
ar
X

iv
:1

01
2.

59
11

v1
 [

cs
.D

S
]

29
 D

ec
 2

01
0

Near approximation of maximum weight matching
through efficient weight reduction

Cui Di1 and Andrzej Lingas1

Department of Computer Science, Lund University, 22100 Lund, Sweden.
dcdcsunny@gmail.com Andrzej.Lingas@cs.lth.se

Abstract. LetG be an edge-weighted hypergraph onn vertices,m edges of size
O(1), where the edges have real weights in an interval[1, W]. We show that if
we can approximate a maximum weight matching inG within factorα in time
T (n,m,W) then we can find a matching of weight at least(α − ǫ) times the
maximum weight of a matching inG in time

(ǫ−1)O(1) max
1≤q≤O(ǫ

log n

ǫ

log ǫ−1
)
maxm1+...mq=m

∑q

1 T (n,mj , (ǫ
−1)O(ǫ−1)). In

particular, if we combine our result with the recent(1 − ǫ)-approximation algo-
rithm for maximum weight matching in graphs with small edge weights due to
Duan and Pettie then we obtain(1 − ǫ)-approximation algorithm for maximum

weight matching in graphs running in time(ǫ−1)O(ǫ−1)(m+ n log n).

1 Introduction

A hypergraphG consists of a setV of vertices and a set of subsets ofV called
edges ofG. In particular, if all the edges are of cardinality two thenG is a graph.
A matchingof G is a set of pairwise non-incident edges ofG. If real weights are
assigned to the edges ofG then amaximum weight matchingof G is a matching
of G whose total weight achieves the maximum.

The problem of finding a maximum weight matching in a hypergraph is a
fundamental generalization of that of finding maximum cardinality matching in
a graph. The latter is one of the basic difficult combinatorial problems that still
admit polynomial-time solutions. For hypergraphs the decision version of the
maximum weight matching problem is NP-hard even if the edgesare of size
O(1) since it is a generalization of the problem of maximum weightindepen-
dent set for bounded degree graphs [15]. On the other hand, polynomial-time
algorithms yielding(d−1+1/d)-approximation of maximum weight matching
in hypergraphs with edges of sized are known [3].

The fastest known algorithms for maximum weight matching ingraphs have
substantially super-quadratic time complexity in terms ofthe numbern of ver-
tices of the input graphG [11, 12, 21]. For these reasons, there is a lot of interest
in designing faster approximation algorithms for maximum weight matching
[4–6, 14, 19, 20].

http://arxiv.org/abs/1012.5911v1

Recently, even fast approximation schemes for maximum weight matching
in graphs have been presented1. The fastest known in the literature is due to
Duan and Pettie [7]. It yields a(1 − ǫ)-approximation in timeO(mǫ−2 log3 n)
for a connected graph onn vertices andm edges with real edge weights. The
approximation scheme from [7] is a composition of a(1 − ǫ)-approximate re-
duction of the problem in general edge weighted graphs to that in graphs with
small edge weights and an efficient(1 − ǫ)-approximate algorithm for graphs
with small edge weights.

1.1 Our contributions

Let G be an edge-weighted hypergraph onn vertices,m edges of sizeO(1),
where the edges have size real weights in an interval[1, W]. We show that if
we can approximate a maximum weight matching inG within factorα in time
T (n,m,W) then we can find a matching of weight at leastα − ǫ times the
maximum weight of a matching inG in time
(ǫ−1)O(1)max

1≤q≤O(ǫ
log n

ǫ
log ǫ−1)

maxm1+...mq=m
∑q

1 T (n,mj, (ǫ
−1)O(ǫ−1)).

This reduction of maximum weight matching in hypergraphs with arbitralily
large edge weights to that in hypergraphs with small edge weights is incompara-
ble to the aforementioned similar reduction for graphs from[7]. In particular, if
we combine our reduction with the aforementioned(1− ǫ)-approximation algo-
rithm for maximum weight matching in graphs with small edge weights from [7]
then we obtain a(1− ǫ)-approximation algorithm for maximum weight match-
ing in graphs running in time(ǫ−1)−O(ǫ−1)(m + n log n). In comparison with
the approximation scheme from [7], our approximation scheme is more truly
linear inn +m, as essentially free from the polylogarithmic inn factor but for
very sparse graphs, at the cost of super-exponential dependence onǫ−1.

