AN EFFICIENT REDUCTION TECHNIQUE FOR
DEGREE-CONSTRAINED SUBGRAPH AND BIDIRECTED
NETWORK FLOW PROBLEMS

by

Harold N. Gabow
Department-of Computer Science
University of Colorado
Boulder, CO 80309

Abstract

Efficient algorithms are given for the bidirected net-
work flow problem and the degree-constrained subgraph
problem. Four versions of each are solved, depending on
whether edge capacities/multiplicities are one or arbi-
trary, and whether maximum value/maximum cardinality
or minimum cost/maximum weight is the objective. A
version of the shortest path problem is also efficiently
solved. The algorithms use a reduction technique that
solves one problem instance by reducing to a number of
problems.

1. Introduction

Bidirected network flow, introduced by Jack Edmonds
[E67,L), models a broad class of integer linear program-
ming problems, including ordinary network flow, graph
matching, degree-constrained subgraphs, shortest paths
and others. It is well-known that problems in this class
can be solved in polynomial time by matching techniques
[L, EJ70]. Two approaches have been used. The first is to
apply the ideas of matching to the more general problem
and work out the details of an eflicient algorithm [e.g.,
EJ73, U, W]. This can be done "in principle” but made
difficult by the«complex structure of matching biossoms,
In fact this conceptual complexity has apparently
prevented researchers from developing good algorithms
for some of these problems (see our list below). The
second approach is to use a problem reduction, from the
more .general problem to a well-understood one. The
drawback of this technique is expansion in problem size,
which can give nonpolynomial algorithms {L] or can
degrade the performance by one or more orders of mag-
nitude [Berg, Gol, Sh].

This paper presents an efficient reduction technique
for bidirected network flow problems. The major
difference from previous work is that we do not attempt
to reduce one problem instance to another. Instead a
number of different reductions are used to solve one
problem instance. Our results are for the following
bidirected flow problems:

(1) Maximum cardinality, unit capacity problems.
(i) Degree-constrained subgraph (DCS). Given a graph
where each vertex i has integer bounds 4 and u;. Find a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0-89791-099-0/83/004/0448 $00.75

448

subgraph H with the greatest possible number of edges,

such that each vertex i has degree d; (in H) with
L, sd; <y Our algorithm runs in 0 (L VmE‘) time.

This generalizes the maximum cardinality matching algo-
rithm of Micali and Vazirani {MV] (where all [; =0, u; =1
and the time is 0(VVE), and in fact our algorithm is a
reduction to theirs. It improves the 0“‘-%"")"5) algo-

rithm of Urquhart [U].

(ii) PBidirected network flow (biflow) Given a
bidirected network with unit edge capacities, ﬁndsa max-

imum value flow. Our algorithm has run time 0(£?). This
generalizes the result of Even and Tarjan [ET] which
achieves the same time bound for the directed case.

(2) Marimum cerdinality, arbifrary cupacity prob-
lems. (i) Given a DCS problem as in (1) on a multigraph,
where each edge e has an integral multiplicity x,. Find a
degree-constrained subgraph with the greatest possible
number of edges. (ii) Given a biflow problem as in (1),
where each edge e has integral capacity c;. Find a max-
imurm value flow. For both problems our algorithms have
run time O(V £ log V). This generalizes the algorithm of

Sleator and Tarjan [SlI, ST] for directed graphs (and our
algorithm uses theirs. Note however that they allow real-
valued capacities).

Recent work of Anstee [A] offers a competitive
approach. We can implement his algorithm for the f-
factor problem (DCS where § = for all vertices i) in
O(V E log V) time, the same bound as ours. His method is
based on solving one network flow problem and one prob-
lem of the matching type.

