
AN EFFICIENT REDUCTION TECHNIQUE FOR
DEGREE-CONSTRAINED SUBGRAPH AND BIDIRECTED

NETWORK FLOW PROBLEMS

by

Harold N, Gabow
Department.of Computer Science

University of Colorado
Boulder, CO 80309

Abstract

Efficient algorithms are given for the bidirected net-
work flow problem and the degree-constrained subgraph
problem. Four versions of each are solved, depending on
whether edge capacities/multiplicities are one or arbi-
trary, and whether maximum value/maximum cardinality
or minimum cost/maximum weight is the objective. A
version of the shortest path problem is also efficiently
solved, The algorithms use a reduction technique that
solves one problem instance by reducing to a number of
problems.

1. I n f r a c t i o n
Bid i r ee t ed ne twork flow, i n t r o d u c e d by Jack E d m o n d s

[E67,L], mode l s a b road class of i n t e g e r l inear p r o g r a m -
rning p rob lems , including ord inary ne twork flow, g r a p h
m a t c h i n g , d e g r e e - c o n s t r a i n e d subgraphs , s h o r t e s t p a t h s
and o the r s . It is well-known t h a t p r o b l e m s in th is c lass
c a n be solved in polynomia l t ime by ma tch ing t e c h n i q u e s
i t , EJ70]. Two a p p r o a c h e s have b e e n used. The .first is to
apply the ideas of ma t ch ing to the m o r e gene ra l p r o b l e m
and work ou t the deta i l s of an eff ic ient a lgo r i t hm [e.g.,
EJ73, U, W]. This can be done "in pr inc ip le" bu t m a d e
difficult by t h e , c o m p l e x s t r u c t u r e of m a t c h i n g b lossoms .
tn fac t th is c o n c e p t u a l complex i ty has a p p a r e n t l y
p r e v e n t e d r e s e a r c h e r s f rom developing good a lgo r i t hms
for s o m e of t h e s e p r o b l e m s (see our l ist below). The
s e c o n d a p p r o a c h is to use a p r o b l e m reduc t ion , f rom the
m o r e .genera l ;problem to a y e l l - u n d e r s t o o d one. The
d r a w ba c k of th is t echn ique is expans ion in p r o b l e m size,
which can give nonpo lynomia l a lgo r i thms i l l or c a n
d e g r a d e the p e r f o r m a n c e by one or m o r e o r d e r s of mag-
n i tude [Berg, Gol, Sh].

This p a p e r p r e s e n t s an eff ic ient r e d u c t i o n t echn ique
for b i d i r e c t e d ne twork flow p rob lems . The ma jo r
d i f fe rence f rom prev ious work is t h a t we do no t a t t e m p t
to r e d u c e one p r o b l e m in s t ance to ano the r . I n s t ead a
n u m b e r of d i f fe ren t r e d u c t i o n s are used to solve one
p r o b l e m ins tance . Our r e su l t s a re for t he following
b i d i r e c t e d flow p rob lems :

(1) Mazirnum cardinality, unit capacity problems.
(i) D~yree-conStrained subgraph (DCS). Given a g r a p h
w h e r e e a c h ve r t ex i ha s i n t ege r bounds /~ and u, , Find a

Permission to copy without f¢¢ all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 0 9 9 - 0 / 8 3 / 0 0 4 / 0 4 4 8 $00.75

s u b g r a p h H with t h e g r e a t e s t poss ib le n u m b e r of edges ,
s u c h t h a t e a c h v e r t e x i has d e g r e e ~ H) wi th
/i ~; di-< ui . O~ar a lgo r i thm runs in 0 (~ E) t ime .
This gene ra l i zes t he m a x i m u m card ina l i ty m a t c h i n g algo-
r i t h m of Micali and Vazirani [MAr] (where all l i = 0, u i = 1
and the t ime is 0 (V~E) , and in fac t our a lgo r i t hm is a
r e d u c t i o n to the i r s . It improves the O((,~vui)Ys) algo-

r i t h m of U r q u h a r t [U].
(ii) Bidireeted net~uor/c flo~o (biflovg). Given a

b i d i r e c t e d ne twork wi th uni t edge capac i t ies , find a max- a_
i m u m value flow. Our a lgo r i t hm has r u n t ime 0(E e). This
gene ra l i ze s t h e resu l t of Even and Tar jan [ET] which
ach ieves t he s a m e t ime bound for t h e d i r e c t e d case .

(2) Maximum cgrdinaliby, arbitrarij c~pacity prob-
lems. (i) Given a DCS p r o b l e m as in (1) on a mul t ig raph ,
where e a c h edge e has an in tegra l mul t ip l ic i ty p~. Find a
d e g r e e - c o n s t r a i n e d s u b g r a p h with t h e g r e a t e s t poss ib le
n u m b e r of edges . (ii) Given a biflow p r o b l e m as in (1),
whe re e a c h edge e has in teg ra l c apac i t y c , . F ind a max-
i m u m .value flow. For b o t h p r o b l e m s our a lgo r i t hms have
r u n t ime 0(V E log 1/). This gene ra l i ze s t h e a lgo r i t hm of
S lea tor and Tar jan [SI, ST] for d i r e c t e d g r a p h s (and our
a lgo r i t hm uses t he i r s . Note however t h a t t h e y allow t e a / -
valued capac i t i es) .

R e c e n t work of .Ans t ee [A] offers a compe t i t i ve
app roach . We c a n i m p l e m e n t his a lgo r i t hm for t h e f -
f ac to r p r o b l e m (DCS where /i = ui for all v e r t i c e s i) in
O(VE log I0 t ime , t he s a m e bound as ours. His m e t h o d is
b a s e d on solving one ne twork flow p rob lem and one prob-
l em of t h e m a t c h i n g type.

(3) Max#zrturn weight, unit capacity problems. (i)
Given a DCS p r o b l e m as in (1), where in addi t ion e a c h
edge has a rea l -va lued weight. Find a d e g r e e - c o n s t r a i n e d
s u b g r a p h of m a x i m u m weight. Our a lgo r i t hm runs in
0((i Z e vUi)min(E log V, pc)) t ime. This gene ra l i ze s t h e max-
i m u m weight m a t c h i n ~ a lgo r i t hm of Galil, Micali, and
Gabow [G, GMG] (and our a lgo r i thm uses the i rs) . It
i m p r o v e s the a lgo r i t hm of U r q u h a r t [U] which is

(ii) Given a biflow p r o b l e m as above, w h e r e in addi-
t ion e a c h edge has a rea l -va lued cost. Find a m i n i m u m
e a s t flow of a pres/oecif ied value. Our a lgo r i t hm runs in
0(E m i n (E log V, T/~)) t ime.

(4) Shortest paths in an undirected graph. Given an
u n d i r e c t e d g r a p h where e a c h edge has a rea l -valued
length; edges may have negat ive l eng ths b u t t h e r e are no
nega t ive cycles. Find the s h o r t e s t p a t h b e t w e e n a given
pa i r of ver t i ces , o r m o r e genera l ly find the s h o r t e s t p a t h
b e t w e e n all pa i r s of ver t i ces . This p r o b l e m canno t be
solved by the s t a n d a r d a lgo r i t hms for d i r e c t e d g r a p h s i l l .
It is an i n s t a n c e of a "natura l" biflow p rob l em. Our algo-
r i t h m for th is p r o b l e m (single pa i r or all pa i r s vers ion)
runs in 0 (V m i n (E log V, pc)) t ime (c o m p a r e d with

448

d i r e c t e d g r a p h s , t h i s m a t c h e s t he b o u n d for t h e a l l -pai rs
p r o b l e m , a n d c o m p a r e s to 0(VE) for t h e s ingle s o u r c e
p r o b l e m [T].) B e r n s t e i n [Bern] h a s r e c e n t l y c l a i med a n
0(V 4) a l g o r i t h m for th i s p r o b l e m , b a s e d on Di jks t r a ' s sho r -
t e s t p a t h a l g o r i t h m .