As another corollary from our approximate edge-weight reduction for hy-
pergraphs, we obtain also some results on approximating maximum weight in-
dependent set in graphs of bounded degree.

1.2 Other related results

As the problem of finding maximum weight matching in graphs isa classical
problem in combinatorial optimization there is an extensive literature on it. It
includes such milestones as an early algorithm of Kuhn [18] just in the bipartite
case, an algorithm of Edmond and Karp [8] running in timeO(nm2), wheren

1 In a preliminary version of this paper presented at SOFSEM Student Forum (January 2010), an
O(nω log n)-time approximation scheme for maximum weight matching in graphs has been
presented.

is the number of vertices andm is the number of edges in the input graph, an
O(

√
nm log(nW)) andO(

√
n log nm log(nW)) time bounds respectively in

bipartite and general graphs due to Gabow and Tarjan [11, 12], assuming integer
edge weights in[−W,W]. The Hungarian algorithm [18] can be implemented
in timeO(mn + n2 log n) with the help of Fibonacci heaps [9] and this upper
bound can be extended to include general graphs [10].

More recently, Sankowski designed anO(nωW)-time algorithm for the
weighted matching problem whereω stands for the exponent of fast matrix mul-
tiplication known to not exceed2.376, the edge weights are positive integers and
the input graph is bipartite [21].

There is also an extensive literature on fast approximationalgorithms for
maximum weight matching in graphs [4–6, 14, 19, 20]. Typically they yield an
approximation within a constant factor between1

2 and almost45 , running in
time of orderm logO(1) n. Already the straightforward greedy approach yields
1
2 -approximation in timeO(m log n).

The maximum weight matching problem in hypergraphs is knownalso as a
set packing problem in combinatorial optimization [15]. Byduality it is equiv-
alent to maximum weight independent set and hence extremelyhard to ap-
proximate in polynomial time [13]. The most studied case of maximum weight
matching in hypergraphs is that ford-uniform hypergraphs where each edge is
of sized. Then a polynomial-time(d− 1 + 1/d)-approximation is possible [3].
By duality, one obtains also a polynomial-time(d− 1+ 1/d)-approximation of
maximum weight independent set in graphs of degreed (cf. [15]).

2 Simple edge weight transformations

In this section, we describe two simple transformations of the edge weights
in the input hypergraphG such that anα-approximation of maximum weight
matching in the resulting hypergraph yields an(α − ǫ)-approximation of max-
imum weight matching ofG. We assume w.l.o.g. throughout the paper thatG
hasn vertices,m edges, and real edge weights not less than1. The largest edge
weight inG is denoted byW.

Lemma 1. Suppose that there is anα-approximation algorithm for maximum
weight matching inG running in timeT (n,m,W). Then, there is anO(n+m)-
time transformation ofG into an isomorphic hypergraphG∗ with edge weights
in the interval[1, nǫ] such that the aforementioned algorithm run onG∗ yields an
(α− ǫ)-approximation of maximum weight matching inG in timeT (n,m, nǫ).

Proof. We may assume w.l.o.g thatW > n
ǫ . Note that the total weight of max-

imum weight matching inG is at leastW. Hence, if we transformG to a hyper-

graphG′ by raising the weight of all edges inG of weight smaller thanWǫ
n to

Wǫ
n then the following holds:

1. the maximum weight of a matching inG′ is not less than that inG;

2. any matching inG′ induces a matching inG whose weight is smaller by at
mostǫW.

To find anα-approximation of maximum weight matching inG′, we can
simply rescale the edge weights inG′ by multiplying them by n

Wǫ . Let G∗ de-
note the resulting graph. Now it is sufficient to run the asumed algorithm onG∗

to obtain an(α − ǫ)-approximation of maximum weight matching inG. Note
that the application of the algorithm will take timeT (n,m, nǫ). ⊓⊔

Lemma 2. Suppose that there is an(α− ǫ)-approximation algorithm for maxi-
mum weight matching inG running in timeT ′(n′,m′,W ′, ǫ). By rounding down
each edge weight to the nearest power of1 + ǫ and then running the(α − ǫ)-
approximation algorithm on the resulting graph, we obtain an (α − O(ǫ))-
approximation of maximum weight matching inG in time T ′(n,m,W, ǫ) +
O(n+m).