(3) Maximum weight, unit capacity problems. (i)
Given a DCS problem as in (1), where in addition each
edge has a real-valued weight. Find a degree-constrained
subgraph of maximum weight. Our algorithm runs in
0((i § Vu‘-)min(E log V,V?)) time. This generalizes the max-

imum weight matching algorithm of Galil, Micali, and
Gabow [G, GMG] {and our algorithm uses theirs). It
improves the algorithm of Urquhart [U] which is
0(, £ 1)),

(ii) Given a biflow problem as above, where in addi-
tion each edge has a real-valued cost. Find a minimum
cost flow of a pre/s;eciﬁed value. Our algorithm runs in
O(F min(E log V, V%)) time.

(4) Shortest paths in an undirected graph. Given an
undirected graph where each edge has a real-valued
length; edges may have negative lengths but there are no
negative cycles. Find the shortest path between a given
pair of vertices, or more generally find the shortest path
between all pairs of vertices. This problem cannot be
solved by the standard algorithms for directed graphs {L}.
It is an instance of a "natural” bifiow problem. Our algo-
rithm for this problem (single pair or all pairs version)
runs in O(V min(E log ¥V, V%)) time (compared with

directed graphs, this matches the bound for the ali-pairs
problem, and compares to O(VE) for the single source
problem [T].) Bernstein {Bern] has recently claimed an
0(V*) algorithm for this problem, based on Dijkstra's shor-
test path algorithm.

Other applications of the DCS problem include
efficient algorithms for the matroid parity problem on
matching matroids and their variants [GS].

(5) Maximum weight problems. (i) The problem is
the maximum weight DCS problem for multigraphs. (ii}
The problem is the minimum cost biflow problem (with
arbitrary integral capacities). Our algorithm runs in
D(E?(log V){log C)) time where C is the largest capacity.
It resembles the algorithm of Edmonds and Karp for the
minimum cost network flow problem [EK]. {Actually it
gives improved results for the special case of network
flows, e.g., an O(VE(log C)) algorithm for maximum value
network flow, and others).

The rest of this paper is organized as follows. Section
2 defines the above problems and also the upper degree-
constrained subgraph problem (UDCS); we reduce all
problems to UDCS. This section also sketches our reduc-
tion technigue for augmenting paths. Sections 3-6 sketch
the algorithms for problems (1) - {4). (Details that have
been omitted due to space limitations can be found in (G
83]). (5) will be discussed elsewhere.

2. Basic Problems and Reductions

The three problems we investigate, stated in general
form, are as follows.

(i) Bidirected metwork flow [L, pp. 223-4]. In a
directed grmph an edge goes from one vertex fo another.
A bidirectetl graph allows this possibility and two others:
an edge may be directed from both of ils end vertices, or
to both of them. (Additionally, the two vertices of an edge
may coincide.)

(a)

Figure 2.1

(a) An undirected graph with a path.
(b) Corresponding bidirected graph and path.

449

{b)

* Figure 2.1 illustrates the usefulness of this concept
by giving mn undirected graph with a path and the
corresponding bidirected graph and path. (A bidirected
path is a sequence of vertices and edges
Vg, €4, Uy, ..., €, Yy, such that if e; is directed to (f'romf'u,
then ey, is directed from (to) v;. Paths in the undirected
and bidirected versions correspond. This correspondence
is achieved without duplicating edges, as is done in the
correspondence between undirected and directed graphs.
This allows.one to solve the shortest path problem ((4) of
Section 1).

Bidirected network flow (biflow) problems are
defined from bidirected graphs, by analogy with ordinary
directed flows, as illustrated by the above definition of
path. Details are in [L, pp. 223-4].

(ii) The degree-constrained subgraph (DCS) problem
is on an undirected graph, with lower and upper bounds [;
and u; at each vertex i (see Section 1).

(iii) The upper degree-constrained subgraph (UDCS)
problem is the special case of DCS where all lower bounds
L, are 0. .Any feasible subgraph of G (i.e., one that
satisfies the degree constraints w;) is a UDCS (upper
degree-constrained subgraph).

We reduce biflow and DCS to UDCS. In this paper the
reductions for biflow are omitted {see |[L, pp. BR4-225] for
a related construction).