O the r a p p l i c a t i o n s of t h e DCS p r o b l e m inc lude
e f f ic ien t a l g o r i t h m s for t h e m a t r o i d p a r i t y p r o b l e m on
m a t c h i n g m a t r o i d s and t h e i r v a r i a n t s [GS].

(5) Maximum weight problems. (i) The p r o b l e m is
t h e m a x i m u m weigh t DCS p r o b l e m for m u l t i g r a p h s . (ii)
The p r o b l e m is t h e m i n i m u m cos t biflow p r o b l e m (with
a r b i t r a r y i n t eg ra l capac i t i e s) . Our a l g o r i t h m r u n s in
O(E~(log IO(log C)) t i m e where C is t he l a r g e s t c apac i ty .
It r e s e m b l e s t he a l g o r i t h m of E d m o n d s and Karp for t he
m i n i m u m cos t n e t w o r k flow p r o b l e m [EK]. (Actual ly it
g ives i m p r o v e d r e s u l t s for t he spec ia l c a s e of ne t work
flows, e.g., an O(VE(log C)) a l g o r i t h m for m a x i m u m va lue
n e t w o r k flow, and o the r s) .

The r e s t of th i s p a p e r is o rgan ized as follows. S ec t i on
2 de f ines t he above p r o b l e m s a n d also t he u p p e r deg ree -
o o n s t r a i n e d s u b g r a p h p r o b l e m (UDCS); we r e d u c e all
p r o b l e m s to UDCS. This s e c t i o n also s k e t c h e s our r e d u c -
t /on techni l]ue for a u g m e n t i n g p a t h s . S ec t i ons 3-6 s k e t c h
t h e a l g o r i t h m s :for p r o b l e m s (1) - (4). (Detai ls t h a t have
b e e n o m i t t e d due to s p a c e l imi t a t ions c a n be found in [G
83]). (5) will be d i s c u s s e d e l sewhere .

2. Bas ic P ~ b l e m s a n d R e d u c t i o n s

The t h r e e p r o b l e m s we inves t iga t e , s t a t e d in g e n e r a l
form, a r e as follows.

(i) Bi~ireeted netvgovk f lo~ [L, pp, 223-4]. In a
d i r e c t e d g r a p h an edge goes f r o m one v e r t e x to a n o t h e r .
A bidirecte~ graph allows th i s poss ibi l i ty and two o the r s :
an edge m a y be d i r e c t e d f rom bo t h of i ts end ve r t i ce s , or
to b o t h of t h e m . (Additionally, t he two v e r t i c e s of an edge
m a y co inc ide .)

(a)

Figure 2.1

(a) An u n d i r e c t e d g r a p h with a path•
(b) C o r r e s p o n d i n g bid~rected g r a p h and pat.h.

(b)

• F igu re 2.1 i l l u s t r a t e s t h e u s e f u l n e s s of th i s c o n c e p t
by giving •n u n d i r e o t e d g r a p h with a p a t h and t he
c o r r e s p o n d i n g ibidirected g r a p h and pa th . (A bidi~'ected
path is a s e q u e n c e of v e r t i c e s and e d g e s
v o, e 1, v l e t, v t , s u c h t h a t if e~ is d i r e c t e d to (from)v~
t h e n e~,l is d i r e c t e d f r o m (to)v~. P a t h s in the u n d i r e c t e d
a n d b i d i r e g t e d v e r s i o n s c o r r e s p o n d . This c o r r e s p o n d e n c e
is a c h i e v e d v_ithout dup l i ca t i ng edges , as is done in t he
c o r r e s p o n d e n c e b e t w e e n u n d i r e c t e d and d i r e c t e d g r a p h s .
This allows ,one .to solve t he s h o r t e s t p a t h p r o b l e m ((4) of
Sec t ion I).

Bidirected n e t w o r k f low (biflow) problems are
def ined f r o m b i d i r e c t e d g r a p h s , by ana logy with o r d i n a r y
d i r e c t e d flows, as i l l u s t r a t e d by t he above def in i t ion of
pa th . Detai ls a r e in [L, pp. 223-4].

• (ii) The degree-constrained subgraph (DCS) problem
is on a n un~l i ree ted g r a p h , with lower and u p p e r b o u n d s / ~
and ~z, a t e a c h v e r t e x i (see Sec t ion l).

(iii) The upper degree-constrained subgraph (UDCS)
problem is Zhe spec ia l c a s e of DCS w h e r e all lower b o u n d s
/~ a r e 0. .Any feas ib le s u b g r a p h of G (i.e., one t h a t
sa t i s f ies t h e d e g r e e c o n s t r a i n t s u~) is a UDCS (upper
degree-conStrained s'ubgraph).

We r e d u c e biflow and DCS to UDCS. In th is p a p e r t he
r e d u c t i o n s :[or biflow a r e o m i t t e d (see [L, pp. 224-225] for
a r e l a t e d c s n s t r u c t i o n) .

Now we s k e t c h t h e r e d u c t i o n t e c h n i q u e t h a t f o r m s
t he t h e m e Jof th i s pape r , it r e d u c e s a UDCS p r o b l e m to
m a t c h i n g p r o b l e m s . Cons ide r a UDCS p r o b l e m on a g r a p h
G. Fix a v e r t e x i . Let u = u~ be t he g iven d e g r e e bound;
le t d be i ' s d e g r e e in G; def ine A = d - u , t h e l e a s t poss i -
ble n u m b e r of u n c h o s e n edges . It is well-known [e.g.,
Berg] t h a t a UI~CS on G c o r r e s p o n d s to a m a t c h i n g on G',
w h e r e G' i s ~ c o n s t r u c t e d f r o m G by r ep l ac ing e a c h v e r t e x i
by a s'ubsl~tute S t h a t is t he c o m p l e t e b ipa r t i t e g r a p h
Ka, a, as in F igure 2.2. The f igure shows how a UDCS of G
c o r r e s p o n d s to a m a t c h i n g on G' (wavy e d g e s a re in t he
UDCS in F igure 2.2(a) and in t h e m a t c h i n g in Figure
2.2(b).) m d e n o t e s t h e n u m b e r of e d g e s i n c i d e n t to i in
t h e UDCS. In th i s r e d u c t i o n a UDCS on G c o r r e s p o n d s to a
m a t c h i n g on G' t h a t cove r s eve ry in t e rna l v e r t e x of eve ry
v e r t e x s u b s t i t u t e . (Internal a n d external v e r t i c e s of a
s u b s t i t u t e a r e i n d i c a t e d in F igure 2.2.) F u r t h e r , m a x -
i m u m c a r d i n a l i t y and weight s u b g r a p h s c o r r e s p o n d .

449

i

e I ~ ed

(a)

e I

A internal
vertices

d external
KA,d vertices I

(b)

Figure 2.2

(a) Vertex i in UDCS on G.
(b) Vertex substitute S in matching on G'.

internal edge

e i em+A+ k
1 ~i ~m 1 ~k ~ u-m

'~-external
vertex

em+j
I_<j_<A

Figure 2.3

S p a r s e s u b s t i t u t e for i .

