
Balanced Network Flows. VIII.
A Revised Theory of Phase-Ordered Algorithms
and the O(!nm log(n2/m)/log n) Bound
for the Nonbipartite Cardinality Matching Problem

Christian Fremuth-Paeger, Dieter Jungnickel
Lehrstuhl für Diskrete Mathematik, Optimierung und Operations Research, University of Augsburg,
D-86135 Augsburg, Germany

This paper closes some gaps in the discussion of non-
weighted balanced network flow problems. These gaps
all concern the phase-ordered augmentation algorithm,
which can be viewed as the matching counterpart of the
Dinic max-flow algorithm. We show that this algorithm
runs in O(n2m) time compared to the bound of O(nm2)
derived in Part III of this series and that the bipartiteness
requirement can be omitted. The result which deserves
attention is the complexity bound for the cardinality
matching problem which was shown for the bipartite
case by Feder and Motwani. This bound was previously
claimed for the general case in a preprint of Goldberg
and Karzanov but omitted in later versions of this paper.
© 2003 Wiley Periodicals, Inc.

Keywords: cardinality matching problem; network flows;
skew-symmetric graphs; antisymmetrical digraphs; graph com-
pression; clique partition

PRELIMINARIES

In Parts I–V of this series [3–7], balanced networks were
treated as bipartite graphs, that is, it was required that the
node set of a balanced network N splits into two sets
Inner(N) and Outer(N) which are independent. In addition,
we required for every node v ! V(N) that v" ! Inner(N)
if and only if v ! Outer(N).

In Part VI [8], it was shown that this bipartiteness as-
sumption is immaterial at least for the polyhedral charac-
terization of balanced circulations. A careful inspection of
Part I [3] reveals that the general theory of BNS algorithms
is independent of this bipartiteness assumption. However,
the computation of distance labels in nonbipartite networks
requires some extra statements which we must supply.

By this extension, balanced network flows become com-
patible with the idea of graph compression introduced by
Feder and Motwani [2], who proved the O(!nm log(n2/
m)/log n) bound for the bipartite case of the cardinality
matching problem (CMP). We will show how this bound
can be reached in the general case. This result heavily
depends on the network flow formulation of the CMP since
one does not compress the graph but, rather, the transformed
balanced flow network. It seems complicated to combine the
Micali/Vazirani algorithm [12] and the clique partition al-
gorithm directly in terms of a matching problem.

Even more, we can show the O(n2m) complexity of the
maximum balanced st-flow algorithm which was formu-
lated in Part III [5] and called phase-ordered. This algo-
rithm essentially is a combination of the Dinic max-flow
method and the Micali/Vazirani method for the CMP.
Hence, the results of this paper all indicate that nonweighted
balanced network flow (matching) problems are just as hard
as are ordinary network flow (bipartite matching) problems.

The article of Feder and Motwani was brought to our
attention by Loehnertz [11], who described the application
of the graph compression technique to the search procedures
of the Blum cardinality matching algorithm [1] and who
may claim the improved complexity bound for cardinality
matching. We mention that the general idea can already be
found in Goldberg and Karzanov [9] without evident proof,
and in a later version [10], the corresponding statement is
omitted. Unlike [11], we compress balanced flow networks
explicitly and then show, with little effort, that the phase-
ordered augmentation algorithm [5] has the claimed com-
plexity.

41. DISTANCE LABELS IN NONBIPARTITE
GRAPHS

We can find a maximum balanced st-flow by successive
balanced augmentation where each augmenting path is a
shortest valid st-path, which we refer to as a d(t)-path. The

Received January 2002; accepted January 2003
Correspondence to: D. Jungnickel; e-mail: jungnickel@math.
uni-augsburg.de

© 2003 Wiley Periodicals, Inc.

NETWORKS, Vol. 41(3), 137–142 2003

determination of shortest paths for augmentation has similar
advantages as in the case of ordinary maximum flow prob-
lems.

Again, let d(v) denote the minimum length of a valid
sv-path. Recall that the tenacity labels were defined in [3]
by

t!v" :# d!v" ! d!v$"

and, respectively,

t!uv" :# d!u" ! d!v$" ! 1.