Now we sketch the reduction technique that forms
the theme iof this paper. It reduces a UDCS problem to
matching problems. Consider a UDCS problem on a graph
G. Fix a vartex 1. Let u = u; be the given degree bound;
let d be i's degree in G; define A = d—u, the least possi-
ble number of unchosen edges. 1t is well-known [e.g.,
Berg] that a UDCS on G corresponds to a matching on G',
where G’ isiconstructed from & by replacing each vertex i
by a substitute S that is the complete bipartite graph

Kpq. as in Figure 2.2. The figure shows how a UDCS of &
corresponds to a matching on G' (wavy edges are in the
UDCS in Figure 2.2(a) and in the matching in Figure
2.2(b).) m denotes the number of edges incident to i in
the UDCS. In this reduction a UDCS on & corresponds to a
matching on &' that covers every internal vertex of every
vertex substitute. (Mnternal and exfernal vertices of a
substitute are indicated in Figure 2.2.) Further, max-
imum cardinality and weight subgraphs correspond.

4 internal
[vertices

d external
vertices

{b)

Figure 2.2

(a) Vertexi in UDCSon G.
{b) Vertex substitute S in matching on G'.

internal edge

{../

€— external
vertex

em+j
l<js<d

ey Cm+A+k
l<is<sm 1l<k<u-m

Figure 2.3

Sparse substitute for 1.

This reduction is inefficient since it can increase the
number of edges to Q(VE). (For instance, if there are

Q(-l;;,;) vertices of degree (V) and each such vertex i has

450

u = g— the number of edges added is Q(%) = Q(VE)).

However we will show that an augmenting path need only
pass through a given substitute S twice. Because of this
the substitute S in Figure 2.2 can be replaced by the
sparse substitute shown in Figure 2.3. Here the two
{matched) internal edges correspond to the two uses of
the substitute. Observe that a sparse substitute is
defined with Tespect fo a given matching; when the
matched edges incident to 4 change, the substitute
changes. Also note that sparse substitutes are efficient:
The number of edges added for one sparse substitute is
2m + 2(u-m) + 3A + 2= 0(d), so the total number of
edges for all substitutes is 0(£). (The number of vertices
added is O(£) but this is not important.)

Our algorithm work by simulating the appropriate
matching algorithm on G'. The simulation is done on a
graph G, identical to G’ except Lthat sparse substitute are
used. Each time a new matching is formed on ', a new
graph G4, is formed by using sparse substitutes for the
new matching. Since all graphs G, have 0(F) edges, the
matching algorithm runs fast and an efficient algorithm is
maintained. ’

The technical difficulties in carrying out this
approach are of two types. The cardinality matching algo-
rithm finds a number of augmenting paths simultane-
ously. This causes difficulties in the simulation on (.
The weighted matching algorithm maintains a structure
from one augment to the next. This causes difficulties in
the switch from G, to Gy4,.

We close this section by briefly reviewing the notion
of a matching blossom. Familiarity with the basic ideas of
matching such as augmenting paths is assumed [see e.g.,
L].

A blossom is a subgraph B of a matched graph,
defined as follows. (See Figure 2.4.) let k=1 be an
integer. The vertices of B are partitioned into sets B;,
1<1<2k+1, where each B; either consists of a single
vertex or is itself a blossom. The edges of B are
g;, 1 <1 < 2k+1, where g; is incident to a vertex in B; and
a vertex in By, (wheni = 2k +1, takei+1 tobe 1). e; isa

matched edge iff © is even.

Figure 2.4

A blossom.

The shorthand ¢ € B means that i is a vertex of blos-
som B. (Note that a blossom is not an induced subgraph,
so we may have i, j € B without edge ij being in B.) A
simple induction shows that except for one vertex b € B,,
every vertex i € B has a matched edge ij withj € B. The
exceptional vertex b is the base vertex of B. Another
induction shows that for each vertexi € B, B and its sub-
blossoms contain an alternating path that starts with a
matched edge, from i to d. (If this pathisi,j, k, ..., b, it
is not usually true that k, ..., b is k's path, e.g., in Figure
2.4 let e; =17 and j. k € By. This leads to pitfalls for the
unwary - the open literature contains a number of
blunders about blossoms')

For cardinality matching blossoms are slightly
simpler: Subblossoms such as B; and By, that are an
odd distance from b are always vertices. We do not use
this property here.