= ~ t he n u m b e r of e d g e s a d d e d is ~}(ye) = f}(VE)).

However we will show t h a t an a u g m e n t i n g p a t h n e e d only
p a s s t h r o u g h a g iven s u b s t i t u t e S twice. B e c a u s e of th i s
t h e s u b s t i t u t e S in F i g u r e 2.2 c a n be r e p l a c e d by t h e
sparse substitute s h o w n in F igure 2.3. Here t h e two
(m a t c h e d) i r t t e rna / edges c o r r e s p o n d to t h e two u s e s of
t h e s u b s t i t u t e . Obse rve t h a t a s p a r s e s u b s t i t u t e is
de f ined ~ t h vespect to a g iven m a t c h i n g ; wh en t h e
m a t c h e d e d g e s i n c i d e n t to i change , t h e s u b s t i t u t e
c h a n g e s . Also no t e t h a t s p a r s e s u b s t i t u t e s a r e eff icient:
The n u m b e r of e d g e s a d d e d for one s p a r s e s u b s t i t u t e is
2m +2(u-m) +3A+2= O(d), so the total number of
edges for all substitutes is 0(E). (The number of vertices
added is 0(E) but this is not important.)

Our algorithm work by simulatin~ the appropriate
matching algorithm on G'. The simulation is done on a
graph G~, identical to G' except that sparse substitute are
used. Each time a new matching is formed on G', a new
graph Gk+] is formed by using sparse substitutes for the
new matching. Since all graphs C~ have 0(E) edges, the
matching algorithm runs fast and an efficient algorithm is
maintained.

The technical difficulties in carrying out this
approach are of two types. The cardinality matching algo-
rithrn finds a number of augmenting paths simultane-
ously. This causes difficulties in the simulation on G~.
The weighted matching algorithm maintains a structure
from one augment to the next. This causes difficulties in
the switch from G~ to C~÷l.

We close this section by briefly reviewing the notion
of a matching blossom. Familiarity with the basic ideas of
matching such as augmentin~ paths is assumed [see e.g.,
L].

A blossom is a subgraph B of a matched graph,
defined as follows. (See Figure 2.4.) Let k-~ i be an
integer. The vertices of B are partitioned into sets Bi,
i ~i < 2k+l, where each Bi either consists of a single
vertex or is itself a blossom. The edges of B are
e i, I -~ i g 2/c+I. where e¢ is incident to a vertex in B~ and
a v e r t e x m Bi÷l (w h e n / = 2 k + l , t a k e i + 1 to be 1), ei is a

m a t c h e d edge iff i is even.

B2(
e 2

~ B2k+l

This reduction is inefficient since it can increase the
number of edges to [I(VE). (For instance, if there are
fl(vertices of degree fl(V) and each such vertex i has

Y

Figure 2.4

A blossom.

450

The shorthand i e B means that i is a vertex of blos-
som/1. (Note that a blossom is not an induced subgraph,
so we may have i, j e B without edge ij bemg in H.) A
simple induction shows that except for one vertex b e B I,
every vertex i e B has a matched edge ij with j e H. The
exceptional vertex b is the base vertex of B. Another
induction shows that for each vertex i e B, B and its sub-
blossoms contain an alternating path that starts with a
matched edge, from i to b. (If this path is i, j, k b, it
is not usually true that k b is k's path, e.g., in Figure
2.4 let e 2 = i] and], k e B s. This leads to pitfalls for the
unwary - the open literature contains a number of
blunders about blossoms!)

For cardinality matching blossoms are slightly
simpler: Subblossoms such as H z and B~*** that are an
odd distance from b are always vertices. We do not use
this property here.

3. M a x i m u m Card ina l i ty . U n i t C a p a c i t y P r o b l e m s
] 'his s e c t i o n p r e s e n t s a l g o r i t h m s for t h e m a x i m u m

ca rd ina l i t y UDCS a n d DCS p r o b l e m s t h a t u se 0 (~ / ~ E)
t i m e and 0(E) space . We s t a r t wi th t he UDCS p rob l em.

Our a p p r o a c h is to s i m u l a t e t he c a r d i n a l i t y m a t c h i n g
a l g o r i t h m on G', t h e g r a p h with v e r t e x s u b s t i t u t e s . Recal l
how the c a r d i n a l i t y m a t c h i n g a l g o r i t h m works [HK]: An
s a p is a s h o r t e s t l e n g t h a u g m e n t i n g pa th . An sap set is a
m a x i m a l s e t of v e r t e x dis jo int sap's. The a l g o r i t h m is
o rgan i zed in to phases. E a c h p h a s e f inds a n sap se t , a n d
t h e n a u g m e n t s t he m a t c h i n g a long t he p a t h s of t h e se t .
The l e n g t h of a n sap i n c r e a s e s eve ry phase .

We c a n a s s u m e t h a t any m a t c h i n g we c o n s t r u c t on G'
cove r s eve ry i n t e rna l v e r t e x of eve ry s u b s t i t u t e . This
allows u s to e s t i m a t e t he n u m b e r of p h a s e s of t he m a t c h -
ing a l g o r i t h m on G'.

5 Lernma 3.1 At most ~ phases are needed to find a

maximum matching on G'.

Proof. The argument is analogous to ones in [HI(] and
lET]. •

The Lemma implies that to achieve our time bound it
suffices to implement a phase of the matching algorithm
on G' in 0(E) time. We do this by running each phase on
the graph Ca. Ca is derived from G' and the current
matching by using sparse substitutes. We must show that
Ca is a correct model for G', i.e., an sap set of Ca gives an
so~p s e t of G'.

We begin with the basic principle behind the idea of
sparse substitutes. Consider the graph G', with a match-
ing that covers all internal vertices, Let S be a vertex
substitute. ~et P be an sap consisting of edges e i e,.
Internal edges of S occur as pairs in P, say el, e~,~. In
each pair one edge is matched and the other is not. We
say P traverses a pair in one of two directions, depending
on whether the matched edge is first or second,

6hr@inality Matching Reduction Principle. An sap
t r a v e r s e s a t m o s t two p a i r s of e d g e s f r o m a g i ven subs t i -
t u t e , one in each direction.

Proof. Suppose P traverses two pairs in the same direc-
tion. So P has the form uv, ~w zy, yz where
vertices v and y are in the same substitute, and edges uv
and zy are matched. P can be shortened by replacing
the subpath from v to z with the edge vz. This contradic-
tion proves the result. •

Note t h a t ff G is b ipa r t i t e only one d i rec t ion , an d
h e n c e one pa i r of e d g e s , is poss ib le for a s u b s t i t u t e .

This p r inc ip le imp l i e s t h a t sap's in G' a n d Ca
c o r r e s p o n d . We m u s t show t h a t sap sets on t h e two
g r a p h s c o r r e s p o n d , in fac t t h e y do not: a n sap s e t m a y
p a s s t h r o u g h a s u b s t i t u t e up to two t i m e s on each aug-
m e n t i n g p a t h . We ana lyze how an sap s e t u s e s a subs t i -
t u t e , a n d show t h a t Ca c a n still be u s e d as a c o r r e c t
mode l .

| t is c o n v e n i e n t to work wi th a g r a p h G'k t h a t is in te r -
m e d i a t e b e t w e e n G' a n d C,~. G'~ u s e s t h e s a m e s p a r s e
s u b s t i t u t e s a s Ca: t he only d i f f e rence is t h a t t h e su b s t i -
t u t e for a v e r t e x i of G c o n t a i n s di i n t e r n a l e d g e s (as
o p p o s e d to two i n t e r n a l e d g e s in Ca).

