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We discuss an adaptation of the famous primal-dual 1-
matching algorithm to balanced network flows which
can be viewed as a network flow description of ca-
pacitated matching problems. This method is en-
dowed with a sophisticated start-up procedure which
eventually makes the algorithm strongly polynomial.
We apply the primal-dual algorithm to the shortest
valid path problem with arbitrary arc lengths, and
so end up with a new complexity bound for this
problem. © 2002 John Wiley & Sons, Inc.
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1. PRELIMINARIES

In this paper, we discuss an adaptation of the famous
primal-dual 1-matching algorithm of Edmonds [3] to bal-
anced network flows. The reader who is familiar with
matching theory will easily recognize the specialization
to Edmonds’ algorithm.

Before we start the description of the algorithm, we
summarize the polyhedral and duality results given in
Part (VI) of this series [6]. We do not repeat all notation
and theory which would be helpful for a complete un-
derstanding. The reader is asked to consult Part (I) [4]
for an introduction to the general framework. Parts (II)–
(VI) or other sources about matching problems are not
needed.
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In Part (VI), we defined an odd skew cut (A1, A2) of a
balanced flow network as follows: There is a bipartition
of the node set V(N) = U " Ū such that U (the interior)
and Ū (the exterior) are symmetric, γN(U, Ū) = A1 "A2,
and

scap(A1, A2) := ucap(A1) − lcap(A2)

is odd. The set of odd skew cuts is denoted by O(N). We
proved that

minimize
∑

a∈A(N)
c(a)f(a)

subject to

(p1a) f(a) ≥ lcap(a) ∀a ∈ A(N)
(p1b) f(a) ≤ ucap(a) ∀a ∈ A(N)
(p2) f(a) = f(a′) ∀a ∈ A(N)
(p3) e(v) = 0 ∀v ∈ V(N)
(p4) f(A2) − f(A1) ≥ scap(A1, A2) + 1 ∀(A1, A2) ∈ O(N)

is a complete (but redundant) LP description for the
problem of finding a min-cost balanced circulation. As
an example, consider the network in Figure 1 with 0–
1 capacities and the cost labels shown in this figure.
This network admits a fractional balanced circulation
f1 = 1

2 χp, p = (1, 2, 4′, 3, 4, 2′, 1). Here, χp := fp + fp′

and fp is the elementary flow or incidence vector of the
path p, defined by

fp(a) :=







+1 if a is a forward arc,
−1 if a is a backward arc,
0 otherwise.







A half-integral balanced circulation is said to be pseu-
dobasic if the fractional arcs form disjoint, self-
symmetric cycles. These cycles form the odd-cycles sys-
tem. The circulation f1 in our example is pseudobasic
with odd cycles (1, 2, 1′, 2′, 1) and (3, 4, 3′, 4′, 3). We men-
tion that f1 is a vertex of the fractional balanced circu-
lation polytope which is constituted by the constraints
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FIG. 1. A balanced flow network.

(p1a), (p1b), (p2), and (p3). On the other hand, the solu-
tion f1 violates the skew-cut constraint

f(2, 4′) − f(1′, 4′) − f(2, 3) − f(1, 3′) ≤ 0

and, hence, is not a convex combination of balanced cir-
culations.

We do not need an explicit LP-dual problem here. In-
stead of this, we define a symmetric dual solution as a
pair (π, φ), where π ∈ RV(N), φ ∈ RO(N), φ ≥ 0, π(v) =
−π(v) for every node v ∈ V(N), and φ(A1, A2) =
φ(A′

1, A′
2) for every skew cut (A1, A2) ∈ O(N).

Note that the LP-dual would not include any symme-
try constraints. But adding such constraints preserves the
optimal dual objective value which has an important ben-
efit for our later algorithms: The reduced-length labels
which we will define next are symmetric.

34. COMPLEMENTARITY

The incidence vector χA1,A2 of a skew cut (A1, A2) is
defined by

χA1,A2 (a) :=







+1 if a ∈ A1,
−1 if a ∈ A2,
0 otherwise.







