arXiv:1012.5911v1 [cs.DS] 29 Dec 2010

Near approximation of maximum weight matching
through efficient weight reduction

Cui Di' and Andrzej Lingas

Department of Computer Science, Lund University, 22100d,8weden.
dcdcsunny@nmei | . comAndr zej . Li ngas@s. | th. se

Abstract. Let G be an edge-weighted hypergraphromertices,m edges of size
O(1), where the edges have real weights in an intefallV’]. We show that if
we can approximate a maximum weight matchingAwithin factor « in time
T(n,m, W) then we can find a matching of weight at leést— ¢) times the
maximum weight of a matching i@’ in time
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particular, if we combine our result with the recémt— ¢)-approximation algo-
rithm for maximum weight matching in graphs with small edgeights due to
Duan and Pettie then we obt&ih — ¢)-approximation algorithm for maximum

weight matching in graphs running in tinfe™)° " (m + nlog n).

EICRINTH

1 Introduction

A hypergraphG consists of a set’ of vertices and a set of subsetslofcalled

edges of. In particular, if all the edges are of cardinality two th@ris a graph.
A matchingof G is a set of pairwise non-incident edgegaflf real weights are
assigned to the edges Gfthen amaximum weight matchingf  is a matching
of G whose total weight achieves the maximum.

The problem of finding a maximum weight matching in a hypgugres a
fundamental generalization of that of finding maximum caatity matching in
a graph. The latter is one of the basic difficult combinatgsiablems that still
admit polynomial-time solutions. For hypergraphs the sieai version of the
maximum weight matching problem is NP-hard even if the edgesof size
O(1) since it is a generalization of the problem of maximum weiglepen-
dent set for bounded degree graphs [15]. On the other hamghgooial-time
algorithms yielding d — 1+ 1/d)-approximation of maximum weight matching
in hypergraphs with edges of sideare known [3].

The fastest known algorithms for maximum weight matchingrepphs have
substantially super-quadratic time complexity in terms$hef numbem of ver-
tices of the input graphif [11, 12, 21]. For these reasons, there is a lot of interest
in designing faster approximation algorithms for maximureigit matching
[4-6, 14,19, 20].
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Recently, even fast approximation schemes for maximum htematching
in graphs have been presentedrhe fastest known in the literature is due to
Duan and Pettie [7]. It yields @l — €)-approximation in timeD (me=2log® n)
for a connected graph omvertices andn edges with real edge weights. The
approximation scheme from [7] is a composition ofla— ¢)-approximate re-
duction of the problem in general edge weighted graphs toithgraphs with
small edge weights and an efficigfit — ¢)-approximate algorithm for graphs
with small edge weights.

1.1 Our contributions

Let G be an edge-weighted hypergraph owvertices,m edges of size)(1),
where the edges have size real weights in an intdival/’]. We show that if
we can approximate a maximum weight matchingsinvithin factor « in time
T(n,m,W) then we can find a matching of weight at least- ¢ times the
maximum weight of a matching i@ in time )
(e1)oW maxlquO(eli‘;g%) MaXy, 1 mg=m >4 1(n,myj, (€710 ).

This reduction of maximum weight matching in hypergraphtharbitralily
large edge weights to that in hypergraphs with small edgghteiis incompara-
ble to the aforementioned similar reduction for graphs ff@nin particular, if
we combine our reduction with the aforementioriéé- ¢)-approximation algo-
rithm for maximum weight matching in graphs with small edgagfts from [7]
then we obtain &1 — ¢)-approximation algorithm for maximum weight match-
ing in graphs running in timée‘l)‘o((l)(m + nlogn). In comparison with
the approximation scheme from [7], our approximation solésnmore truly
linear inn + m, as essentially free from the polylogarithmicrirfactor but for
very sparse graphs, at the cost of super-exponential depeadn:—".

As another corollary from our approximate edge-weight otida for hy-
pergraphs, we obtain also some results on approximatingnmuax weight in-
dependent set in graphs of bounded degree.