L e m r - a 3.2. An sap se t in G' k c o r r e s p o n d s to an sap s e t in
G' c o n t a i n i n g t he s a m e e d g e s of G. "

The L e m m a shows t h a t we c a n t ake ou r goal to be
f inding a n s a p s e t on G'e. We ana lyze t h e s t r u c t u r e of
s u c h a s e t by us ing i d e a s f r om t h e ca rd ina l i t y m a t c h i n g
a l g o r i t h m of [MV]. Cons ide r an a r b i t r a r y m a t c h e d g r ap h .
For a v e r t e x v , t h e even level of v , e (v), is t he l e n g t h of a
s h o r t e s t even l e n g t h a l t e r n a t i n g p a t h f r o m a f ree v e r t e x
to v ; t h e odd. level o (v) is def ined s imi lar ly . (We a lso r e f e r
to " p a t h s def ining e (v) o r o(v) ", wi th t he obvious
i n t e r p r e t a t i o n .) The t e n a c / t y of an edge e , t (e) , is t h e
l e n g t h of a s h o r t e s t a l t e r n a t i n g p a t h t h a t c o n t a i n s e and
e n d s a t f ree ve r t i ces , b u t is not necessarily s imple . (If it
is s i m p l e i t is a n a u g m e n t i n g pa th .) So for e = vw, t (e) is
o (v) + o (~) + 1 f f e is m a t c h e d and e (v) + e (w) + 1

otherw, se. A blossom 17 of tenacity t is defined, as in Sec-
t ion 2, f r o m b l o s s o m s B: Bz~+l a n d e d g e s e l eze+,.
The only d i f f e rence is t h e a d d e d r e q u i r e m e n t t h a t blos-
s o m s g~ have t e n a c i t y a t m o s t t , and e d g e s % have t en a -
c i ty t . '

We will r e f e r to two s imp le b u t i m p o r t a n t p r o p e r t i e s
of b lo s soms . In a n a r b i t r a r y m a t c h e d g r aph , le t a n sap
have l e n g t h ?,s + 1.

6hrdinality Blossom Properties

(i) Let v~u be a n edge of t e n a c i t y t (w u) < 2 s + l .
Then s o m e b l o s s o m of t e n a c i t y a t m o s t t(v~v) c o n t a i n s
b o t h v e r t i c e s v a n d w .

(ii) Let B be a m a m m a l b l o s s o m of t e n a c i t y t , where
t < 2 s + l , a n d le t b be i ts base . For a n y v e r t e x v e B,
any p a t h defining, e (v) or o (v) p a s s e s t h r o u g h b.

These p r o p e r t i e s a r e obvious in [MV]. Al te rna t ive ly
t h e y c a n be p r o v e d d i r ec t ly f r om the def ini t ions . (It is
c o n v e n i e n t t o pnove t h e m t o g e t h e r , i n d u c t i n g on t . We
leave t h i s as a n eKercise .)

We show t h a t s a p s e t s on G"~ c a n be found us ing Ca. It
is c o n v e n i e n t to de f ine a r e l a t i on of "s imi la r i ty" b e t w e e n
v e r t i c e s in Ca and G'~: Let v a n d v ' be v e r t i c e s in e i t h e r
of t h e two g r a p h s (p e r h a p s t he s a m e g raph) . T h e n v an d
v ' a r e s / r n / / a r if t h e y are in s u b s t i t u t e s for t h e s a m e ver-
t e x of G, a n d e i t h e r t h e y a re e x t e r n a l v e r t i c e s on t h e
s a m e edge of G, or t h e y a r e m a t c h e d to e x t e r n a l v e r t i c e s
on t he s a m e e d g e of IG, or t h e y a r e v e r t i c e s on t h e s a m e
(left or r igh t) s ide of a n i n t e r n a l edge .

t This definitionman easily be proved equivalent to the one in [MV]:
mammal blossoms of, a gi'aen tenacity are iaentical in both definitions.
We use our definition since it is the same as for weighted matching. It
also appears to s imply the algorithm of [MV], eliminating the Double
Depth First Search,

451

L e m m a 3.3 (i) if v and v ' are s imilar ver t ices t hen
their levels arc equal: e(v) = e(v') and o (v) = o(v ') .

(ii)]f v and v ' are similar ver t ices in the same
graph, any maximal b lossom of t enac i ty t con ta ins bo th
ver t ices or nei ther .

(iii) Let B be a maximal b lossom of tenac i ty t in G~
or G'~. l,et /3" cons is t of ~1 ver t ices in the o the r g r a p h
tha t are s imilar to a ver tex of B. Then H' is a maximal
b lossom of tenacity t.

Proof Sketch. (0 Uses the Cardinality Matching Reduc-
tion Principle. (ii) and (iii) use Cardinality Blossom Pro-
pe r ty (i).

Now we show how to find an sap se t on G'~ using C~.
Firs t we give a high-level descr ip t ion for a phase in the
ma t ch ing a lgo r i thm of [Iv]V]: Let an sap have l eng th P,s + 1.

Step 1. Calculate all levels e (v) and o(v) t ha t a re at m o s t
s + l . Cons t ruc t all b l o s som s tha t have t enac i ty less t h a n
~+i.

Step 2, Repeat the following steps until the graph does
not contain an sap of length 2~ + I:

Step 2a. Use level numbers and blossoms to find an
sap I'. Augment the matching along P.

Step ~. Delete vertices (along with their incident
edges) that cannot be in an sap: First delete all ver-
tices of P. Then repeatedly delete vertices (that are
not in blossoms) whose "predecessor count" (see
[ivW]) d e c r e a s e s to 0. F u r t h e r m o r e , whenever the
base of a b los som is deleted, delete all ver t ices m the
b lossom. Continue with Step 2.
When Step 2 ends, all ver t ices and edges of the g r a p h

are r e s t o r e d and the nex t phase is begun.
Note t ha t Cardinal i ty Blossom P r o p e r t y (ii) justifies

the b l o s s o m delet ion policy in Step 2b. It implies t ha t any
sap conta in ing a ve r tex of a b lossom B conta ins the base
of /3 . Hence B can be dele ted when its base occur s on ~tn
sap or b e c o m e s un reachab le .

Consider how this a lgo r i thm works on G'~. In a given
subs t i tu t e , a t m o s t two in te rna l edges are dele ted
because they arc in P. All o the r delet ions in Step 2b
r emove o2/ in te rna l edges of the subs t i tu te . This is t rue
because all in te rna l edges are in the s ame maximal blos-
som, by L e m m a 3.3(ii); also " p r e d e c e s s o r counts" are
ba sed on level n u m b e r s and ver tex adjacencies, which are
the s a m e for each in te rna l edge by L e m m a 3.3(0.

We can r u n this a lgor i thm on G~ ins tead of G'k and
still find an sap se t of G'~. Step 1 is the s a m e on b o t h
g raphs , by L e m m a 3.8 (i) and (iii). S tep 2 on C~ will s imu-
late Step 2 on G'~ if we make one modification: When P
p a s s e s t h r o u g h a s u b s t i t u t e whose in terna l edges are n o t
in a b lossom, these in te rna l ec~es are not dele ted (nor
are they r e m a t c h e d in the augment) . The r e a s o n is tha t
in G'~ the s u b s t i t u t e has d i - 2 o ther in ternal edges tha t
can be u sed in o the r sa:p's. We keep the two in te rna l
edges in C.~ to model t.He~e edges. On the o the r hand, all
o t h e r dele t ions in Step 2 r emove all in ternal edges of a
s u b s t i t u t e in e i the r path , and so work the s ame in G~ and
G'~:.