In accordance with [7], and as an extension of the
reduced-length labels for ordinary min-cost flow prob-
lems, we call

c
φ
π (a) := c(a) + π(a−) − π(a+) +

∑

(A1 ,A2)∈O(N)

χA1 ,A2 (a)φ(A1, A2)

the modified length of the arc a. Both incidence vectors
and modified-length labels are extended to the residual
network by taking χA1,A2 (ā) = −χA1,A2 (a). One obtains
the important complementary slackness optimality cri-
terion [6]:

Theorem 34.1. Let f be a balanced circulation on a
balanced flow network N. Then, f is optimal iff there is
a dual (π, φ) so that

(cs1) c
φ
π (a) ≥ 0, if rescapf(a) > 0,

(cs2) φ(A1, A2) = 0, if (A1, A2) ∈ O(N) is not tight.

A balanced pseudoflow f and a symmetric dual (π, φ)
which satisfy the complementary slackness conditions
(cs1) and (cs2) are called a complementary pair. Let

ucap0(a) :=
{

ucap(a), if cπ
φ(a) ≤ 0

lcap(a), if cπ
φ(a) > 0

}

,

lcap0(a) :=
{

lcap(a), if cπ
φ(a) ≥ 0

ucap(a), if cπ
φ(a) < 0

}

.

By Nπ
φ, we denote the balanced flow network which

is formed by V(N), A(N) and the capacity labels
cap0, lower0. This network is called the admissible
graph with respect to (π, φ). If there is no confusion
about the dual solution, we write N0 instead of Nπ

φ. Note
that N0(f) contains only arcs which have zero modified
length.

Corollary 34.2. Let f and (π, φ) be optimal. Then, f is
feasible for N0.

This statement is “one way” and does not indicate
how admissible graphs can help in finding primal optima.
In fact, our introductory example admits a circulation
f2 = χq, q = (1, 2, 3, 4, 1), which is not optimal, but is
feasible for Nπ

φ, π ≡ 0, φ({24′}, {1′4′, 23, 13′}) = 1.
But suppose that one has a complementary pair f and

(π, φ), where f is a balanced pseudoflow rather than a
circulation. Then, under certain circumstances, one can
augment on a pair of valid paths in N0(f), decreasing the
node imbalances while maintaining the compatibility: An
augmenting path is called a traversal path if it is valid
with respect to N0(f) and if it satisfies χpχA1,A2 = 0 for
every tight skew cut (A1, A2) ∈ O(N).
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Lemma 34.3. Let f and (π, φ) be a complementary
pair, and p, a traversal path. Then, the pair g :≡ f + χp

and (π, φ) is also complementary.

Proof. Since g is feasible for N0, it satisfies the
slackness constraints (cs1). Let (A1, A2) ∈ O(N) be a
skew cut. Then, we have

g(A1) − g(A2) = f(A1) + χp(A1) − f(A2) − χp(A2)
= f(A1) − f(A2) + χpχA1,A2 .

If (A1, A2) is tight with respect to f, then, by hypothe-
sis, χpχA1,A2 = 0, and, thus, it is also tight with respect
to g. But if (A1, A2) is not tight with respect to g, then
φ(A1, A2) = 0 holds by the complementarity of f and
(π, φ).

A balanced flow which is optimal among all balanced
flows with equal value is called extreme. The next state-
ment shows the strong relationship between PD algo-
rithms and shortest path algorithms.

Observation 34.4. Let f be a balanced st-flow, and
(π, φ), a symmetric dual which form a complementary
pair. Then, f is extreme. If p is a traversal st-path, then
p is a shortest valid st-path and c(p) = −2π(s).

Proof. Put lcap(ts) = f(ts) = ucap(ts) := val(f).
Then, f and (π, φ) are still complementary. Hence, f is
optimal for the modified problem by Theorem 34.1, that
is, f is extreme. If one applies Lemma 34.3 and repeats
the argument for g := f + χp, one can observe that this
flow is also extreme. But, then, p must be a shortest valid
st-path.