1.2 Other related results

As the problem of finding maximum weight matching in grapha iglassical
problem in combinatorial optimization there is an exteaditerature on it. It
includes such milestones as an early algorithm of Kuhn [a§in the bipartite
case, an algorithm of Edmond and Karp [8] running in tidm?), wheren

! In a preliminary version of this paper presented at SOFSHM®&tt Forum (January 2010), an
O(n” log n)-time approximation scheme for maximum weight matchingrepds has been
presented.



is the number of vertices and is the number of edges in the input graph, an
O(y/nmlog(nW)) and O(y/nlog nmlog(nW)) time bounds respectively in
bipartite and general graphs due to Gabow and Tarjan [11a$&liming integer
edge weights in—W, W]. The Hungarian algorithm [18] can be implemented
in time O(mn + n?logn) with the help of Fibonacci heaps [9] and this upper
bound can be extended to include general graphs [10].

More recently, Sankowski designed @fn* W )-time algorithm for the
weighted matching problem whexestands for the exponent of fast matrix mul-
tiplication known to not excee2l376, the edge weights are positive integers and
the input graph is bipartite [21].

There is also an extensive literature on fast approximagigorithms for
maximum weight matching in graphs [4—6, 14, 19, 20]. Typjctiey yield an
approximation within a constant factor betweérand aImost%, running in
time of orderm log®™") n. Already the straightforward greedy approach yields
-approximation in timed (m log n).

The maximum weight matching problem in hypergraphs is knaiso as a
set packing problem in combinatorial optimization [15]. 8yality it is equiv-
alent to maximum weight independent set and hence extretragly to ap-
proximate in polynomial time [13]. The most studied case akimum weight
matching in hypergraphs is that fdruniform hypergraphs where each edge is
of sized. Then a polynomial-timéd — 1 + 1/d)-approximation is possible [3].
By duality, one obtains also a polynomial-tif— 1 + 1/d)-approximation of
maximum weight independent set in graphs of degrésf. [15]).

2 Simple edge weight transformations

In this section, we describe two simple transformationshef ¢dge weights
in the input hypergrapldz such that arxv-approximation of maximum weight
matching in the resulting hypergraph yields (@n— ¢)-approximation of max-
imum weight matching ofy. We assume w.l.0.g. throughout the paper tHat
hasn vertices,m edges, and real edge weights not less tharhe largest edge
weight inG is denoted byV.

Lemma 1. Suppose that there is amapproximation algorithm for maximum
weight matching irG running in timeT'(n, m, W). Then, there is a® (n+m)-
time transformation o into an isomorphic hypergrap&™* with edge weights
in the interval[1, 2] such that the aforementioned algorithm run@hyields an
(a — €)-approximation of maximum weight matchingGhin time1'(n,m, 2).

Proof. We may assume w.l.o0.g th&lt' > . Note that the total weight of max-
imum weight matching i is at leasi?. Hence, if we transfornds to a hyper-



graphG’ by raising the weight of all edges il of weight smaller thad’< to
e then the following holds:

1. the maximum weight of a matching @ is not less than that i&;
2. any matching irG’ induces a matching i¥ whose weight is smaller by at
mosteW.

To find ana-approximation of maximum weight matching @&, we can
simply rescale the edge weights@ by multiplying them by-. Let G* de-
note the resulting graph. Now it is sufficient to run the asdgorithm onG*
to obtain an(a — e)-approximation of maximum weight matching @ Note
that the application of the algorithm will take tinfign, m, ). O

Lemma 2. Suppose that there is dn — €)-approximation algorithm for maxi-
mum weight matching i@ running in timeT” (n’, m’, W', ¢). By rounding down
each edge weight to the nearest powei of ¢ and then running théa — ¢)-
approximation algorithm on the resulting graph, we obtain @ — O(e))-
approximation of maximum weight matching Ghin time 7"(n, m, W, ) +
O(n+m).