Thus we have shown tha t the ma tch ing a lgor i thm
(with the sl ight change given above) finds an sap se t of
G'~. This gives the des i red resul t .

Theorem 3.1. A maximum cardinality UDCS can be found
in 0 (- ~ - ~ E) t ime and 0(E) space, •

We tu rn our a t t en t ion to the DCS prob lem. Recall
that in this p rob lem each ve r t ex i has b o t h an u p p e r
bound u~ and a lower bound li on i ts degree. We will
t r a n s f o r m DCS so our UDCS a lgor i thm applies. (This prob-
lem reduc t ion a p p r o a c h differs f rom previous ones [U,S].)

Consider a DCS p r ob l e m on a g r a p h G. Figure 3.1
shows a cor responding UDCS p r o b l e m on a g r aph G*. G*
contains two copies of G. Both copies of a ve r tex i have
upper bound ui, the same uppe r bound as in G. In addi-
tion the two copies of i are joined by u~-/~ paths of length
three. Each of the 2(z~-/i) intermediate vertices on
these paths has degree two in G* and has upper bound
one.

1 1

u-l paths

Figure 3.1

Graph G*

It is easy to see that a DCS H on G has a correspond-
ing complete 2 UDCS H* on G*. Conversely a complete
UDCSH*on G'induces aDCSH en G. H need not have
maximum cardinality, but it leads to the solution to our
problem. Here is the complete algorithm for the DCS
problem.

Step I. Construct the UDCS problem G* from G. Find a
maximum cardmality UDCS H*. Assume H* is complete
(else the DCS problem is infeasible). Let H be the DCS on
G induce d by H*.

Step 2. Run the maximum cardinality UDCS algorithm on
G, using H as the initial solution.

For Step 2, recall that the maximum cardinality
matching algorithm of [MV] can be started with any initial
matching. Hence the same is true of our UDCS algorithm,
as required in Step 2. Next recall that the UDCS algo-
rithm works by augmenting paths. Hence no degree of a
vertex is ever decreased. So the algorithm halts with a
subgraph that satisfies all upper and lower bounds ui,/~.
It 3~_as maximum cardinality among all subgraphs that
satisfy the upper bounds. Hence it is a maximum cardi-
nality UDCS.

Theorem 3.2. A maximum cardinality DCS can be found in
0(Z~.E) time and 0(E) space. •

4. Maximum CardinaUty, Arbitrary Capacity Problems
This section presents algorithms for the maximum

eardinality UDCS and DCS problems, when edges e have
arbitrary integral multiplicities u~. The algorithms run in
0(FElogl D time and 0(E)space.

• In a comp~te UDCS, every upper degree bound ~i holds with
equality.

452

We beg in wi th UDCS. Define t h e g r a p h G' a s u s u a l
u s ing t h e s u b s t i t u t e s of F igure ~..2. An edge i j in G
c o r r e s p o n d s to u~/ d i s t i n c t e d g e s in G', e a c h joining an
e x t e r n a l v e r t e x in i ' s s u b s t i t u t e to one in j ' s . As m Sec-
t ion B, eve ry i n t e r n a l v e r t e x of G' is m a t c h e d .

Our a p p r o a c h is to s i m u l a t e t he c a r d i n a l i t y m a t c h i n g
a l g o r i t h m on G'. The Card ina l i ty Match ing R e d u c t i o n
Pr inc ip le b o u n d s t he l e n g t h of an sap and g ives th i s es t i -
ma te :

L e m m a 4.1. At m o s t 3 V + l p h a s e s a re n e e d e d to find a
m a x i m u m m a t c h i n g on G'. •

The L e m m a impl i e s t h a t for ou r t i m e b o u n d it
su f f i ces to i m p l e m e n t a p h a s e on g ' m 0(E log V) t ime . To
do th is , as in Se c t i on 3 it is c o n v e n i e n t to work with
g r a p h s G ' , and G~. Bo th a r e de r ived f r o m G' and t h e
c u r r e n t m a t c h i n g by us ing s p a r s e s u b s t i t u t e s . In G'a a
s u b s t i t u t e h a s d~ i n t e r n a l edges ; in C~,it h a s two i n t e rna l
edges , F u r t h e r m o r e , s u p p o s e ij is a n edge of G, hav ing m
m a t c h e d cop ie s and u u n m a t c h e d cop ies in t h e c u r r e n t
m a t c h i n g on G'. (So p~j = m + u .) T hen G'k c o n t a i n s m
m a t c h e d copies and u u n m a t c h e d cop ies of i j ; Q: con-
t a ins min(2,m) m a t c h e d cop ies and min(2,u) u n m a t c h e d
copies .

L e m m a 3.2 still appl ies to g r a p h G'~. Hence it
suf f ices to f ind a n sap se t on G'~. We will show t h a t th i s
c a n be done on t h e s m a l l e r g r a p h C~. F i r s t it is con-

' v e n i e n t to e x t e n d t h e def in i t ion of "s imi la r" ve r t i ce s . In
t h e c u r r e n t c o n t e x t we say t h a t two e x t e r n a l v e r t i c e s in
t he s a m e s u b s t i t u t e of C~ or G'k are similar if t h e y a r e on
cop ies of the s a m e edge of G, and bo t h cop ies a re
m a t c h e d or b o t h a r e u n m a t c h e d . S u b s t i t u t e v e r t i c e s t h a t
a r e m a t c h e d to e x t e r n a l v e r t i c e s a re h a n d l e d ana logous ly .
The r e s t of t h e def ini t ion of s i m i l a r i t y is u n c h a n g e d .

It is e a s y to s ee t h a t L e m m a 3.3 r e m a i n s valid for G'k
a n d C~. In pa r t i cu l a r , t h e def in i t ion of C~ allows t h e Car-
d ina l i t y Match ing R e d u c t i o n Pr inc ip le to app ly in t h e
p roof of L e m m a 3.3(0.

L e m m a B.3 allows us to u se C~ to c a l cu l a t e levels and
b l o s s o m s in G'k, Now we m u s t show how to ac tua l ly find
t h e sap's. The a l g o r i t h m is b a s e d on t h e following pro-
p e r t y of b l o s s o m s . Let an sap have l e n g t h 2s +1.

L e m m a 4.~-. In G'e, le t B be a m a x i m a l b l o s s o m of t ena -
c i ty t < 2s + 1. wi th b a s e v e r t e x b. T hen no o t h e r v e r t e x is
s im i l a r to b.

Proof S k e t c h . Follows f r o m L e m m a 3.3 (ii). •

The L e m m a a n d (Cardinal i ty B los som Proper ty (i i))
impl ies t h a t a t m o s t one sap p a s s e s t h r o u g h a n y copy of
any edge with a v e r t e x in a b lossom. So "mos t " sap's do
no t p a s s t h r o u g h a n y b l o s soms . This allows u s to u s e t he
f a s t t e c h n i q u e s for n e t w o r k flows for m o s t sap's.