For every st-path in N0(f), we have cπ
φ(p) = 0.

Note that in cπ
φ(p) all node potentials π but π(s) and

π(t) cancel out. Since p is a traversal path, the terms
χA1,A2 (a)φ(A1, A2) in the definition of cπ

φ also vanish, that
is,

cπ
φ(p) = c(p) + π(s) − π(t) = c(p) + 2π(s) = 0.

FIG. 2. Shrinking a fragment.

We mention the possibility of algorithms which maintain
a feasible balanced circulation and a symmetric dual so-
lution and which reach compatibility eventually. Such
algorithms are called primal. However, the performance
of primal algorithms is inferior even in the 1-matching
case and, in the general situation, the existence of a poly-
nomial primal algorithm is an open problem.

In the next two sections, we develop the algorithmic
concepts which allow construction of traversal st-paths.
Since primal, shortest path, and primal-dual (PD) algo-
rithms all augment along traversal paths, these concepts
are somewhat more general than is the PD approach.

35. SHRINKING FAMILIES

As in [7], a fragment of a balanced network N is a
pair (U, a), where U is a self-complementary node set,
called the interior, and a is an arc in N[Ū, U], called the
prop. Blossoms and nuclei together with their props are
reasonable examples of fragments.

Shrinking a fragment (U, a) of a balanced network
N does the following: All interior nodes and arcs are
deleted from N. Instead of these, a new pair w, w′ of
nodes is introduced. The arcs incident with U are redi-
rected as follows:

• The new end node of a is w.
• The new start node of a′ is w′.
• The start node of other arcs in N[U, Ū] is w.
• The end node of other arcs in N[Ū, U] is w′.

This modification preserves the skew-symmetry of the
network. In Figure 2, the fragment ({3, 4, 3′, 4′}, 24′) of
our introductory example is shrunk.

A shrinking family in N is a set S of fragments so
that their interiors form a nested family. By this defi-
nition, the cardinality of a shrinking family is bounded
by O(n). This is important since, in practical matching
algorithms, all nonzero dual variables can be identified
with some member of the shrinking family.

The network which results from shrinking all maxi-
mal fragments of a family S is called the surface graph.
Note that these shrinking operations commute. Hence,
we can write NS irrespective of the special order. If no
confusion about S is possible, we write N̄ instead of
NS. Our main interest is in the network N0(f).

Lemma 35.1. Let U denote some blossom or nucleus
of the network N0(f). Then, there is a tight skew cut with
interior U.

Proof. For the arc â = prop(U)′, we have
rescapf(â) = rescapf(â′) = 1. Let a ∈ N[U, Ū]\{â}.
Note that rescapf(a) = 0 or rescapf(ā) = 0, since, oth-
erwise, c

φ
π (a) = 0 would hold by the compatibility of f

and (π, φ). But, then, a would be bicursal in N0(f).
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Hence, we can partition N[U, Ū] = A1 ! A2 ! {â} so
that

A1 := {a ∈ N[U, Ū] : rescapf(a) = 0, a ≠ â},

A2 := {a ∈ N[U, Ū] : rescapf(a) > 0, a ≠ â},

and f(A1) = ucap(A1), f(A2) = lcap(A2). If â is a for-
ward arc, it is added to A1. Otherwise, ¯̂a is added to A2.
This yields the desired tight skew cut.

We finally need to show that ucap(A1) − lcap(A2) is
odd. But this follows directly from Corollary 30.1 in [6]
which says that f(A1) − f(A2) is even.

Let us extend this construction principle to arbitrary
fragments (U, a) in the obvious way and call the resulting
cut the skew cut associated with the fragment (U, a). A
triple (π, φ, S) is called strongly dual feasible if

(d1) (π, φ) is a symmetric dual solution,
(d2) S is a shrinking family in N,
(d3) every skew cut (A1, A2) with φ(A1, A2) > 0 is associ-

ated with a fragment in S.