Proof. Let e be any edge inG. Denote its weight inG by w(e) and its weight
in the resulting graph byw′(e). We havew′(e)(1 + ǫ) ≥ w(e). Consequently,
we obtainw′(e) ≥ w(e) − ǫw′(e) ≥ (1 − ǫ)w(e). It follows that a maximum
weight matching in the resulting graph has weight at least1−ǫ times the weight
of a maximum weight matching inG. Thus, if we run the asumed(α − ǫ)-
approximation algorithm on the resulting graph then the produced matching
with edge weights restored back to their original values will yield an(α − 2ǫ)-
approximation. ⊓⊔

3 A transformation into an (α − ǫ)-approximation algorithm

A subhypergraphof a hypergraphH is any hypergraph that can be obtained
from H by deleting some vertices and some edges. A classC of hypergraphs
such that any subhypergraph of a hypergraph inC also belongs toC is called
hereditary.

In this section, we present a transformation of a hypotheticα-approximation
algorithm for maximum weight matching in a hereditary family of hypergraphs
with edges of sizeO(1) into a (α − ǫ)-approximation algorithm. The run-
ning time of the(α − ǫ)-approximation algorithm is close to that of theα-
approximation algorithm in case the largest edge weight isǫ−O(ǫ−1).

Theorem 1. Suppose that there is an algorithm for a maximum weight match-
ing in any hypergraph having edges of sizeO(1) and belonging to the same
hereditary class asG running in timeT (n′,m′,W ′) = Ω(n′ +m′), wheren′,
m′ are respectively the number of vertices and edges, and[1,W ′] is the interval
to which all edge weights belong. There is an(α− ǫ)-approximation algorithm
for a maximum weight matching inG running in time
(ǫ−1)O(1)max

1≤q≤O(ǫ
log n

ǫ
log ǫ−1)

maxm1+...mq=m
∑q

1 T (n,mj, (ǫ
−1)O(ǫ−1)).

Proof. We may assume w.l.o.g thatW = O(n/ǫ) and any edge weight is a
nonnegative integer power of1 + ǫ by Lemmata 1, 2. Order the values of the
edge weights inG in the increasing order. Setk = O(ǫ−1) andl = ⌈log1+ǫ

2
ǫ ⌉.

By the form of the edge weights and the setting ofl, the following holds.

Remark 1: For any two different edge weightsw1 andw2, if the number of
w1 is greater than that ofw2 by at leastl in the aforementioned ordering then
ǫ
2w1 ≥ w2.

In order to specify our(α − ǫ)-approximation algorithm, we partition the
ordered edge weights into consecutive closed basic intervals, each but perhaps
for the last, containing exactlyl consecutive edge weights, see Fig. 1.

l=3l=3

 (1+e)0 (1+e)1 (1+e)2 (1+e)3 (1+e)4 (1+e)
log(1+e)

n

e

Fig. 1. Partitioning of edge weights (l = 3)

Next, we groupk-tuples of consecutive basic intervals into large intervals
composed ofk−1 consecutive basic intervals followed by a single basic interval
called a gap. This partition corresponds to the situation when the so called shift
parameterx is set to0. Forx ∈ {1, .., k− 1}, the partition into alternating large
intervals and gaps is shifted byx basic intervals from the right, so the first large
interval from the right is composed solely ofk − 1− x basic intervals, see Fig.
2. The maximal subgraph ofG containing solely edges in the large intervals in
the partition is denoted byGx.

For our(α − ǫ)-approximation algorithm for a maximum weight matching
in G see Fig. 3. We shall assume the definitions of the subgraphsG′

x, Gx,j,Mx

from the algorithm.

 l l l l l l l l

 l l l l l l l l

 l l l l l l l l

k-1

2 shift

1 shift

0 shift

gap gap gap
k-1 k-1k-1

k-2

gap gap

gap

gap

k-1 k-1

k-1

gap

k-1

Fig. 2. An example of shift: l=3, k=3

Since the union of the gaps over all shifts covers all weightsthere must a
shift where the gaps cover at most1

k of the weight of optimal matching ofG.
Hence, there must be a shiftx such that the weight of optimal matching inGx is
at least(1 − 1/k) of the weight of optimal matching ofG. Thus, it is sufficient
to show thatMx closely approximates anα-approximate weight matching of
Gx.