To c a r r y out th i s a p p r o a c h we work wi th two g r a p h s .
The f i rs t is a m u l t i g r a p h Mk t h a t is e s s en t i a l l y G'k. Let i j
be an edge of G t h a t h a s m m a t c h e d cop ies in G'~ a n d u
u n m a t c h e d copies . T h e n M~ has a m a t c h e d copy of ij
with mul t ip l i c i ty rn a n d a n u n m a t c h e d copy wi th mul t ip l i -
c i ty u . (In ou r d a t a s t r u c t u r e for m u l t i g r a p h s we s t o r e
e a c h edge a n d i ts a n in t eg ra l mul t ip l ic i ty . Thus M~ h a s
size 0(E) .) M~ is u s e d for s~p's of mul t ip l i c i ty g r e a t e r
t h a n one. It is p r o c e s s e d with the d y n a m i c t r e e d a t a
s t r u c t u r e of S l ea to r a n d Tar jan [ST].

The s e c o n d g raph , U, c o n s i s t s of edges wi th un i t mu l -
t iplici ty. It is u s e d for sap's t h a t have mul t ip l i c i ty one.]n
p a r t i c u l a r it h a n d l e s sap's t h a t involve b lo s soms .

Now we give t h e a l g o r i t h m for a phase .]t follows t h e
out l ine of t h e a l g o r i t h m of [MV] g iven in S e c t i o n 3. Let a n
sup have l e n g t h 2s +1.

Step 1. Use t h e g r a p h C~ to c a l cu l a t e all levels e (v) an d
o(v) t h a t a r e a t m o s t s + l . C o n s t r u c t all b l e s s o m s t h a t
have t e n a c i t y 2s + 1.

Step 2. Construct t h e m u l t i g r a p h M~. Initialize the g r a p h
U to be empty • T r a n s f e r f r o m M~ to U all b l o s s o m s m~d
all e d g e s of mul t ip l i c i ty one. (Cor~ment: M~ h a s no ed g es
or b l o s s o m s of t e n a c i t y less t h a n 2 s + l . It m a y have ed g es
or b l o s s o m s of t e n a c i t y 2s + 1.)

Step 3. R e p e a t t he following s t e p s for eve ry edge wu of
t e n a c i t y 2 s + 1 . When no m o r e e d g e s vzv r e m a i n , go to
S tep 4.

Step 3a. Use t he m e t h o d of d y n a m i c t r e e s [ST] to find
a p a t h Pv f r o m v to a f ree ver tex , and also a p a t h Pw
f r o m ¢u to a f ree ver tex . Pv a n d P~ a r e p a t h s def ining
e(v) a n d e (~) if v w is u n m a t c h e d , or o(v) and o (~)
o therwise . Let Pv (Pw) end in the s u b s t i t u t e for v e r t e x
i (j) of G. Let 5~(5,) be t he l a r g e s t poss ib le i n c r e a s e
in t he d e g r e e of i(j~ in t h e c u r r e n t UDCS.

Step 3b. If Pv and Pw are d is jo int then let
; z = m i n ~ . / z , . 6 ~ , 6 j . I e is a n edge on Pv, Pw, or v~u I.
A u g m e n t ~ cop ies of t he p a t h P~, vw , P,~. Go to S tep
3d.

S t e p 3e. Otherwise Pv and P,~ a re no t disjoint . By t h e
m e t h o d of d y n a m i c t r e e s t h e y join a t a v e r t e x j , i.e.,
Pv c o n s i s t s of a p a t h f r o m v to j , P~j, followed by a
p a t h f r o m j to a f ree ver tex , Pi. Similar ly, Pw con-
s i s t s of Pwj and Pi . (Possibly Pi is a s ingle ve r tex .)

Let

v ~ ; f is a n , e d g e on PiI" (Comment.'# = 0 if t he p a t h s
L ~ k J

f o r m a b l o s s o m :of t e n a c i t y ~ +1.) A u g m e n t ~ copies
of Pvj, vw, Pwi; a u g m e n t 2# cop ie s of P i

Step 3d. Dele t e all a u g m e n t e d edge f rom Ma.
T r a n s f e r any new b l o s s o m (of t e n a c i t y 2s + 1) a n d an y
e d g e wi th new mul t ip l i c i ty one, to U. Con t inue with
S t ep B.

Step 4. T r a n s f e r t h e r e m a i n i n g e d g e s of Me to U, giving
t h e m mul t ip l i c i ty one. However m a k e two copies of t h e
i n t e r n a l edge of eve ry s u b s t i t u t e .

,52ep 5. Find an sap s e t on U, us ing the p r o c e d u r e of See-
t ion 3, a n d a u g m e n t a long the saps. Stop.

Theo rena 4.1. A m a x i m u m ea rd ina l i t y UDCS on a mul t i -
g r a p h on a m u l t i g r a p h c a n be found in 0(VE log V) t i m e
and 0(E) space .

P roof S k e t c h . F o r t h e t i m e bound , no te t h a t S tep 3 is
i m p l e m e n t e d with d y n a m i c t r e e s in e s s e n t i a l l y t h e s a m e
way as t h e a l g o r i t h m for b locking flows [ST]. Also reca l l
t ha t t he d y n a m i c t r e e d a t a s t r u c t u r e finds d e e p e s t c o m -
m o n a n c e s t o r s ,as f a s t as i t s o t h e r p r imi t ive ope ra t i o n s .
This allows t h e jo in j of Pv and Pw to be found eff ic ient ly
in S tep 3c. •

The DCS pnob l em is solved in t h e s a m e way as in Sec-
t ion 3.

453

T h e o r e m 4.~.. A m a x i m u m c a r d i n a l i t y DCS on a mu l t i -
g r a p h c a n be found in 0(VE log V) t i m e and 0(E) space . •

5. Mas'imum Weight , U n i t Capacity P r o b l e m s
This s e e t i a n p r e s e n t s a l g o r i t h m s for t h e m a x i m u m

weight UDCS a n d DCS problems that use
O ((E ~) m i n (E lqg V, ;I~)) time and O(E) space. We start
with the UDCS problem.

Again our approach is to simulate the weighted
matching algorithm on G', the graph with vertex substi-
tutes. Recall how this algorithm works [E85, G, GMG]: A
map is a maximum weight augmenting path. The algo-
rithm repeatly'finds a map and uses it to augment the
matching. This implies that the algorithm finds a

maximum weight k-matching, ~ for k = I, 2, • ' •
Censider a vertex substitute S in G', as in Figure 2.2.

For weighted problems all edges of a substitute are
assigned weight W, the largest edge weight in G. We can
assume that all internal vertices of S are matched, as in
Figure 2.2. (Clearly this gives a maximum weight k-
matching for some/c).

• Now we give the principle for sparse substitutes in
weighted problems. Let P be a map. Recall from Section
8 that P traverses a pair of edges in S in one of two direc-
tions.

Weighted Matching Reduction Principle. T he re is a vnap
t h a t t r a v e r s e s a t m o s t two p a i r s of e d g e s f r o m a g iven
s u b s t i t u t e , one in e a c h d i rec t ion .