The PD algorithm maintains a strongly feasible dual
solution. When it detects a blossom in N0(f), then N0(f)
also admits a blossom, and the corresponding fragment
is added to the shrinking family S. This effectively in-
troduces a pair of pseudonodes w, w′ and allocates the
dual variable φ for the associated skew cut (A1, A2). It is
convenient to extend the potential π to pseudonodes and
to associate with −π(w) the dual variable φ(A1, A2) and
with π(w′) the variable φ(A′

1, A′
2).

As matching algorithms work mainly on the surface
graph, it is helpful to distinguish the (pseudo) nodes
which are in the surface graph from the (pseudo) nodes
which are shrunk into a fragment. We call the former
nodes exterior and the latter nodes interior.

Lemma 35.2. Let v be an exterior (pseudo) node, and
a, an arc with lcap(a) < ucap(a). If one increases π(v)
by an amount ε, and decreases π(v′) by ε, this

(a) increases cπ
φ(a) by ε, if the start node of a in N0(f) is

v or v′,
(b) decreases cπ

φ(a) by ε, if the end node of a in N0(f) is
v or v′,

(c) does not change cπ
φ(a) otherwise.

Proof. The statement is obvious if v is an original
node. If v′ is associated with a fragment rather than v, we
can replace v by v′ and ε by −ε to apply the subsequent
arguments. Hence, we may suppose that v is associated
with the fragment (U, â) and the skew cut (A1, A2).

If a is internal or nonincident with v and v′, it is clear
that cπ

φ(a) does not change. If the start node of a is v or
v′, we may consider the reverse arc ā instead of a.

First, let a end at v in N0(f) so that a = â. If a is
a forward arc, we have a′ ∈ A1, and ā ∈ A2 otherwise.

Using the symmetries cπ
φ(a) = cπ

φ(a′) and cπ
φ(a) = −cπ

φ(ā),
the assertion follows.

Finally, let a end at v′ in N0(f). We obtain a ∈ A2 if
a is forward arc and ā ∈ A1 otherwise. Apply the above
symmetries.

Let v∗ denote the maximal fragment containing an
interior node v. Computing v∗ essentially is the find op-
eration of a disjoint set union (DSU) data structure. In
contrast to the nonweighted matching case, one needs an
operation which is inverse to the shrinking of fragments
and called the expansion of a fragment.

An adequate implementation needs O(log n) steps for
find operations and O(k log n) for shrink and expand
operations, where k denotes the number of nested frag-
ments. Under those circumstances, the DSU data struc-
ture is not critical for the complexity of the PD algo-
rithm.

36. STRONGLY COMPLEMENTARY PAIRS

A pseudoflow f and a triple (π, φ, S) are called
strongly complementary if

(c1) (π, φ, S) is strongly dual feasible,
(c2) f is feasible for N0,
(c3) the skew cuts associated with the fragments in S are

tight,
(c4) every interior node v has flow excess equal to zero,
(c5) for every fragment (U, a) and every node v ∈ U, there

is a valid path in N0[U] starting with a and ending at v.

If not stated otherwise, strong complementarity is as-
sumed. It follows that (cs1) and (cs2) hold likewise.

For sake of simplicity, call an exterior node reachable
if it is strongly s-reachable, that is, reachable from s on a
valid path. The next two statements show why we simply
can search for valid paths in the surface graph.

Observation 36.1. A valid path in N0(f) is a traversal
path if and only if every fragment (U, a) ∈ S is traversed
at most once and reached by a or left by a′.

Proof. Let (A1, A2) denote the skew cut associated
with the fragment (U, â) ∈ S. By Property (c3), this
skew cut is tight, and except for â and â′, we have f(a) =
lcap(a) for every a ∈ A2 and f(a) = ucap(a) for every
a ∈ A1. But, then,

χp(a)χA1,A2 (a)

:=











+1 if a ∈ {â, â′},
−1 if a ∈ (A1 ∪ A2 ∪ A′

1 ∪ A′
2)\{â, â′},

0 otherwise











holds for the arcs a ∈ p. Because rescap(â) = 1, only
one of the arcs â and â′ can occur on p.