Consider a maximum weight matchingOMx ofGx and theα-approximation
Mx.j of a maximum weight matching ofGx,j, respectively. Note thatMx,j has
total weight not smaller thanα times the total weight ofOMx restricted to the
edges inGx,j . On the other hand, each edgee in Mx,j can eliminate at most
O(1) edges ofOMx from all Gx,i for i > j. The total weight of the at most
O(1) edges is only at most theǫ fraction of the weight ofe by Remark 1. Let
EOMx denote the set of all edges inOMx eliminated byMx =

⋃
j Mx,j. The

following two inequalities follow:

weight(Mx) + weight(EOMx) ≥ α× weight(OMx)

ǫ×weight(Mx) ≥ weight(EOMx)

Consequently, we obtain:

weight(Mx) ≥ α×weight(OMx)−ǫ×weight(Mx) ≥ (α−ǫ)×weight(OMx)

Algorithm 1

1. for x← 1 to k − 1 do
2. Mx ← ∅;
3. G′

x ← Gx;
4. for j ← 1 to O(log1+ǫ

n
ǫ
) do

5. begin
6. SetGx,j to the sub-hypergraph ofG′

x induced by the edges whose weights
7. fall in thejth interval from the right;
8. Run theα-approximation algorithm for maximum weight matchingMx,j of Gx,j ;
9. Mx ←Mx

⋃
Mx,j ;

10. Remove all edges incident toMx,j from G′
x;

11. end
12. Return the heaviest among the matchingsMx

Fig. 3.The(α− ǫ)-approximation algorithm.

Thus,Mx approximates withinα − ǫ a maximum weight matching ofGx,
and consequently the heaviest of the matchingsMx approximates within(1 −
ǫ)(1−1/k) a maximum weight matching ofG. By settingk = Ω(1ǫ), we obtain
an(1−O(ǫ))-approximation of the optimum.

It remains to estimate the time complexity of our method. Note that the
weight of heaviest edge inGx,j is at most

(1 + ǫ)lk = O(ǫ−1)O(ǫ−1) = (ǫ−1)O(ǫ−1)

times larger than that of the lightest one. Letmx,j denote the number of edges
in Gx,j . Hence, by rescaling the weights inGx,j, we can findMx,j in time
T (n,mx,j, (ǫ

−1)O(ǫ−1)) for j = 1.., O(log1+ǫ
n
ǫ /lk) andx = 0, ..., k− 1. Note

that log1+ǫ
n
ǫ =

log n
ǫ

log 1+ǫ = Θ(ǫ−1 log n
ǫ) and similarlylk = log1+ǫ

2
ǫΘ(ǫ−1) =

Θ(
log 2

ǫ

log 1+ǫǫ
−1) = Θ(ǫ−2 log ǫ−1). It follows that for a givenx, the largest value

of j, i.e., the number of the subgraphsGx,j isO(ǫ
log n

ǫ

log ǫ−1).

Note that
∑

j mx,j ≤ m since each edge ofG belongs to at most one hyper-

graphGx,j . Thus, the total time taken by finding allMx,j for j = 1, ..., O(ǫ
log n

ǫ

log ǫ−1)
for a fixedx is
max

1≤q≤O(ǫ
log n

ǫ
log ǫ−1)

maxm1+...mq=m
∑q

1 T (n,mj, (ǫ
−1)O(ǫ−1)). Recall thatx ranges

overO(ǫ−1) possible values.

By the assumed form of the edge weights inG, we can apply a standard
radix sort withO(ǫ−1 log n

ǫ) buckets to sort the edges ofG by their weights in

time O(m + ǫ−1 log n
ǫ). The latter is alsoO(ǫ−2T (n,m, (ǫ−1)O(ǫ−1))) by the

assumptions onT.
In order to efficiently construct the graphsGx,j, the sorted edge list is kept

in array and there are double links between an occurrence of an edge in the
adjacency lists representingG and its occurrence in the sorted edge list. To de-
termine the edges inducingGx,j, we just scan a consecutive fragment of the
sorted list from left to right. Given a list of edges ofGx,j, an adjacency rep-
resentation of the sub-hypergraph can be constructed in time O(n + m) =
O(T (n,m, (ǫ−1)O(ǫ−1))) by using the aforementioned double links.