3. Maximum Cardinality, Unit Capacity Problems
This section presents algorithms for the maximum

cardinality UDCS and DCS problems that use O(VIwE)
time and O(E) space. We start with the UDCS problem.

Our approach is to simulate the cardinality matching
algorithm on &', the graph with vertex substitutes. Recall
how the cardinality matching algorithm works [HK]: An
sap is a shortest length augmenting path. An sap set is a
maximal set of vertex disjoint sap’s. The algorithm is
organized into phases. Fach phase finds an sap set, and
then augments the matching along the paths of the set.
The length of an sap increases every phase.

We can assume that any matching we construct on G*
covers every internal vertex of every substitute. This
allows us to estimate the number of phases of the match-
ing algorithm on G'.

Lemma 3.1 At most g—-\/z_'xz phases are needed to find a
maximum matching on G'.

Proof. The argument is analogous to ones in [HK] and
[ET]. =

The Lemma implies thatl to achieve our time bound it
suffices to implement a phase of the matching algorithm
on G'in O(F) time. We do this by running each phase on
the graph G. G is derived from G' and the current
matching by using sparse substitutes. We must show that
Gy is a correct model for G', i.e., an sap set of G gives an
sap set of G'.

We begin with the basic principle behind the idea of
sparse substitutes. Consider the graph ', with a match-
ing that covers all internal vertices. Let S be a vertex
substitute. Let P be an sap consisting of edges e, ..., ¢,.
Internal edges of S occur as pairs in P, say e;, €.+;. In
each pair one edge is matched and the other is not. We
say P traverses a pair in one of two directions, depending
on whether the matched edge is first or second.

Cardinality Maiching Reduction Principle. An sap
traverses at most two pairs of edges from a given substi-
tute, one in each direction.

Proof. Suppose P traverses two pairs in the same direc-
tion. So P has the form ..., wv, vw, ..., 2y, yz, ..., where
vertices v and ¥ are in the same substitute, and edges uv
and zy are matched. P can be shortened by replacing
the subpath from v to z with the edge vz. This contradic-
tion proves the result. ®

451

Note that if G is bipartite only one direction, and
hence one pair of edges, is possible for a substitute.

This principle implies that sop’s in ¢ and G
correspond. We must show that sap sets on the two
graphs correspond. In fact they do mot: an sap set may
pass through a substitute up to two times on each aug-
menting path. We analyze how an sap set uses a substi-
tute, and show that G; can still be used as a correct
model.

It is convenient to work with a graph G that is inter-
mediate between G' and G,. ', uses the same sparse
substitutes as G.: the only difference is that the substi-
tute for a vertex i of G contains d; internal edges (as
opposed to two internal edges in G.).

Lemma 3.2. An sap set in G'; corresponds to an sap set in
G’ containing the same edges of G.

The Lemma shows that we can take our goal to be
finding an sap set on G';. We analyze the structure of
such a set by using ideas from the cardinality matching
algorithm of [MV]. Consider an arbitrary matched graph.
For a vertex v, the even level of v, e(v), is the length of a
shortest even length alternating path from a free vertex
to v; the odd level o (v) is defined similarly. (We also refer
to "paths defining e{(v)or of(v) ", with the obvious
interpretation) The tenacity of an edge e, t(e), is the
length of a shortest alternating path that contains e and
ends at free vertices, but is not necessarily simple. (If it
is simple it is an augmenting path.) So for e = vw, £(e) is
o(v)+o(w)+1 if e is matched and e(v) +e(w) + 1

otherwise. A blossom B of tenacily t is defined, as in Sec-
tion 2, from blossoms B, ..., Bg+; and edges e, ..., g4,
The only difference is the added requirement that blos-
soms B; have tenacity at most ¢, and edges e; have tena-
city t. !