Proof. Suppose P traverses two pairs in the same direc-
tion. So P has the form uv, vw zy, yz where
vertices v and y are in the substitute and edges uv and
zg are matched, Let P' be P with the subpath from v to
z replaced by edge oz. We claim P' has weight at least
that of P, i.e., w(P)--'w(P') ~ O. Observe that edges vw,
v z , y ~ a n d yz all have t h e s a m e weight . H e n c e
~v(P)--w(P') is t h e we igh t of t h e a l t e r n a t i n g cyc le f o r m e d
by edge y%v and t h e p o r t i o n of P f r o m w to y . This w e i ~
is nonpos i t ive , s i nce any a l t e r n a t i n g cyc le in a m a x i m l m
weight k - m a t c h i n g h a s nonpos i t ive weight . We c o n c l u d e
P ' is a ~ .ap , as des i red . •

S u p p o s e G' h a s a m a x i m u m weight k - m a t c h i n g .
Define Ca by us ing a s p a r s e s u b s t i t u t e for e a c h ver tex , as
in F igure 2.3. All e d g e s in t he s p a r s e s u b s t i t u t e have
weight W. The R e d u c t i o n Pr inc ip le imp les th i s resu l t :

L e m m a 5.1. A m a p in G~ c o r r e s p o n d s to a m a p in G' con-
ra in ing t he s a m e e d g e s of G. •

The L e m m a jus t i f i es ou r a p p r o a c h of u s i ng Ca to f ind
a map. U n f o r t u n a t e l y we c a n n o t m e r e l y i n p u t Ca to t h e
m a t c h i n g a l g o r i t h m and find a map. The matchJ_ng algo_-
r i t h m of [E65] and i t s e f f ic ient i m p l e m e n t a t i o n s LG, GMG]
a r e p r i m a l - d u a l a l g o r i t h m s [D]: A s e t of dua l va r i ab l e s is
m a i n t a i n e d t h r o n g h o u t t h e a lgo r i thm: We m u s t show how
to c o n s t r u c t dua l v a r i a b l e s on Ca f r o m t h o s e of C a - r

It is c o n v e n i e n t to d e s c r i b e t h e s e a r c h r o u t i n e of t h e
m a t c h i n g a l g o r i t h m in t e r m s of i t s i n p u t a n d ou t pu t . Bo th
of t h e s e a r e in t h e f o r m of a searehgraph. This is a g r a p h
wi th a m a x i m u m we igh t k - m a t c h i n g . The g r a p h h a s a col-
l ec t ion of d is jo in t b l o s s o m s (see S ec t i on 2), E a c h v e r t e x i
h a s a dua l va r iab le y~ a n d e a c h b l o s s o m B h a s a dua l var i-
ab le z B ~- 0. In a d d i t i o n t h e s e p r o p e r t i e s hold:

Search Graph Propels
(i) The free vertices have the smallest ycvalue, i.e.,

if i is f r ee t h e n y~ = min~yj I J ~ V].
(ii) For every edge ~j,

t J ~B

Note the summation is over all blossoms B that contain
both vertices i and j. Edge ij need not be in the sub-
graph B (see Section 2).

(iii) All edges that are matched or in a blossom sub-
graph are t#@ht, i.e., the inequality of (ii) holds with equal-
ity.

We will use some• simple properties of the search
algorithm: Throughout its execution, the algorithm main-
tams a search graph structure on the given graph., It
forms blossoms by oombiniug existing blossoms
~, 1 < i < P.k4:l, into a new blossom B. These properties
hold:

Seo~'ch Algorithm Prope~ies
(i) When a b l o s s o m B is f o r m e d , zB = 0. If v e r t e x c

is m a t c h e d to t h e b a s e b of B , t h e n e is i n c i d e n t to a n
u n m a t c h e d t i g h t edge .

(ii) No dua l va r i ab l e is c h a n g e d un t i l eve ry b l o s s o m
of the search graph is maximal, z B > 0 only if B is a blos-
som in a search graph immediately before a dual variable
is changed.

(rio Suppose the algorithm finds a .tap P that con-
tains a vertex of a blossom B. The portion of P in B is an
alternating path that starts with a matched edge of B,
goes to the base of B, and contains only edges of B and
its subblossoms.

Now we examine graph Ca. A pr/mary blossowt for a
substitute S is the smallest blossom containing an edge of
S. The following result is the analog of Lemma 3,300. It
follows from Search Algorithm Properties (i)-(ii),

l.emma 5.2. Without loss of generality, a vertex of an
internal edge of a substitute is not the base of a primary
blossom. •

~ 'q~internal edge

4x---external vertices

(a) I,] blossom

3 A k'-mo~ch/~ has exactly k edges.

454

blossom /

p a t h "~.tl, l

(b) 2,0 blossom

blossom

(c) 0,2 blossom

Figure 5.1

Topologies for p r i m a r y blossoms•

Now it is easy to s ee t h a t t h e r e are t h r e e t ypes of pri-
m a r y b lossoms , shown in Figure 5.1. Figure 5.1(a) shows
the b lossom when the base is no t in t he subs t i tu te , and
Figure 5.1(b)-(c) show when it is. Observe t h a t t h e s e are
the only possibil i t ies, s ince the L e m m a shows the base is
no t on an in te rna l edge . (Also, t he base is not on an
ex t e r na l ve r t e x on the r igh t of the subs t i tu te , .since a base
is on at l eas t two u n m a t c h e d edges . A m i n o r va r i an t of
Figure 5. l (a) and 5.](c) is when the e x t e r n a l v e r t e x on the
lef t is f ree .)

A p r i m a r y b los som is a n l, r b l o s s o m (with r e s p e c t to
a given subs t i tu t e) if i t con ta ins I edges of G on the left of
t he subs t i t u t e and r edges on the right. As shown in Fig-
u re 5.1 t he t h r e e t y p e s of b los soms a re 1,1; ~,0 and 0,8.

Now reca l l C~ is t he subs t i t u t e g r a p h be fo re the /c ¢u
augmen t , and C~. 1 is the subs t i t u t e g r a p h c o n s t r u c t e d
a f t e r this augment . We define a s e a r c h g r a p h s t r u c t u r e on
G#+1 by using essent ia l ly t he same , s t r u c t u r e as Gk. The
b los soms a re t h e s a m e in b o t h g raphs , e x c e p t t ha t when
the m a p goes t h r ough a subs t i t u t e the new subs t i t u t e
e d g e s of G~+l r ep l ace the old ones of Gk. The dual vari-
ables Yi, zB a re t he s a m e with one except ion: This is y~.,
t h e dual variable for a new ve r t ex ~l' in t he subs t i tu t e , d '
is c r e a t e d when an edge of G b e c o m e s u n m a t c h e d ,
t h e r e b y moving f rom t h e left s ide of t h e subs t i t u t e to t he
right, thus spawnir~g a new m a t c h e d edge and new ve r t ex

We will i l lus t ra te t h e de ta i l s of our pol icy by cons ider -
ing one case: when the p r i m a r y b los som B0 is 2,0 and the
m a p e n t e r s Bo f rom a ve r t ex d, as shown in Figure 5.2(a).
In th is f igure Bo's base is 6, which is m a t c h e d to ex t e rna l
v e r t e x e . Ve r t ex d is m a t c h e d to ex t e rna l ve r t ex e .
Dual var iables a re easi ly ca lcu la ted , and a re i nd ica t ed
n e x t to t h e ve r t i c e s (e.g., Yb = v) .

(a) 8.0 blossom in C%.

primary

Ye bI~°m

(b) 0,2 blossom in C,~+I.

F i g u r e 5 . 2

Augmen t of a 2,0 b lossom.

Consider the map R Search Algorithm Property (iii)
shows P goes from c, through/?0, to 6. It is easy to see
t ha t P has the fo rm c, b, a a ' , b ' , c ' , & , e . S o G k + l i s
as shown in Figure 5.2(b): a a n d ~' a re on u n m a t c h e d
e x t e r n a l e d g e s of B0 and e is t h e new base; e is on a
m a t c h e d ex t e rna l edge and is still jo ined to B0. It is easy
to see t h a t all edges of Figure 5.2(b) a r e t ight . So a blos-
som is def ined in G~+1.