To remove an edge fromG′
x, we locate it on the sorted edge list by using the

double links with the adjacency lists and then link its predecessor with its suc-
cessor on the sorted list. We conclude that the updates ofG′

x take timeO(m) =
O(T (n,m, (ǫ−1)O(ǫ−1))). ⊓⊔

4 Applications

There are at least two known exact algorithms for maximum weight matching
in bipartite graphs with integer edge weights for which the upper time bounds
on their running time in linear fashion depend on the maximumedge weightW
[16, 21]. Recently, Duan and Pettie have provided substantially more efficient
1− ǫ approximation algorithm for maximum weight matching in general graphs
with integer edge weights, whose running time also depends on W in linear
fashion.

Fact 1(Duan and Pettie, see the second section in [7]).An(1−ǫ)-approximation
of maximum weight matching in a connected graph onm edges and positive in-
teger weights not exceedingW can be found deterministically in timeO(mW/ǫ).

We can trivially generalize the upper time bound of Fact 1 to include a non-
necessarily connected graph by extending it by an additive factor ofO(n).

There is one technical difficulty in combining Facts 1 with Theorem 1.
Namely, in the theorem we assume that there is available anα-approximation al-
gorithm for maximum weight matching for graphs belonging tothe same hered-
itary class asG with arbitrary real edge weights not less than1 whereas the
algorithm of Facts 1 assumes integer weights. In fact, even if the input graph
got positive integer weights the preliminary edge weight transformations in the
proof of Theorem 1 would result in rational edge weights. There is a simple rem-
edy for this. We may assume w.l.o.g thatǫ is an inverse of a positive integer and
through all the steps of our approximation scheme round downthe edge weights
to the nearest fraction with denominatorO(ǫ−1) and then multiply them by the
common denominator to get integer weights. This will increase the maximum
weight solely byO(ǫ−1) and will preserve close approximability.

Hence, Fact 1 combined in this way with Theorem 1 yield our main appli-
cation result by straightforward calculations.

Theorem 2. There is an approximation scheme for a maximum weight match-
ing in a graph onn vertices andm edges running in time(ǫ−1)O(ǫ−1)(m +
n log n).

5 Extensions

Note that Theorem 1 includes as a special case the problem of finding a max-
imum weight independent set in a graphG of maximum degreed which is
equivalent to the problem of finding a maximum weight matching in the dual
hypergraph with edges corresponding to the vertices ofG andvice versa.

Several combinatorial algorithms for maximum independentset achieving
the approximation ratio ofO(d), whered is the maximum or average degree are
known in the literature [15]. Here, we demonstrate that by using the method of
Theorem 1 they can be simply transformed into good approximation algorithms
for maximum weight independent set.

Lemma 3. Suppose that there is anα(d)-approximation algorithm for maxi-
mum independent set in a graph onn vertices and maximum (or average degree,
respectively) degreed running in timeS(n, d), where the functionS is non-
decreasing in both arguments. There is anα(dW)-approximation algorithm for
maximum weight independent set in a graph onn vertices, maximum (or av-
erage degree, respectively) degreed, positive integer weights not exceeding an
integerW, running in timeS(nW, dW).

Proof: Let G be the input vertex weighted graphG. We form the auxiliary
unweighted graphG∗ on the base ofG as follows. InG∗, we replace each vertex
v in G with the number of its copies equal to the weight ofv. We connect
each copy ofv by an edge with each copy of each neighbor ofv. Next, we run
the assumed algorithm for maximum unweighted independent set onG∗. Note
that any maximal independent inG∗ is in one-to-one correspondence with an
independent set inG since whenever a copy ofv is in the independent set then
all other copies ofv can be inserted into it without any conflicts. ⊓⊔

The drawback of Lemma 3 is that the approximation factor and/or the run-
ning time of the resulting algorithm for the weighted case can be very large
in case the maximum weightW is large. However, we can plug Lemma 3 in
the method of Theorem 1 to obtain much more interesting approximation algo-
rithms in the weighted case.

Theorem 3. Suppose that there is anα(d)-approximation algorithm for maxi-
mum independent set in a graph onn vertices and maximum degreed running
in timeS(n, d), where the functionS is non-decreasing in both arguments and
S(n, d) = Ω(nd log n). There is an(α(dǫ−1)O(ǫ−1)) − dǫ)-approximation al-
gorithm for maximum weight independent set in a graph onn vertices, with
maximum degreed, positive integer vertex weights, running in time
O(ǫ log(n/ǫ)

log ǫ−1 S(n(ǫ−1)O(ǫ−1), d(ǫ−1)O(ǫ−1))).