The definition of distance labels and tenacity labels can be
extended to nonbipartite networks without any modifica-
tion. We now call every node v with d(v) " d(v$) a
minlevel node. This is compatible with the bipartite case
and the former definition where we required d(v) % d(v$).
If we have d(v) # d(v$), we call v a pseudo-petal.

Consider the balanced flow network N given in Figure 1
with s$ # t, v$ # w, cap(sv) # 3, cap(sw) # 1 and
cap(vw) # 2. In this example, the successive shortest path
algorithm would first augment along the paths p # (s, v, t),
p$ and then augment along the paths q # (s, v, w, t), q$
to achieve a maximum balanced flow.

Note that we have d(v) # d(w) # 1 in the first iteration.
The BNS algorithm as stated in [3] would have to choose
either v or w # v$ as a minlevel node. We ask if there is a
special tie-breaking rule which makes this algorithm appli-
cable to nonbipartite networks.

We next show how a given balanced network N can be
transformed into a bipartite network Nbip by splitting the
nodes. It turns out that Nbip and N are equivalent in a very
strong sense.

Let v, w # v$ be a complementary node pair. Replace v
by nodes vI, vO and w by nodes wI, wO. Add new arcs vIvO

and wIwO with infinite capacity. Put v$I # wO and w$I # vO.
Replace the former arcs xy by arcs xOyI without changing
the capacity (see Fig. 2).

First notice that this transformation preserves the skew-
symmetry and that Nbip is indeed bipartite. Furthermore, a
valid uv-path p in N corresponds to a valid uOvO-path q in

Nbip with !q! # 2!p! and vice versa. This implies that props
in N map to props in Nbip and that bridges in N map to
bridges in Nbip.

If we denote the distance labels in Nbip by d! and the
tenacity labels by t! and, again, put w :# v$, we can observe
that

t!!vI" # d! !vI" ! d! !wO"

2d!v" $ 1 ! 2d!w" # 2t!v" $ 1 # t!!vO"

and

t!!uOvI" # d! !uO" ! d! !vO" ! 1

2d!u" ! 2d!v" ! 1 # 2t!uv" $ 1.

Apparently, we either have d! (vI) # d! (vO) # & or d! (vO)
d! (vI) ' 1. If we have d(v) # d(w) # i, then d! (vI)
d! (wI) # 2i (1 and d! (vO) # d! (wO) # 2i, so that vIvO

and wIwO are petals with

t!!vIvO" # d! !vI" ! d! !wI" ! 1 # 4i $ 1.

Otherwise, if d(v) % d(w), then d! (vO) # d! (vI) ' 1
% d! (wI) for reasons of parity. In that case, vIvO is a prop.

As in [3] for the bipartite case, we call the props uv with
d(v) " i the (i)-props and the bridges xy with t(xy) " 2i
the (i)-bridges. The (i)-props together with their comple-
ments and with the (i)-bridges form the network Ni.

We already have shown that the (i)-props in N map to
(2i)-props in Nbip and that the (i)-bridges in N map to
(2i)-bridges in Nbip. Hence, we have

Lemma 41.1. (Ni)
bip # (Nbip)2i.

Now, we are in a comfortable situation. If we apply
Theorem 12.1 in [3] to the network Nbip and a node pair v,
v$ with d(v) % d(v$), we obtain

d! 2i!v" # "d! !v", if d!!v" " 2i
&, otherwise #,

FIG. 1. A nonbipartite balanced flow network.

FIG. 2. The transformed balanced flow network.

138 NETWORKS—2003

d! 2i!v"# ! !d! !v"#, if t!!v# " 4i # 1
$, otherwise ".

The translation from Nbip to N is straightforward and yields
the following extension of Theorem 12.1 in [3] to nonbi-
partite networks:

Theorem 41.2. Let d(v) " d(v"). Then, the following
assertions hold:

di!v# ! !d!v#, if d!v# " i
$, otherwise "

di!v"# ! !d!v"#, if t!v# " 2i
$, otherwise " .

The BNS algorithm given in [3] for bipartite problems
starts with the network N0. At some stage, the network Ni%1

is extended to Ni, maintaining a corresponding layered
auxiliary network. This is done by first adding the props uv
with d(v) & i and then adding the bridges a with t(a) & 2i
% 1.

