

1. There exists a node [v,B] in t h e / - t h level with ([v,B],[w,A]) E E' and the property that there exists a
strongly simple path from s to Iv, B] of length I which does not contain [to, B].

2. Level([to, B]) is not defined before.

594

V51 B]
T

[v4, A]
%

Iv3, t3]
1

[v~, A]
T

[~, B]

S

. , [v6, A]
I

[vT, B]
I

[,3, A]

--* matched edge
--~ free edge

- --~ additional edge

[vxr, B]
T

[v16, A]
T

T
%, B]

!
[~s, A]

But these are not all nodes, which MBFS has to insert into the (l + 1)-th level. Consider the following example.
Note that although level([VT, B]) = 7 it holds level([vz, A]) ~ 8 since the unique shortest strongly simple path
from s to [v7, B] contains lye, B]. The only strongly simple path P from s to [vz, .4] has length 14. Hence
level([va, A]) = 14. Note that P is found when edge ([v17, B], [v6, A]) is considered.

By the observation above MBFS has also to insert nodes [w, A]E V' into (l + 1)-th level, for which there exists
a shortest strongly simple path P = s, [vl, B], [v2, A] [vz, B], [w, A] with level([vt, B]) < l.

Similary to breath-first search MBFS considers after the construction of the l-th level, l even, all edges
([v, B], [w, A]) such that level([v, B]) = I. Let (Iv, B], [w, A]) be the edge considered. We distinguish three cases.

case 1: level([w,A]) > l and there exists a strongly simple path P from s to [v,B] such that IPt = 1 and
[w, Bl • P.

case 2: level([w, .4]) > l and for all strongly simple paths P f r o m s to [v, t3] with IF] = l hold [w, B] ¢ P.

case 3: level([w, A]) _< I.

Note that these are all cases. Next we discuss these three cases.

case 1: Since there is a strongly simple path from s to [w, A] of length l + 1 which uses the edge ([v, B], [w, A]),
MBFS insert [w, A] into the (l + 1)-th level and add the edge (Iv, B], [w, A]) to E.

case 2: Since all strongly simple path from s to Iv, B] of length I contain [w, B] no strongly simple path from s
to [w, .4] of length (l + 1) using the edge (Iv, B], [w, A]) exists.

ease 3: level([w, A]) is defined earlier. But it is possible that the edge (Iv, B], [w, A]) is contained in a shortest
strongly simple path to a node [u,A] if the following properties are fulfilled.

1. All shortest strongly simple paths from s to [w,A] contain [u, B].
2. There exists a strongly simple path from s to Iv, B] which does not contain In, B].
3. There is a strongly simple path from [w, A] to [u, .4].

Note that for the correct treatment of case 1 and case 2, MBFS has to know if there exists a shortest strongly
simple path P from s to Iv, B] which does not contain th node [w, B].

For all nodes [v, X] E V', such that level([v, X]) is defined, we denote by DOMIu,x] the node [u, B] E V' which
satisfies

a) All shortest strongly simple paths from s to [v,X] contain [u,B].

b) level([u,A]) E V' is not defined.

c) For all [w, B] E W which satisfy a) and b) hold level([w, B]) < level([u, B]).

595

By the definition of DOM[v,x] it is clear that DOM[v,x] is unique if it exists. Next we investigate the properties
of shortest strongly simple paths.

Lemma 5 Assume that MBFS considers the edge ([v, B], [w, A]) and case 2 is fulfilled. Then DOMlv,B] = [w, B].

Proof: Under the assumption that DOMI,,BI = [u, B] # [w, B] we prove that level([w, A]) _< level([v, B]) (see [5]).
This contradicts case 2. |

The following lemma follows directly from the definition of DOM[~,B].

Lemma 6 Assume that DOM[~,x] = [u,B]. Then after the definition of level([u,A]) it holds DOM[v,x] =
DOMlu,~] •

For w E V', we denote
{ [v,X----] i f w = [v , X]

r(w) = t if w = s
s i f w = t

Let S = wl, w2 , wk be a path in GM. Then the backpath r(S) of S is defined by

r(S) = r(w~), r(wk_~) r (~) .

Lemma 7 is very useful for the treatment of the case 3.

Lemma 7 Assume that MBFS considers the edge ([v, B], [w, A]), level([w, A]) < level(Iv, B]) and DOMI~,BI
DOMlw,A]. Let DOM[w,A] = [u, B]. I f the edge (Iv, B], [w, A]) is contained in a shortest strongly simple path from s
to [u, A], then the following hold.

a) The shortest strongly simple paths from s to [u, A], containing the edge ([v, B], [w, A]) are in one-to-one
correspondence to the paths P = P1, [w, A], P2, [u, A] where P1 is any shortest strongly simple path from s
to [v,B] which does not contain the node [u,B] and P2 = r(Q2), where Q = Qh [u,B],Q2, [w, B] is any
shortest strongly simple path from s to [w, B].

b) level([u, A]) = level(Iv, B]) + (level([w, B]) - level([u, B])) + 1.