Observation 36.2. A node v is reachable in N0(f) if
and only if v∗ is reachable in N0(f).

38 NETWORKS–2002

ID Line: November 16, 2001, 3:41pm W-Networks (39:1) 8u3b1002



A traversal st-path can be computed from a valid st-
path in the surface graph as follows:

Add to the data structure for the shrinking family two
operations block and unblock. The block operation
effectively expands a maximal fragment but keeps the
information which is necessary to shrink this fragment
again. This is done later by the unblock operation.

Both operations may take O(l log n) time for a frag-
ment of size l. The path-expansion procedure determines
a traversal path and, hence, needs to traverse a fragment
at most once. If follows that block and unblock op-
erations require O(n log n) time altogether.

The path-expansion method consists of two proce-
dures traverse and expand. Both methods are called
with two arcs ain, aout of the later traversal path.

The expand operation fills the gap between ain and
aout in the current surface graph and calls traverse for
every pair a1, a2 of adjacent intermediary arcs.

The traverse operation checks if the common end
node v = a+

1 = a−
2 is an original node. In that case, it

fixes the predecessor arc of v on p. If v is a pseudonode,
traverse blocks the corresponding fragment (U, a),
calls expand with a1 and a2, and unblocks the frag-
ment again. To repair Property (c5) for this fragment,
traverse also updates the prop to a2 if a = a1 and to
a′

1 if a = a′
2.

Corollary 36.3. A traversal path can be expanded in
O(n log n) time. If an st-path is expanded as described,
the PD pair which results from augmentation is strongly
complementary again.

Proof. The complexity statement is obvious. The op-
erations do not affect the dual variables and the interiors
of the fragment so that (c1) still holds. The properties
(c2) and (c3) are maintained by Lemma 34.3. Since s
and t are exterior nodes, (c4) is also maintained. Finally,
one can check that (c5) holds by the described update of
the fragment props.

We note an application to primal algorithms. A cor-
responding statement can be found in [7] and for 1-
matchings in [2]. We do not require Property (c1) here,
but only that f is a feasible circulation on N.

Observation 36.4. Let p be a valid cycle in N(f) which
expands to the cycle q. Then, c(q) = cπ

φ(q) = cπ
φ(p) holds.

37. OUTLINE OF THE PD ALGORITHM

So far, we have given only a vague idea of what the PD
algorithm does. We now give a high-level description of
the PD method and discuss the possible implementations.

For sake of simplicity, assume that all arc-length la-
bels are nonnegative and that we are interested in a max-
imum balanced st-flow where s′ = t.

PD Method:

(1) Put f :≡ 0, π :≡ 0, φ :≡ 0.
(2) If N0(f) admits a valid st-path, expand this path, aug-

ment f, and repeat step (2).
(3) Shrink the blossoms of N0(f) if any exist.
(4) If possible, adjust (π, φ) to grow the set of s-reachable

nodes in N0(f), expand some fragments, and go to
Step (2).

(5) Otherwise, conclude that f is maximum and stop.

Step (2) updates the primal solution, that is, it aug-
ments the flow. Step (4) is called the dual update and
turns out to be the critical operation for the time com-
plexity of the PD algorithm. Define

ε1 := min{c
φ
π (uv) : u is reachable, v and v′ are not}

ε2 := 1
2 min{c

φ
π (uv) : u and v′ are reachable}

ε3 := min{φ(U, a) : (U, a)′ is reachable}
ε := min{ε1, ε2, ε3}.

Due to the slackness condition (cs1), we have ε ≥ 0. If
ε < ∞, put

π(v) := π(v) − ε, π(v′) := π(v′) + ε

for every s-reachable node. If ε = ε3, some fragments are
assigned zero potentials by that operation. These frag-
ments are expanded by the algorithm either simultane-
ously or one by one. In the first case, we have ε > 0.

If u and v are reachable nodes, then c
φ
π (uv) does not

change by the dual update, and, hence:

Observation 37.1. By a dual update, no exterior node
becomes nonreachable. Even more, at least one node be-
comes reachable or a fragment is expanded.