In the nonbipartite situation, we have several possibilities
for applying the bipartite algorithm:

(1) Perform the transformation of N into Nbip explicitly.
(2) Collect the pseudopetals v with d(v) & d(v") & i into

a queue. After adding the props and the bridges with
tenacity 2i % 1, shrink the petals with tenacity 2i and
the collected pseudopetals in an arbitrary order.

(3) If d(v) & i has been set by the algorithm before and v
is recognized to be a pseudopetal with tenacity 2i
afterwards, the props of v" are simply treated as bridges
with tenacity 2i in what follows.

The first option results in much code and is not very
attractive. The second option requires a modification of the
path expansion rule, but seems more natural than option (3).
Nevertheless, we prefer the tie-breaking method (3), since it
requires only minor changes of the algorithm provided in
Part III of this series [5].

42. AN IMPROVED GENERAL COMPLEXITY
BOUND

In Part III, we proved that the phase-ordered algorithm
runs in O(nm2) time. We suggested that this bound might
be tight in contrast to the Dinic max-flow algorithm which
only needs O(n2m) time. The key observation was that the
double depth-first search procedure (DDFS) searches arcs
on which the algorithm does not augment and which are not
shrunk immediately.

Reading this again, we found that Lemma 22.3 in [5] can
be replaced by the following statement:

Lemma 42.1. Consider a call of the DDFS which yields b
& s. Let a be a prop which is searched by this DDFS, but

not on the augmenting paths p, p". Then, a is blocked after
that augmentation step.

Proof. Let v be the start node and w be the end node of
a in the layered auxiliary network just before the call of
DDFS. The assertion follows by induction on d(v). In the
case of d(v) & 0, we have that a is on p or p" and there is
nothing to show. Thus, we can assume that d(v) & i ' 1,
i $ 0 and that the statement is true for every prop ã with
start node ṽ in the layered network where d(ṽ) " i. We also
assume that a is neither on p nor p".

We first assume that a has been included into one of the
DFS trees, say the left one. Since the left DFS has back-
tracked from v, all props of v have been searched by the left
DFS before. Note that these arcs are neither on p nor p" and
are blocked by the induction hypothesis. But, then, a is also
blocked.

Otherwise, a has not been included into one of the DFS
trees, but w is in one of the DFS trees, say the left one. It
turns out that v has been included into the left DFS tree and
the left DFS has backtracked from v before a was searched.
As in the previous case, all props of v have been searched,
do not appear on the augmenting paths, and are blocked by
the induction hypothesis. But, then, a is blocked likewise.

!

Corollary 42.2. If we ignore the DSU operations and the
elementary operations concerning arcs of the augmenting
paths, the time spent for DDFS operations during a whole
phase is O(m).

The time needed for DSU operations is O(m ' n2) even
if a very simple data structure is used. The other operations
of the phase-ordered augmentation algorithm are a topolog-
ical erasure, which is the same as for the Dinic algorithm
and requires O(m) time per phase, and the augmentations
which require O(nm) time per phase and dominate the
overall complexity:

Corollary 42.3. The phase-ordered balanced augmenta-
tion algorithm as presented in [5] runs in O(n2m) time and
each phase takes O(nm) operations.

43. NETWORKS WITH 0–1 CAPACITIES

In the case of 0–1 capacities, the augmenting paths of a
single phase are edge-disjoint. It turns out that the DSU
operations dominate the complexity of all operations in a
single phase:

Corollary 43.1. If N has 0–1 capacities, then a phase
runs in O(m%(m, n)) time.

Here, %(m, n) denotes the so-called inverse Ackerman
function which is very slow growing. For cardinality
matching algorithms (and very likely in our setting), it is
known that this factor can be omitted in total. We leave this

NETWORKS—2003 139

an open question. If the conjecture is true, all terms of !
which occur later can be omitted.

Goldberg and Karzanov [9] showed the following non-
trivial bound on the number of phases:

Lemma 43.2. If N is a balanced flow network with 0–1
capacities, then any phase-ordered algorithm requires at
most !m phases.