Proof: Note that b) follows directly from a). For proving a) let P = PI,[w,A],P2,[u,A] be any shortest
strongly simple path from s to [u, A], containing ([u, B], [w, A]). Let Q = Q1, [u, B], Q2, [w, A] be any shortest
strongly simple path from s to [w, .4]. The assertion a) follows directly from the following claim.

Claim: For all [z, X] with [z, X] e Q2, [w, A], P2 hold DOMiz,xI = DOM[~,:~ = [u, B].

We prove the claim by showing that the contrary implies that P is not a shortest strongly simple path (see [5]).11
Lemma 7 tells us how to compute the potential level of a node [u,A] under the assumption that an edge

(Iv, B], [w, A]) with level([w, A]) < level(Iv, B]) and DOM[v,B] ¢ DOMlw,a] = [u, B] is contained on a shortest
strongly simple path from s to [u, A]. Let

potlevel([u, A], ([v, B], [w, A]))

denote this potential level. It is easy to see that if there exists an edge ([v,B],[w,A]) with level([w,A]) <
level(Iv, B]) on a shortest strongly simple path P from s to [u, A] then also such an edge with DOMI~,B]
DOMlw,AI = [u, B] on P exists.

Now we can describe the algorithm MBFS more in detail.
After the consideration of all edges (Iv, B], [w,A]) with level([v, B]) = l, MBFS has also to consider all nodes

with potential level l + 1. If potlevel([u,A],([v,B],[w,A])) = l + 1 and level([u,A]) > l then MBFS defines
level([u, A]) = I+ 1 and add the indexed edge ([v, B], [w, A])I,,A l to E where the index [u, A] indicate that the edge
is used for shortest strongly simple path from s to [u, A]. If we need later a subpath from [w, A] to [u, A] of such a
path then by lemma 7 such a path can easily be constructed by taking the backpath r(S) of any strongly simple
path S = [u, B] , . . . , [w, B] in the layered graph GM.

Additionally to the construction of the (l+ 1)-th level, MBFS has to compute potential levels greater than I+ 1
and also to update some DOMlv,x], Iv, X] E W.

596

If MBFS considers an edge (Iv, B], [w, .4]) and case 3 is fulfilled, then MBFS checks if DOMtv,B] # DOMlw,A l and
ifDOMtw,A] = DOMltu,B]. Possibly, level([w, B]) and hence also DOM[t0,B] are not defined. Then MBFS complete
this step after the definition of level([w, B]). If both is fulfilled then MBFS computes potlevel([u, A], (Iv, B], [w, A]))
:= level([v, B]) + (level([w, B]) - level(In, S])) + 1 where DOMlw,A l = [u, B].

Let Pred([u, A]) = { [v, B] I ([% B], [u, A]) E E or ([v, B], [w, A])[md]) e ~7 for some [w, A]e V}. It is easy to
see that

{ DOM[v,B] if [vl,B],[v2,B] E Pred([u,A]) =ez DOM[vl,BI = DOMI,2,BI.
DOM[u,A] = [v, B] E Pred([u, g])

undefined otherwise

MBFS updates the DOM[v,x], [v, X] E W, as follows.
After the definition of level(In,B]):

DOMlu,~] := DOMlv,A l where [v, A] is the unique node with (Iv, A], [u, B]) E E'.

After the definition of level(In, A]):

DOM[~,x] := DOM[~,B] for all [v,X] with DOM[~,x] = [u,B].
DOM[~,A] := DOMI~,B], [% B] E Pred([x, A]) if DOM[~,AI was undefined and now

[vt, B], Iv2, B] e Pred([x, A]) =e~ DOM[vt,AI = DOM[v~,A].
DOM[v,B] := DOM[~,A] where [y, B] is the unique node with ([x,A], [y, B]) E E'.

It is easy to see that MBFS can be implemented such that the needed time is bounded by O(n + m) plus the
time needed for the updating of the DOMiv,xl,[v , X] E V'. This can easily be done using time O(n2). If we use
incremental tree set union [9] we can reduce this bound to O(n + m) [5]. The space complexity is also bounded
by O(n + m). These considerations lead to the following theorem.

Theorem 6 MBFS can be implemented such that it uses only linear time and linear space in n and m.

Note that MBFS needs only to compute all levels < level(t). It is easy to prove by induction on the number of
levels that G--M is correctly computed by MBFS (see [5]).