Lemma 37.2. If ε1 = ε2 = ∞, then f is a maximum
balanced st-flow.

Proof. Suppose that a node v exists which is strongly
s-reachable in N(f), but not in N0(f). Let u denote the
predecessor of v on a valid sv-path in N(f) and assume
that u is reachable. If v′ is also reachable, then ε1 ≤
c

φ
π (uv). Otherwise, ε2 ≤ c

φ
π (uv) holds.

If such a node v does not exist, then f can be aug-
mented. But this should have been done in Step (2) be-
fore.

Let us call the period between two augmentations of
the flow an iteration of the PD algorithm. Denote the
time which is needed for an iteration by ρ(n, m).

Lemma 37.3. There are O(n) dual updates during an
iteration. More precisely, every (pseudo) node can be
shrunk or expanded at most once.

Proof. There are O(n) dual updates by which nodes
become reachable. During the other dual updates, at least
one fragment is expanded. This fragment (U, a) is maxi-
mal, and (U, a)′ is reachable in the current surface graph.
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This shows that (U, a) has been shrunk before the last
augmentation. But there were only O(n) (pseudo) nodes
of the shrinking family at the moment of the last aug-
mentation.

The various implementations of the PD algorithm dif-
fer mainly by their data structures for modified-length
labels and the dual-update mechanism.

If there is no special data structure for the modified-
length labels, their computation takes O(n) time, but no
update is necessary. This implementation is reasonable
only for geometrical matching problems to save com-
puter storage.

If the modified-length labels are stored explicitly, a
dual update requires O(m) steps, but a retrieval is an el-
ementary operation. The computer code prepared by us
works this way.

Theorem 37.4. Let ν denote the value of a maxi-
mum balanced st-flow. Then, the PD algorithm runs in
O(νρ(n, m)) time and ρ(n, m) is O(nm).

Proof. Suppose that the PD algorithm does a bal-
anced network search (BNS) before the Steps (2) and (3)
are performed. Then, by Lemma 37.3, only O(n) BNS
operations can occur, each of which needs O(m) time. A
computation of ε and the update of the modified-length
labels also take O(m) time.

If the DSU operations are implemented as assumed
in Section 35, the expansion of the augmenting path,
the fragment shrinking, and expansion operations need
O(n log n) time altogether.

This proof illustrates that the dual update can be im-
proved more or less independently from the other parts
of the PD algorithm.

It should be possible to improve the complexity for
dual updates to O(n2) and even O(m log n). Correspond-
ing techniques are well known for 1-matchings (Ball and

Derigs [1] gave a good survey of the different implemen-
tations).

Goldberg and Karzanov [7] reworked the different
dual-update techniques for the shortest valid path prob-
lem and claimed the same bounds, but missed saying
something about the impact of expansion operations on
the data structures (our implementation has turned out
some additional technical difficulties compared with the
1-matching case).

We mention that in many situations the last PD it-
eration requires one-half of the dual updates. Hence, if
no feasible solution is known a priori, it is strongly rec-
ommended to test for feasibility before starting the PD
algorithm.

38. A STRONGLY POLYNOMIAL ALGORITHM

We now describe an improved method which heavily
depends on the existence of good min-cost flow algo-
rithms. Compared with the method presented in Section
37, the new method determines a circulation rather than
an st-flow and the network may contain negative arc-
length labels.

The general idea is to start the PD algorithm with
a near-optimal solution, which is obtained by a solver
for ordinary network flow problems. More explicitly, the
method is as follows:

Enhanced PD Algorithm

(1) Determine a min-cost circulation f0 on N and a com-
plementary dual solution π0.

(2) Put φ := 0 and define symmetric solutions f and π
by

f(a) :=
1
2

[f0(a) + f0(a′)],

π(v) :=
1
2

[π0(v) − π0(v′)].

(3) Transform f into a pseudobasic solution without ma-
nipulating the integral arc flow values.