Proof. Let g be a maximum balanced st-flow on N, say
with value 2", and let r :" !m/ 2. Suppose that " # m
$ 0, and let f be the balanced st-flow of value 2(" # m)
which is constructed by the algorithm. By Theorem 4.1 in
[3], we can write

g # f ! "
i"1

s

$pi,

where r % s, p1, p2, . . . , pr are pairwise edge-disjoint
valid st-paths in N(f) and pr & 1, pr & 2, . . . , ps are valid
cycles in N(f).

If d(t) denotes the minimum length of a valid st-path in
N(f) and l denotes the minimum length of a path among p1,
p2, . . . , pr, we have 2lr % m and, hence, d(t) % l % !m.
But, at most, d(t) phases occur before f is constructed and,
at most, r phases occur after the construction of f. This
gives the desired bound. !

To obtain better bounds, one may define a node capacity
for every w ! V(N) by

ucap%w& :" min# "
a#"w

ucap%a&, "
a'"w

ucap%a&$.

In the same way, one can define the residual node capacity
and obtain the following:

Observation 43.3. Let f be a feasible pseudoflow on N
and w be a node with divf (w) " 0. Then, ucap(w)
" rescap(w) holds.

This shows that a unit capacity node can appear on an
augmenting path only once during a single phase. Even
more, if a flow is decomposed into cycles and st-paths in N,
unit capacity nodes can appear only once on these paths.

Remember that the number of phases in the Dinic max-
flow algorithm is O(!n) if all nodes have unit capacities.
Goldberg and Karzanov [10] obtained an even more general
bound for skew-symmetric flows:

Lemma 43.4. Let N be a balanced flow network. Then,
any phase-ordered augmentation algorithm requires at
most !ucap(N) phases, where

ucap%N& :" " (ucap%v& : v ! V%N&).

Although not stated explicitly in [10], this shows that any
k-factor problem (k fixed!) is solved in O(!n) phases if a
phase-ordered algorithm is applied to the transformed
matching instances N!.

On the other hand, this statement does not bound the
number of phases if some nodes have large capacities. For
this reason, we consider slightly different prerequisites:

A strong st-node cut is a node set W such that the nodes
in W have unit capacity and s and t are in different con-
nected components of N[V(N)'W]. In a flow decomposi-
tion, any augmenting path must meet this potential cut, and,
hence,

Observation 43.5. The value of an st-flow is bounded by
the minimum size of a strong st-node cut (if one exists).

Lemma 43.6. Let N be a balanced flow network with unit
arc capacities which admits a strong st-node cut of size k
and in which the length of a directed path is bounded from
above by a constant l. Then, any phase-ordered augmenta-
tion algorithm requires at most (l2 ' l ' 1)!k phases.

Proof. Let g be a maximum balanced st-flow on N, say
with value 2", and r :" !k . Suppose that " # r $ 0,
and let f be the balanced st-flow of value 2(" # r) which
is constructed by the algorithm. Write

g # f ! "
i"1

s

$pi,

where r % s, p1, p2, . . . , pr are pairwise edge-disjoint,
valid st-paths in N(f). Note that p1, p*1, p2, p*2, . . . , pr, p*r
can traverse at most val(f)l (2l(" # r) backward arcs
altogether. Thus, at least one of the paths traverses at most
l/r(" # r) backward arcs. In particular, we have

d%t& %
l%l & 1&

r
%" # r& & l (

l%l & 1&"

r
l2

% l%l & 1&%k # l2, (1)

since " % k. Hence, at most, l%l & 1&%k#l2 phases
occur before f is constructed and, at most, r (%k %
%k & 1 phases occur after the construction of f. !

The reader may observe that Lemmas 43.4 and 43.6
apply to the transformed 1-matching instances NG and,
hence, generalize Theorem 6.6 in [3]. Lemma 43.6 has
another application which is discussed in the next section
and which leads to an improvement of the Micali/Vazirani
cardinality matching algorithm, at least for dense graphs.

140 NETWORKS—2003

44. GRAPH COMPRESSION

Let G be a simple graph with n nodes and m arcs. A
biclique is a pair (U, W) with U, W ! V(G) so that u and
w are adjacent in G for every pair u " U, w " W. Note that
U # W ! A since no loops are allowed. A clique partition
of G is a family ! ! {(U1, W1), (U2, W2), . . . , (Uk,
Wk)} of bicliques so that every edge e " E(G) is spanned
by exactly one biclique. If ! denotes some ordering of
V(G), a trivial clique partition of G is given by

"#"u$, "w$% : "u, w$ " E#G%, u ! w$.