Knowing ~M it is easy to compute a maximal set of shortest strongly simple paths of ~M using MDFS in
time O(n + m). Everytime when a strongly simple path P from s to t is found, all nodes [v,A], [v,B] with
[v, A]E P or [v, B] E P and all incident edges are deleted from ~M. If a node get zero indegree or zero outdegree
then also this node and all incident edges are deleted.

These considerations lead to the following simple algorithm for an entire phase.

Algori thm 4 (maximal set of s.t paths}

Step I: Using MBFS, compute "~M
Step £: Using MDFS, compute a maximal set of strongly simple paths from s to t in -GM.

Altogether, we have obtained the following theorem.

Theorem 7 A maximum matching in a general graph G = (V, E) can be found in time O(,¢~m) and space
O(m + n), where IVl = n and IEI = m.

Conclusion: We have reduced the problem of finding an M-augmenting path in a general graph to a reachabilo
ity problem in a directed graph. This approach has led to very simple algorithms for finding a maximum matching
in general graphs. Especially we have obtained a straightforward algorithm for finding maximum matching in
general graphs of time complexity O(x/'ffm).

Acknowledgement: I thank my students in my lectures on algorithms for matching problems held at the
university of Saarbriicken during the winter term 1987/88 and at the university of Bonn during the winter term
1988/89 for their interest in hearing very premliminary, uncompletely and partly wrongly version of the paper.
Without their patience, which was originated by the interest in learning how to attack hard problems, this paper
would never been written.

597

R e f e r e n c e s
[1] Aho A. V., Hopcroft J. E, Ullman J. D: The Design and Analysis of Computer Algorithms, Addison-Wesley,

1974, 187-189.

[2] Balinski M. L.: Labelling to Obtain a Maximum Matching, in Combinatorial Mathematics and its Applications
(R. C. Bose and T. A. Dowling, eds.), University of North Carolina Press, Chapel Hill, 1969, 585-602.

[3] Bartnik G.W.: Algorithmes de conplages dans les graphes, Th~se Doctorat 3 e cycle, Universit~ Paris VI,1978.

[4] Berge C.: Two Theorems in Graph Theory, Proc. Nat. Acad. Set. U.S.A., 43 (1957), 449-844.

[5] Blum N.: A New Approach to Maximum Matching in General Graphs, Report No. 8546-CS, Institut f'dr
Informatik der Universit~it Bonn, Mat 1990.

[6] Edmonds J.: Paths, Trees and Flowers, Canad. J. Math, 17 (1965), 449-467.

[7] Even S, Kariv O.: An O(n ~5) Algorithm for Maximum Matching in General Graphs, FOCS, 16 (1975), 100-
112.

[8] Gabow H. N.: An Efficient Implementation of Edmond's Algorithm for Maximum Matching on Graph, J.
ACM, 1976, 221-234.

[9] Gabow H. N., Tarjan R. E.: A Linear.time Algorithm for a Special Case of Disjoint Set Union, J. Comput.
Syst. Set., 1985, 209-221.

[10] Galil Z.: Efficient Algorithms for Finding Maximum Matching in Graphs, Computing Surveys, 1986, 23--38.

[11] Gondran M., Minoux M.: Graphs and Algorithms, Wiley & Sons, 1984, 283-284.

[12] IIopcroft J. E., Karp R. M.: An n 5/~ Algorithm for Maximum Matching in Bipartite Graphs, SIAM J. Comput.,
1973, 225-231.

[13] Kariv O.: An O(n ~5) Algorithm for Maximum Matching in General Graphs, Ph.D. thesis, Dept. of Applied
Mathematics, Weizmann Institute of Science, Rehovort, Israel, 1976.

[14] Lawler E.: Combinatorial Optimization, Networks and Matroids, Holt, Rinehart and Winston, 1976.

[15] Micali S., Vazirani V. V.: An O(v /~[. IEI) Algorithm for Finding Maximum Matching in General Graphs,
FOCS, 21 (1980), 12-27.

[16] Papadimitriou C. H., Steiglitz K.: Combinatorial Optimization, Algorithms and Complexity, Prentice-Hall,
1982.

[17] Peterson P. A., Lout M. C.: The General Matching Algorithm of Micali and Vazirani, Algorithmica, 1988,
511-533.

[18] Tarjan J. E.: Data Structures and Network Algorithms, SIAM, 1983.

[19] Vazirani V. V.: A Theory of Alternating Paths and Blossoms for Proving Correctness of the O(v/'VE) General
Graph Matching Algorithm, TP~ 89-1035, Dept. of Computer Science, Cornell University, Sept. 1989.

[20] Witzgall C., Zahn C. T. Jr.: Modification of Edmond's Maximum Matching Algorithm, J. Res. Nat. Bur.
Standards, 69 B (1965), 91-98.