FIG. 3. Symmetrizing a flow.
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Determine the odd cycles Q1, Q2, . . . , Q2k of f.
(4) On every odd cycle Qi, choose a node vi with

π(vi) ≥ 0.
Write Qi = qi ◦ q′

i , where qi is a viv
′
i-path.

Push a half-unit of flow through qi and q′
i .

(5) Add two complementary node pairs x, x′, y, y′.
Add arcs yx and x′y′ with f(yx) = lcap(yx) = 0 and
ucap(yx) = 2k.
Add two parallel arcs xx′ with lcap(yx) = 0 and
f(xx′) = ucap(xx′) = k.
Add arcs x′vi and v′

ix with lcap(x′vi) = 0 and
f(x′vi) = ucap(x′vi) = 1.
All new nodes are assigned zero node potentials; all
new arcs are fitted with zero-length labels.

(6) Use a straight PD method to find an extreme maxi-
mum balanced yy′ flow on the modified network.

(7) If the flow value is 2k, dismiss the artificial arcs. Oth-
erwise, report that no balanced circulation exists.

Before we prove correctness for this algorithm, we illus-
trate the method by an application to our introductory
example.

Consider the circulation f0 := fp3 , p3 = (2, 4′,
3, 4, 2′, 1, 2). This circulation is optimal, which can be
seen by computing the distance labels in N(f) from a
specified node, say 1. This distance labels constitute op-
timal node potentials

π(1) = π(1′) = π(2) = π(2′) = 0,

π(3) = π(3′) = π(4) = π(4′) = 1,

and one may check the reduced-cost optimality criterion.
If we symmetrize both solutions, we obtain f = 1

2 χp3

and π ≡ 0, φ ≡ 0. Note that f is already pseudoba-
sic with odd cycles Q1 = (1, 2, 1′, 2′, 1) and Q2 =
(3, 4, 3′, 4′, 3). If we choose v1 = 1 and v2 = 4 in Step
(4), then Step (5) returns the network shown in Figure 3.
The arc labels show the flow values at this stage.

The PD algorithm initially shrinks the fragments v =
({1, 2, 1′, 2′}, x1′) and w = ({3, 4, 3′, 4′}, x4′), which cor-
responds to the former odd cycles and to the skew cuts
({1′4′, 23, 13′}, {24′, 1x′}) and ({41, 3′2′, 31′}, {42′, 4x′}).

For the following dual update, one obtains ε1 = ε3 =
∞ and ε2 = 1

2 , and the minimum for ε2 is achieved by
all arcs joining v to w′ or w to v′. Hence, each of these
arcs may be used to shrink a blossom.

Then, the flow is augmented depending on which petal
(arc closing a blossom) is chosen, and the procedure halts
with an optimum balanced circulation. If, for example,
the PD algorithm chooses the petal 2′4, the zero circu-
lation is returned.

Theorem 38.1. Let µ(n, m) denote the time necessary to
find a min-cost circulation on a network with n nodes and
m arcs. Then, the enhanced PD algorithm finds a min-
cost balanced circulation in O(µ(n, m)+nρ(n, m)) time or
shows that no balanced circulation exists.

Proof. We first prove correctness and claim that Step
(6) starts with a complementary pair f and (π, φ).

First, observe that

c(a)f(a) + c(a′)f(a′) =
1
2

c(a)[f0(a) + f0(a′)]

+
1
2

c(a′)[f0(a) + f0(a′)]

=
1
2

c(a)[2f0(a) + 2f0(a′)]

= c(a)f0(a) + c(a′)f0(a′),

which implies that f and f0 have equal costs and that

cπ(a) = c(a) +
1
2

[π0(u) − π0(u′)] − 1
2

[π0(v) − π0(v′)]

=
1
2

[c(a) + π0(u) − π0(u′)]

+
1
2

[c(a′) + π0(v) − π0(v′)]

=
1
2

cπ0 (a) +
1
2

cπ0 (a′) = cπ(a′).

Since f and π0 are complementary, and since f is frac-
tional balanced, cπ(a), cπ0 (a), cπ0 (a′) cannot have different
signs unless lcap(a) = ucap(a). It follows that f and π
are complementary at the end of Step (2).