Proof. Let e be any edge irtz. Denote its weight inG by w(e) and its weight
in the resulting graph by’ (e). We havew’(e)(1 + €) > w(e). Consequently,
we obtainw’(e) > w(e) — ew’(e) > (1 — €)w(e). It follows that a maximum
weight matching in the resulting graph has weight at léast times the weight
of a maximum weight matching if. Thus, if we run the asume@h — ¢)-
approximation algorithm on the resulting graph then thedpoed matching
with edge weights restored back to their original value$ yidld an (o — 2¢)-
approximation. a

3 Atransformation into an (a — €)-approximation algorithm

A subhypergraplof a hypergraphfd is any hypergraph that can be obtained
from H by deleting some vertices and some edges. A dass hypergraphs
such that any subhypergraph of a hypergrapltialso belongs t@ is called
hereditary

In this section, we present a transformation of a hypothetipproximation
algorithm for maximum weight matching in a hereditary fanof hypergraphs
with edges of sizeD(1) into a (a — ¢)-approximation algorithm. The run-
ning time of the(a — €)-approximation algorithm is close to that of the
approximation algorithm in case the largest edge weight &< ).



Theorem 1. Suppose that there is an algorithm for a maximum weight match
ing in any hypergraph having edges of si2¢1) and belonging to the same
hereditary class as: running in timeT'(n/,m', W') = Q2(n' + m'), wheren/,

m’ are respectively the number of vertices and edges|Banidl”] is the interval

to which all edge weights belong. There is(@n— ¢)-approximation algorithm
for a maximum weight matching @ running in time

(6_1)0(1) max log & ) MaXm, +...mg=m Z% T(n, m;, (6—1)0(571))'

1<q<0(e sy

Proof. We may assume w.l.o.g th& = O(n/e) and any edge weight is a
nonnegative integer power @f+ ¢ by Lemmata 1, 2. Order the values of the
edge weights iiG; in the increasing order. Sét= O(e~!) and! = [log, . 2].

By the form of the edge weights and the settind,dhe following holds.

Remark 1: For any two different edge weights; andws, if the number of
wy IS greater than that ab» by at least in the aforementioned ordering then
W1 > Wa.

In order to specify oufa — €)-approximation algorithm, we partition the
ordered edge weights into consecutive closed basic inggreach but perhaps
for the last, containing exactlyconsecutive edge weights, see Fig. 1.

n
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Fig. 1. Partitioning of edge weights & 3)

Next, we groupk-tuples of consecutive basic intervals into large inteyval
composed ok — 1 consecutive basic intervals followed by a single basiavate
called a gap. This partition corresponds to the situatioemthe so called shift
parameter: is set to0. Forx € {1, ..,k — 1}, the partition into alternating large
intervals and gaps is shifted hybasic intervals from the right, so the first large
interval from the right is composed solely bt 1 — x basic intervals, see Fig.
2. The maximal subgraph @f containing solely edges in the large intervals in
the partition is denoted b§/..

For our(a — €)-approximation algorithm for a maximum weight matching
in G see Fig. 3. We shall assume the definitions of the subgréph&:.. ;, M,
from the algorithm.



0 shift

{ [ gap [ gap | {
k-1 k-1 k-1
| | | | |
1 shift
gap [ ! gap [ I gap | {
k-1 k-1 k-2
| I | | | | |
2 shift
! gap ! Dogap i1 gap
ket k1 k-1

Fig. 2. An example of shift: I=3, k=3

Since the union of the gaps over all shifts covers all weigfse must a
shift where the gaps cover at mq@bf the weight of optimal matching af:.
Hence, there must be a shifisuch that the weight of optimal matchingd, is
at least(1 — 1/k) of the weight of optimal matching af. Thus, it is sufficient
to show thatM, closely approximates an-approximate weight matching of
G,.