We will refer to two simple but important properties
of blossoms. In en arbitrary matched graph, let an sap
have length 2s +1.

Cardinality Blossom Properties

(i) Let vw be an edge of tenacity ¢(vw) < 2s+1.
Then some blossom of tenacity at most t{vw) contains
both vertices v and w.

(ii) Let B be a maximal blossom of tenécity t, where
t <Bs+1, and let b be its base. For any vertex v € B,
any path defining e (v) or o (v) passes through b.

These properties are obvious in [MV]. Alternatively
they can be proved directly from the definitions. (It is
convenient to. prove them together, inducting on t. We
leave this as an ekercise.)

We show that sap sets on &', can be found using G, . It
is convenient to define a relation of "similarity" between
vertices in Gy and G'%: Let v and v' be vertices in either
of the two graphs (perhaps the same graph). Then ¥ and
v' are similar if they are in substitutes for the same ver-
tex of G, and either they are external vertices on the
same edge of G, or they are matched to external vertices
on the same edge of G, or they are vertices on the same
(left or right) side of an internal edge.

! This definition ican easily be proved equivalent to the one in [MV]:
maximal blossoms of a giwen tenacity are identical in both definitions.
We use our definition since it is the same as for weighted matching. [t
also appears to simplify the algorithm of [MV], eliminating the Double
Depth First Search. ’

_ Lemma 3.3 (i) If v and v’ are similar vertices then
their levels are equal: e (v) = e{v') and o (u) = o(v").
(i) If v and v’ are similar vertices in the same

graph, any maximal blossom of tenacity ¢t contains both
vertices or neither.

(iil) Let B be a maximal blossom of tenacity t in G,
or (. let B’ consist of all vertices in the other graph
that are similar to a vertex of . Then B'is a maximal
blossom of tenacity ¢.

Proof Sketch. (i) Uses the Cardinality Matching Reduc-
tion Principle. (ii) and (iii) use Cardinality Blossom Pro-
perty (i).

Now we show how to find an sap set on G'; using G.
First we give a high-level description for a phase in the
matching algorithm of [MV]: Let an sap have length 2s +1.

Step 1. Calculate all levels e (v) and o{v) that are at most
s+1. Construct all blossoms that have tenacity less than
2s+1.

Step 2. Repeat the following steps until the graph does
not contain an sap of length 2s +1:

Step 2a. Use level numbers and blossoms to find an
sap P. Augment the matching along P.

Step 2b. Delete vertices {along with their incident
edges) that cannot be in an sap: First delete all ver-
tices of P. Then repeatedly delete vertices (that are
not in blossoms) whose ‘predecessor count” (see
[MV]) decreases to 0. Furthermore, whenever the
base of a blossomn is deleted, delete all vertices in the
blossom. Continue with Step 2.

When Step 2 ends, all vertices and edges of the graph
are restored and the next phase is begun.

Note that Cardinality Blossom Property (ii) justifies
the blossom deletion policy in Step 2b. It implies that any
sap containing a vertex of a blossom # contains the base
of B. Hence B can be deleted when its base occurs on an
sap or becomes unreachable.

Consider how this algorithm works on G'¢. In a given
substitute, at most two internal edges are deleted
because they are in P. All other deletions in Step 2b
remove all internal edges of the substitute. This is true
because all internal edges are in the same maximal blos-
som, by Lemma 8.3(‘1'1%; also 'predecessor counts" are
based on level numbers and vertex adjacencies, which are
the same for each internal edge by Lemma 3.3(i).