Proof. sketch. Recall that the problem of maximum (weighted or unweighted)
independent set is equivalent to the problem of maximum (weighted or un-
weighted, respectively) matching in the dual hypergraph. In the dual hyper-
graph, the edges have size not exceeding the maximum vertex degree in the
input graph. We run the method of Theorem 1 on the dual hypergraph using as
the black box algorithm the result of the application of Lemma 3 to the assumed
algorithm and its adaptation to the maximum matching problem in the dual hy-
pergraph. ⊓⊔

6 Acknowledgments

The authors are grateful to anonymous referees for valuablecomments on a
preliminary version of the paper.

References

1. P. Berman. Ad/2 Approximation for Maximum Weight Independent Set ind-Claw Free
Graphs. Proc. 7th SWAT, Lecture Notes in Computer Science, Springer, Volume 1851, pp.
31-49, 2000.

2. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.2nd
edition, McGraw-Hill Book Company, Boston, MA, 2001.

3. Y.H. Chan and L.C. Lau. On Linear and Semidefinite Programming Relaxations for Hyper-
graph Matching. Proc.

4. D. Drake and S. Hougardy. A simple approximation algorithm for the weighted matching
problem.Info. Proc. Lett., 85:211-213, 2003.

5. D. Drake and S. Hougardy. Linear time local improvements for weighted matchings in
graphs. International Workshops on Experimental and Efficient Algorithms (WEA), LNCS
2647, pages 107-119, 2003.

6. D. Drake and S. Hougardy. Improved linear time approximation algorithms for weighted
matchings.7th International Workshops on Randomization and Approximation Techniques
in Computer Science (APPROX), LNCS 2764, pages 14-23, 2003.

7. R. Duan andS. Pettie. Approximating Maximum Weight Matching in Near-linear Time.
Proc. FOCS 2010.

8. J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Net-
work Flow Problems.J. ACM, 19(2):248-264, 1972.

9. M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM, vol. 23, no. 2, pp. 596-615, 1987.

10. H. N. Gabow. Data structures for weighted matching and nearest common ancestors with
linking. First Annual ACM-SIAM Symposium on Discrete Algorithms(SODA), pages 434-
443, 1990.

11. H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems.SIAM J.
Comput., 18(5):1013-1036, 1989.

12. H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching prob-
lems.J. ACM, 38(4):815-853, 1991.

13. J. Hastad. Clique is Hard to Approximate withinn1−ǫ. Acta Math 182(1), pp. 105-142,
1999.

14. Hanke and Hougardy.3/4 − ǫ and 4/5 − ǫ approximate MWM algorithms running in
O(mlogn) andO(mlog2n) time University of Bonn, Research Institute for Discrete Math-
ematics Report No. 101010.

15. D. S. Hochbaum, Approximating Covering and Packing Problems: Set Cover, Vertex Cover,
Independent Set, and Related Problems in Approximation Algorithms for NP-hard Prob-
lems, D.S. Hochbaum (ed.), PWS Publishing Company, Boston,1997.

16. M.-Y. Kao, T.-W. Lam, W.-K. Sung and H.-F. Ting. A Decomposition Theorem for Maxi-
mum Weight Bipartite Matchings with Applications to Evolutionary Trees. Proc. European
Symposium on Algorithms (ESA 1999), LNCS 1643, Springer Verlag, pp. 438-449, 1999.

17. R. M. Karp, E. Upfal and A. Wigderson. Constructing a perfect matching is in random nc.
Combinatorica, 6(1):35-48, 1986.

18. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83-97, 1955.

19. S. Pettie and P. Sanders. A simple linear time 2/3-ǫ approximation for maximum weight
matching.Information Processing Letters, 91:271-276, 2004.

20. R. Preis. Linear time 1/2-approximation algorithm for maximum weighted matching in
general graphs.Proc. 16th Ann. Symp. on Theoretical Aspects of Computer Science (STACS),
LNCS 1563, pages 259-269, 1999.

21. P. Sankowski. Weighted bipartite matching in matrix multiplication time.LNCS 4051, pages
274-285, 2006.