Consider a maximum weight matchinogl/,. of GG, and thex-approximation
M, ; of a maximum weight matching af, ;, respectively. Note that/,. ; has
total weight not smaller than times the total weight o) M, restricted to the
edges inG, ;. On the other hand, each edgen M, ; can eliminate at most
O(1) edges ofOM, from all G, ; for i > j. The total weight of the at most
O(1) edges is only at most thefraction of the weight ot by Remark 1. Let
FEOM, denote the set of all edges @/, eliminated byM, = Uj M, ;. The
following two inequalities follow:

weight(My) + weight(EOM,) > a x weight(OM,)
e X weight(M,) > weight(EOM,)

Consequently, we obtain:

weight(M,) > axweight(OM,)—exweight(M,) > (a—e)xweight(OM,)



Algorithm 1

1. forz«+ 1tok—1do
2. M, <+ 0;
3. Gl — Gy
4, for j <-1to O(log,, 2) do
5. begin
6. SetG.,; to the sub-hypergraph @, induced by the edges whose weights
7. fall in the jth interval from the right;
8. Run thex-approximation algorithm for maximum weight matching, ; of G ;;
9. My + My Mg j;
10. Remove all edges incident A, ; from G7;
11. end

12. Return the heaviest among the matchif}s

Fig. 3. The (a — ¢)-approximation algorithm.

Thus, M, approximates withinx — e a maximum weight matching a¥,
and consequently the heaviest of the matchihfisapproximates withir{1 —
€)(1—1/k) a maximum weight matching &f. By settingk = 2(2), we obtain
an(1 — O(e))-approximation of the optimum.

It remains to estimate the time complexity of our method. eNibiat the
weight of heaviest edge i@¥, ; is at most

(1 + E)lk _ 0(6—1)0(671) _ (6—1)0(5*1)

times larger than that of the lightest one. e} ; denote the number of edges
in G, ;. Hence, by rescaling the weights @, ;, we can findM, ; in time
T(n,my j, (e71)O D) for j = 1..,0(logy . %/lk) andz = 0, ...,k — 1. Note

2l _ (e log n) and similarlylk = log,. 20(¢™") =

that10g1+e % = Tog T+e

2
@(1izg1_;ee‘1) = O(e2loge ). It follows that for a givenz, the largest value

of j, i.e., the number of the subgrapfis ; is O(eli(;gfl ).
Note thatzj m, ; < m since each edge ¢f belongs to at most one hyper-
graphG,. ;. Thus, the total time taken by finding alf,, ; for j = 1, ..., O(Ek{‘;i <)

for a fixedz is
o 2 DK g S0 T(n,myj, (e=1)O ). Recall that: ranges

—1

ax
1<g<0(e
overO(e~!) possible values.

By the assumed form of the edge weightsGhwe can apply a standard
radix sort withO(e~! log ) buckets to sort the edges Gfby their weights in



time O(m + ¢ 'log ). The latter is als@ (e =T (n,m, (¢~1) ) by the
assumptions off’.

In order to efficiently construct the graphis, ;, the sorted edge list is kept
in array and there are double links between an occurrenca efdge in the
adjacency lists representirig and its occurrence in the sorted edge list. To de-
termine the edges inducing, ;, we just scan a consecutive fragment of the
sorted list from left to right. Given a list of edges 6, ;, an adjacency rep-
resentation of the sub-hypergraph can be constructed ia @m + m) =
O(T(n,m, (e 1)°"1)) by using the aforementioned double links.

To remove an edge froif¥/, we locate it on the sorted edge list by using the
double links with the adjacency lists and then link its prsor with its suc-
cessor on the sorted list. We conclude that the updatés, ¢dke timeO(m) =
O(T(n,m, (e 1)O ), O

4  Applications

There are at least two known exact algorithms for maximunghtemnatching
in bipartite graphs with integer edge weights for which tipper time bounds
on their running time in linear fashion depend on the maxineaige weight?’
[16, 21]. Recently, Duan and Pettie have provided subsintinore efficient
1 — e approximation algorithm for maximum weight matching in gead graphs
with integer edge weights, whose running time also depemndd/oin linear
fashion.

Fact 1(Duan and Pettie, see the second section in fMj).1 —e)-approximation
of maximum weight matching in a connected grapmoadges and positive in-
teger weights not exceedify can be found deterministically in tin@@(m1¥V/e).