Steps (3) and (4) manipulate only flow values of f
which are nonintegral. Since the reduced-length labels
on these arcs are zero, the compatibility of f and π is
maintained. At the end of Step (4), f is integral.

Step (5) is needed to remove the imbalances of the
nodes v1, v′

1, v2, . . . , v′
2k. The reader may verify without

any effort that the extended solutions are still comple-
mentary.

This step ends with a circulation which is optimal not
only for the ordinary circulation problem, but also for the
balanced circulation problem (on the modified network)!
This circulation may be viewed as a (0)-optimal balanced
yy′ flow.

To see the complexity statement, observe that Steps
(2), (4), and (5) run in linear time. Step (3) can also be
implemented in O(m) time as shown in [5]. Since the
flow value is restricted by 2k, only k phases of the PD
algorithm can occur. The claimed complexity follows.

39. APPLICATION TO THE SHORTEST
PATH PROBLEM

As mentioned, the presented PD approach is closely
related to the shortest valid path algorithms presented by
Goldberg and Karzanov [7]. We stress this relationship
and give an explicit procedure for finding a shortest valid
st-path in a balanced network N, where t = s′ and N does
not admit a negative-length valid cycle.

This shortest path problem turns into a balanced cir-
culation problem N1 if we add a return arc ts, put
lcap(ts) = ucap(ts) = 2, c(ts) = 0, and ucap ≡
rescap, lcap ≡ 0 for the original arcs.
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If all length labels are nonnegative, this circulation
problem is solved by a single iteration of the PD al-
gorithm, that is, the complexity of this problem is
O(ρ(n, m)). Otherwise, an optimal solution to the circu-
lation problem can be decomposed in O(nm) time into
a shortest valid st-path pair and some pairs of valid cy-
cles with zero length. It turns out that this operation is
dominated by the solution of the circulation problem.

Note that the flow decomposition can be used as a
check for negative-length valid cycles in N and that the
circulation problem has a feasible solution if and only if
there is a valid st-path in N.

Let k denote the number of negative arc length labels
in N. Put π, φ :≡ 0, f(a) := 1 for all arcs with c(a) <
0, and f(a) := 0 for the arcs with c(a) ≥ 0, in order
to obtain an initial complementary pair. One can satisfy
the mass-balance equations by a problem transformation
which works the same way as does the transformation
presented in the last section. Let N2 denote the resulting
network.

The maximum value of a balanced flow on N2 is k if
and only if there is a valid st-path in N and smaller oth-
erwise. In the positive case, the restriction of an extreme
maximum balanced st-flow on N2 yields a balanced cir-
culation on N1.

We obtain a worst-case time bound of O(kρ(n, m) +
nm) for the shortest path problem. Note that k is O(m),
but k can be restricted to O(n) if one uses the simple pre-
processing step introduced in [7], namely, replace each
node v by a pair vI and vO and an arc vIvO, and put
c(vIvO) := 0. Redirect the original arcs so that the arc uv
starts at uO and ends at vI. For each original node v, com-
pute π(vI) := min{c(a) : a ∈ N, a+ = v or a− = v} and
put π(vO) := −π(vI). Then, we have cπ(vIvO) = 2π(vI)
and cπ(a) ≥ 0 for the original arcs.

This transformation can be performed in O(m) time
so that we have

Corollary 39.1. A shortest valid st-path can be com-
puted in O(nρ(n, m) + nm) time.

The whole algorithm can be speeded up empirically if
the ordinary circulation problem on N1 is solved first and
then symmetrized by the enhanced PD method presented
in the last section.

Note that every phase of the PD algorithm essentially
solves a shortest path problem on the residual network
for the modified-length labels. Hence, ρ(n, m) actually
is the problem complexity of solving a shortest valid
path problem with nonnegative length labels. If one can
establish a complexity of O(m log n) or O(n2) as Goldberg
and Karzanov [7] claim, our solution of the shortest path
problem with negative lengths improves the bound of
O(n3 + nm log n) presented in [7].
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