Other c a s e s in t h e analysis are similar. We conc lude
t h a t the s t r u c t u r e def ined for C~+1 is a s e a r c h graph.

T h e o r e m 5.1. A m a x i m u m weight UDCS c a n be found in
0 ((~) m i n (E log V, Fe)) t ime and 0(E) space .

Proof Sketch. Fbr the time bound, the search routine of
[GMG] runs in Q(E log TO time. and gives our first time
bound. The s e a r c h rou t ine of [G] r u n s in 0(Y e) t ime .
Minor modi f ica t ions in t he d a t a s t r u c t u r e m a k e this 0(l~)
on our graph Ca, giving our second time bound. •

455

We solve the weighted DCS problem using the graph
G* of Figure 3.1.

Theorem 5.2. A maximum weight DCS can be found in
0((~ui) rn in(E log V, pc)) time and 0(E) space. •

B. Shortest Paths
This sect ion sketches an algorithm for the all-pairs

shor tes t p a t h problem on an undirected graph. The run
t ime is 0(V rain (E log 'V, VZ)).

The algorithm is based on Lawler's reduct ion of the
single-pair shor tes t pa th problem to DCS [L, pp. 2"20-222].
The reduct ion resembles the bidirected graph construc-
tion of Figure 2.1: Given an undirected graph with edge
lengths, G. Let G* be G where in addition, each ver tex
has a self loop of length 0. Consider a DCS problem on G*
where each ver tex i has /~ = u: = 2. This problem is
closely related to any shor tes t path problem on G: I f s is
the source and t is the sink, the shor tes t s - t pa th
corresponds to the DCS where the bounds for s and t are
changed to one. This mott ivates the following algorithm:

Step 1. Given G, form G* adn find a minimum weight DCS.
(Comment: h minimum weight DCS consists of all the
self-loops, since G has no negative cycles. Our algorithm
finds this solution and more importantly, it constructs the
corresponding dual variables and blossoms.)

Step 2. Repeat the following steps for each vertex.

Step,?a. Use G* to form G', a copy of G * w i t h a n e w
vertex S and edge Ss. Let M be the largest dual vari-
able y~ in G*. Let Ss have length 2M+l and let
Ys =M. L e t l s = u s = 1.

Step Zb. Use the DCS algorithm to search for an aug-
menting path from S. (Comment: The search halts
unsuccessfully, since there is no DCS. However it
computes dual variables Yi.)

Step 2c. Output each vertex t at distance
Ys + y : - (2 M + l) from s.

Theorem 6.1 The aU-pairs shortes t path problem on an
undirected graph with no negative cycles can be solved in
0(V mtn (E log V, V~) time and O(E) space.

Proof Sketch. Correctness can be seen by noting that
Step 2b simulates the DCS algorithm when G* is modified
to make t the sink. For the timing, Step 1 runs in the
desired time. Each execution of Step 2b uses
O(min (E log V, Ye)) time. So Step 2 is also within the
desired time bound. •

~ C E S

[A] R.P. Anstee, "An algorithmic proof of Tutte's f-
factor theorem", Res. Rept. CORR 81-28, Dept. of
Combinatorics and Optimization, Univ. of Water-
loo, Waterloo, Ontario, 1981,

[Berg] C. Barge, Graphs and Hypergraphs, North-
Holland, Amsterdam, 1973.

[Bern] R. Bernstein, "Shortest paths in undirected
graphs", M.S, Thesis, Stevens Inst. Technology,
1982.

[D] G.B. Dantzig, Linear Programming and Ezten-
s'/ons, Pr inceton Univ. Press, Princeton, N J,
1963.

[E65]

[E87]

[mT0]

[EJ73]

[r,~]

lET]

[C83]

[G]

[Gol]

[GMG]

[cs]

[HK]

[L]

[MV]

[Sh]

[Sl]

[ST]

[r]

[U]

[W]

Edmonds, J., "Maximum matching and a
polyhedron with 0,1-vertices," J. Res. Nat. Bur.
Standards BWB (1985), 125-130.
J. Edmonds, "An introduction to matching,"
Notes of Engineering Summer Conference, Univ.
of Michigan, Ann Arbor, 1987.
J. Edmonds and E.L. Johnson, "Matching: A well-
solved class of integer linear programs," Proe.
Calgray Int. Conf. on Combinatorial Structures
and Their Applioatiovas, Gordon and Breach, New
York, 1970, pp. 89-92.
J. Edmonds and E.L. Johnson, "Matching, Euler
tours and the Chinese postman," Math. Program-
ming 5, 1973, pp. 88-124.
J. Edmonds and RM. Karp, "Theoretical improve-
ments in algorithmic efficiency for network flow
problems," J. ACM 19, 2, 1972, pp. 248-264.
S. Even and R,E. Tarjan, "Network flow and test-
ing graph connectivity", SIAM J, Covnput. 4, 4,
1975, pp. 507-518.
H. Gabow, "An efficient reduct ion technique for
degree-const ra ined subgraph and bidirectied
network flow problems," Tech. Rept. CU-CS-243-
83, University of Colorado, Boulder, Colorado,
1983.
H. Gabow, "An efficient implementat ion of
Edmonds' algorithm for maximum weight match-
ing on graphs," Tech. Rapt. CU-CS-875-75,
University of Colorado, Boulder, Colorado, 1975.
A.J. Goldman, "Optimal matchings and degree-
const ra ined subgraphs," d. Res. National Bureau
of Standards 686, 1, 1964, pp. 27-29.
Z. Galil, S. Micali, H. Gabow, "Priority queues
with variable priority and an 0(E V log V) algo-
r i thm for finding a maximal weighted matching
in general graphs," Proc. 23rd Annual Syrup. on
Foundation of romp. Sci., 1982, pp. 225-261.
H.N. Gabow and M. Stallman, "Scheduling multi-
task jobs with deadlines on one processor,"
abstract .

Hopcroft, J. and Karp, R, "An n 2 algorithm for
maximum matchings in biparti te graphs," SIAM .
J. Cornp. 2, 4, 1973, pp. 225-231.
E.L. Lawler, Combinatorial Optimization: Net-
~orks and Malroids, Holt, Rinehart and Winston,
New York,]978.
S. Micali and V.V. Yazirant, "An 0(xf[-V- V. I E])
algorithm for finding maximum matching in gen-
eral graphs," Proc. 21st Annual Syrnp. on
Found. of Cornp. Sci., 1980, pp. 17-27.
Y. Shiloach, "Another look at the degree con-
s t ra ined subgraph problem," Inf. Proc. Letters
12, 2, 1981, pp. 89-92.
D.D.K Sleator, "An O(nm log n) algorithm for
maximum network flow," Ph.D. Diss., Tech. Rept.
STAN-CS-80-831, Stanford Univ., Stanford, CA,
1980.
D. Sleator and R.E. Tarjan, "A data structure for
dynamic trees," Proc. 1.3th _)fftnual ACM Symp.
on Th. of Cor~puting, Milwaukee, Wise., !98], pp.
3.14-122.
R.E. Tarjan, "Shortest paths," Ch. 17 in unpub-
lished manuscript ,] 982.
R.J. Urquhart, "Degree-constrained subgraphs of
linear graphs," Ph.D. Diss., University of Michi-.
gun, 1967.
L.J. White, "A parametr ic study of maLchings and
covering in weighted graphs," Ph.D. Diss., Sys-
t ems Eng. Lab., Dept. of Electrical Eng., Univer-
sity of Michigan. Ann Arbor, 1967.

456