We can trivially generalize the upper time bound of Fact 1nude a non-
necessarily connected graph by extending it by an addiie®f ofO(n).

There is one technical difficulty in combining Facts 1 withebhem 1.
Namely, in the theorem we assume that there is availableagproximation al-
gorithm for maximum weight matching for graphs belonginght® same hered-
itary class ag= with arbitrary real edge weights not less thhmvhereas the
algorithm of Facts 1 assumes integer weights. In fact, eéreiinput graph
got positive integer weights the preliminary edge weigahsformations in the
proof of Theorem 1 would result in rational edge weights.réhg a simple rem-
edy for this. We may assume w.l.0.g thas an inverse of a positive integer and
through all the steps of our approximation scheme round dbeedge weights
to the nearest fraction with denominatofe ') and then multiply them by the
common denominator to get integer weights. This will insee¢he maximum
weight solely byO(¢~1) and will preserve close approximability.



Hence, Fact 1 combined in this way with Theorem 1 yield ourmagipli-
cation result by straightforward calculations.

Theorem 2. There is an approximation scheme for a maximum weight match-
ing in a graph onn vertices andm edges running in timge )¢ ) (m +
nlogn).

5 Extensions

Note that Theorem 1 includes as a special case the problemdifidi a max-
imum weight independent set in a graghof maximum degreel which is
equivalent to the problem of finding a maximum weight matghim the dual
hypergraph with edges corresponding to the vertices ahdvice versa

Several combinatorial algorithms for maximum independsttachieving
the approximation ratio a(d), whered is the maximum or average degree are
known in the literature [15]. Here, we demonstrate that bggithe method of
Theorem 1 they can be simply transformed into good apprai@malgorithms
for maximum weight independent set.

Lemma 3. Suppose that there is am(d)-approximation algorithm for maxi-
mum independent set in a grapherertices and maximum (or average degree,
respectively) degred running in timeS(n,d), where the functior§ is non-
decreasing in both arguments. There is@V)-approximation algorithm for
maximum weight independent set in a graphromertices, maximum (or av-
erage degree, respectively) degiéepositive integer weights not exceeding an
integer W, running in timeS(nW, dW).

Proof: Let G be the input vertex weighted gragh We form the auxiliary
unweighted grapl* on the base aofr as follows. InG*, we replace each vertex
v in G with the number of its copies equal to the weightwofWe connect
each copy ol by an edge with each copy of each neighbov oRNext, we run
the assumed algorithm for maximum unweighted independsrirsG*. Note
that any maximal independent &* is in one-to-one correspondence with an
independent set iy since whenever a copy ofis in the independent set then
all other copies of can be inserted into it without any conflicts. a

The drawback of Lemma 3 is that the approximation factor @mnitive run-
ning time of the resulting algorithm for the weighted casa ba very large
in case the maximum weight is large. However, we can plug Lemma 3 in
the method of Theorem 1 to obtain much more interesting agmpaiion algo-
rithms in the weighted case.



Theorem 3. Suppose that there is an(d)-approximation algorithm for maxi-
mum independent set in a graph arvertices and maximum degrédaunning

in time S(n, d), where the functior$ is non-decreasing in both arguments and
S(n,d) = R(ndlogn). There is ana(de )0 ")) — de)-approximation al-
gorithm for maximum weight independent set in a graphnovertices, with
maximum degreé, positive integer vertex weights, running in time

o( log("/ﬁ)s(n(e—l)O(efl)’ d(e—l)O(efl)))_

€ loge—1

Proof. sketch. Recall that the problem of maximum (weighted or ughted)
independent set is equivalent to the problem of maximumdied or un-
weighted, respectively) matching in the dual hypergraphthie dual hyper-
graph, the edges have size not exceeding the maximum vesggeeal in the
input graph. We run the method of Theorem 1 on the dual hyaplgusing as
the black box algorithm the result of the application of Lean®to the assumed
algorithm and its adaptation to the maximum matching proklethe dual hy-
pergraph. O
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