We can define a balanced flow network NG
! as follows:

● Take a disjoint copy V(G)& of V(G) and define comple-
mentarity for nodes, arcs, node sets, and paths in the
obvious way.

● For every biclique (U, W) " !, introduce a complemen-
tary pair of biclique nodes (U, W&) and (U, W&)& ! (W,
U&).

● Introduce a source node s and a sink node t.
● Connect s to all nodes in V(G) and all nodes in V(G)& to

t.
● For every biclique (U, W) " ! and nodes u " U, w

" W, connect u to (U, W&), (U, W&) to w&, w to (W, U&)
and (W, U&) to u&.

● Put ucap ' 1 and lcap ' 0.

The number of nodes in NG
! is n* :! 2(n (k (1), and

the number of arcs is denoted by m*. Note that every
biclique (U, W) consists of !U!!W! edges which are mapped
to 2(!U! (!W!) arcs in the balanced flow network, that is,
m* is O(m) and n* is O(n (k).

Note that NG
! is not bipartite, and the biclique nodes all

have O(m) capacities in the worst case. On the other hand,
V and V& constitute strong st-cuts and a directed path in NG

!

traverses at most four arcs, that is, we can compute a
maximum balanced flow on NG

! in O()nm*) time, which
may be considerably less than O()n*m*) time.

It is evident that a balanced flow on NG
! with value 2!

can be transformed into a matching of G with cardinality !
and vice versa, and this relationship is many-to-many.

Corollary 44.1. Given any clique partition ! of the graph
G, a maximum matching of G can be determined in
O()nm*"(m,n)) time.

We finally have to describe how the clique partition
algorithm devised by Feder and Motwani [2] for bipartite
graphs applies to our setting:

One deletes from NG the source and the sink node,
deletes one arc of every complementary pair, and forgets
about the orientation of the arcs. The original clique parti-
tion algorithm of [2] will give a partition ! of this reduced
graph. If one adds the complementary biclique of every
biclique in !, a partition of NG * {s, t} results which
represents every edge of G twice. This modified graph

compression algorithm does not apply to the original match-
ing problem G but rather to the balanced network NG.

The complexity analysis works just as in the setting for
bipartite matching problems. Feder and Motwani obtained
the following result:

Theorem 44.2. Given a bigraph with partitions of equal
size and some parameter # " (0, 1), the clique partition
algorithm finds a partition ! of cardinality O(m/n1*#) in
time O(mn#log2n). The number of edges in the compressed
graph is O[m((log(n2/m)/(# log n))].

For our purposes, we must increase the number of edges
and cliques only by a factor of 2. If one takes a constant #
" (0, 1/2), the computation of ! does not contribute to the
overall complexity of the cardinality matching algorithm.

Corollary 44.3. The cardinality matching problem can be
solved in

O" #nm
log

n2

m
log n

"#m, n%$
time.

Note that any future progress in the compression rate
would improve the CMP algorithm immediately. If bipartite
matching should, after all, be easier than the general CMP,
this would have to involve a new algorithmic idea apart
from graph compression.

One could think of a modified clique partition algorithm
for symmetric bigraphs which computes a biclique of NG

* {s, t}, then immediately adds the complementary bi-
clique and performs the corresponding clique stripping op-
erations. The stripping of such a reverse biclique is rather
expensive if the original Feder/Motwani data structure is
used. We do not know how to overcome these difficulties.

45. PROJECT SUMMARY

In this paper, we discussed some open questions and new
ideas regarding the phase-ordered augmentation algorithm
which was described in Part III [5]. Since this is the con-
cluding part of this series of papers about balanced network
flow theory, we would like to take the opportunity and say
something about our implementation and the computational
experiences:

Up to the graph compression algorithm, we have imple-
mented all methods presented throughout this series of
papers. The complete code is available by the C((open-
source software GOBLIN, which also covers many further
graph optimization problems. This C((library can be
downloaded from the URL:

www.math.uni-augsburg.de/opt/goblin.html.

NETWORKS—2003 141

The implementations have shown that the plain balanced
augmentation algorithm cannot compete with the balanced
augmentation algorithm which uses the depth-first BNS
heuristic and verifies negative results with the exact BNS
procedure. We have also tried out a breadth-first BNS
heuristic which totally ignores the existence of blossoms,
but which performs rather poorly. We mention that the
Kameda/Munro heuristic as presented in [4] includes a
serious bug but does not discuss the details. Interested
readers are referred to our computer code for a corrected
version.

The cycle canceling method and the phase-ordered bal-
anced augmentation algorithm in the Micali/Vazirani tradi-
tion cannot beat each other, at least if the Dinic method is
used for the max-flow computations. It is remarkable that
the even cycle canceling procedure leaves only very few
odd cycles.

Furthermore, both the Dinic method and the phase-or-
dered balanced augmentation algorithm require only few
phases; indeed, the number of phases is generally much
smaller than the bounds O(!n) and O(n) may suggest. In
the case of the balanced method, one can, in practice, save
much time if one checks for maximality with a basic BNS
procedure before starting the BNS procedure described in
[5]. Otherwise, the bulk of the blossom shrinking operations
would occur in the very last BNS, although no augmentation
is possible.

In the weighted setting, one should also check for maxi-
mality before searching for a minimum-length valid aug-
menting path and, similarly, the main portion of blossom
shrinking and expansion operations occur during the last
iterations of the primal-dual method. For this reason, the
enhanced PD algorithm is indeed faster but the running
times do not decrease as dramatically as expected by us.

For solving matching problems on complete graphs, we
used sparse candidate graphs but our price and repair pro-
cedure applies to the underlying min-cost flow solver only.
Hence, the overall running times depend mainly on the
odd-cycle canceling operations on the dense problems
which usually occur.

It seems obvious that our primal-dual code can be de-
veloped further in analogy with the 1-matching case. But
there are additional technical difficulties, at least with the
expansion of blossoms (which are no longer simple cycles)
and the postoptimality operations (i.e., primal feasible iter-
ations). Concrete efficient implementations of the primal-
dual (or the shortest augmenting path) method are not as
obvious as suggested in [9].

We have done some performance tests for 1- and 2-factor
problems. We report that nonweighted problems on 10,000
node problems are solved within 2–5 seconds and that
metric problems with 1000 nodes are solved in 30 minutes
on a current PC. Sparse weighted matching problems and
nonmetric random instances are much easier to solve. Our
code applies to the more general setting of capacitated
matching problems. For the case of 1-factor problems, it is
not as efficient as are the best available codes; there remains
the challenge to close this gap.

REFERENCES

[1] N. Blum, A simplified realization of the Hopcroft–Karp
approach to maximum matching in general graphs, Techni-
cal report, University of Bonn, 1999.

[2] T. Feder and R. Motwani, Clique partitions, graph compres-
sion and speeding up algorithms, JCSS 51 (1995), 261–272.

[3] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (I): A unifying framework for design and analysis of
matching algorithms, Networks 33 (1999), 1–28.

[4] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (II): Simple augmentation algorithms, Networks 33
(1999), 29–41.

[5] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (III): Strongly polynomial augmentation algorithms,
Networks 33 (1999), 43–56.

[6] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (IV): Duality and structure theory, Networks 37
(2001), 194–201.

[7] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (V): Cycle canceling algorithms, Networks 37 (2001),
202–209.

[8] C. Fremuth-Paeger and D. Jungnickel, Balanced network
flows (VI): Polyhedral descriptions, Networks 37 (2001),
210–218.

[9] A. Goldberg and A.V. Karzanov, Maximum skew-symmet-
ric flows, preprint, 1995.

[10] A. Goldberg and A.V. Karzanov, Maximum skew-symmet-
ric flows and their applications to b-matchings, preprint,
1999.

[11] M. Loehnertz, Alternating path algorithms for non-bipartite
matching using graph compression, Technical report, Uni-
versity of Bonn, 2001.

[12] S. Micali and V.V. Vazirani, An O(!V E) algorithm for
finding maximum matching in general graphs, Proc 21st
Ann IEEE Symp in Foundation of Computer Science, IEEE
Press, Piscataway, NJ, 1980, pp. 17–27.

142 NETWORKS—2003