We can run this algorithm on G instead of G'x and
still find an sap set of G'¢. Step 1 is the same on both
graphs, by Lemma 3.3 (i) and (iii). Step 2 on G, will simu-
late Step 2 on G’ if we make one modification: When P
passes through a substitute whose internal edges are not
in a blossom, these internal edges are not deleted (nor
are they rematched in the augment). The reason is that
in G'. the substitute has d;—2 other internal edges that
can be used in other saps. We keep the two internal
edges in G to model these edges, On the other hand, all
other deletions in Step 2 remove all internal edges of a
substitute in either path, and so work the same in G and
G'y.

Thus we have shown that the matching algorithm
(with the slight change given above) finds an sap set of
G'y. This gives the desired result.

Theorem 3.1. A maximum cardinality UDCS can be found
in 0(\/Z% E) time and O(E) space. ®

452

We turn our attention to the DCS problem. Recall
that in this problem each vertex i has both an upper
bound u; and a lower bound I; on its degree. We will
transform DCS so our UDCS aigorithm applies. (This prob-
lem reduction approach differs from previous ones [U,S].)

Consider a DCS problem on a graph G. Figure 3.1
shows a corresponding UDCS problem on a graph G*. G*
contains two copies of G. Both copies of a vertex i have
upper bound u;, the same upper bound as in G. In addi-
tion the two copies of i are joined by u;—l; paths of length
three. Each of the 2(w;—l) intermediate vertices on
these paths has degree two in G* and has upper bound
one.

u-7 paths

Figure 3.1

Graph G*

It is easy to see that a DCS H on G has a correspond-
ing complete 2 UDCS H* on G*. Conversely a complete
UDCS H* on G* induces a DCS H en G. H need not have
maximum cardinality, but it leads to the solution to our
problem. Here is the complete algorithm for the DCS
problem.

Step 1. Construct the UDCS problem G* from G. Find a
maximum cardinality UDCS H*. Assume H* is complete
(else the DCS problem is infeasible). Let 4 be the DCS on
G induce d by H*.

Step 2. Run the maximum cardinality UDCS algorithm on
G, using A as the initial solution.

For Step 2, recall that the maximum cardinality
matching algorithm of [MV] can be started with any initial
matching. Hence the same is true of our UDCS algorithm,
as required in Step 2. Next recall that the UDCS algo-
rithm works by augmenting paths. Hence no degree of a
vertex is ever decreased. So the algorithm halts with a
subgraph that satisfies all upper and lower bounds u;. L;.
It has maximum cardinality among all subgraphs that
satisfy the upper bounds. Hence it is a maximum cardi-
nality UDCS.

Theorem 3.2. A maximum cardinality DCS can be found in
0(\/Zu; £) time and O(E) space.

4. Maximum Cardinality, Arbitrary Capacity Problems

This section presents algorithms for the maximum
cardinality UDCS and DCS problems, when edges e have
arbitrary integral multiplicities &, . The algorithms run in
O(VElog V) time and O(£) space.

2 In a complete UDCS, every upper degree bound U; holds with
equality.

We begin with UDCS. Define the graph G' as usual
using the substitutes of Figure 2.2. An edge i/ in G
corresponds to uy; distinct edges in G', each joining an
external vertex in i's substitute to one in j’s. As in Sec-
tion 3, every internal vertex of G' is matched.

Our approach is to simulate the cardinality matching
algorithm on G'. The Cardinality Matching Reduction
Principle bounds the length of an sap and gives this esti-
mate:

Lemma 4.1. At most 3V+1 phases are needed to find a
maximum matching on G'. ®

The Lemma implies that for our time bound it
suffices to implement a phase on &' in O(E log V) time. To
do this, as in Section 3 it is convenient to work with
graphs G', and Gg. Both are derived from G' and the
current matching by using sparse substitutes. In G’y a
substitute has d; internal edges; in G, it has two internal
edges. Furthermore, suppose ij is an edge of G, having m
matched copies and u unmatched copies in the current
matching on G'. (So ; =m +u.) Then G, contains m
matched copies and w unmatched copies of ij; G con-
tains min (2,7) matched copies and min (2,u) unmatched
copies.

Lemma 3.2 still applies to graph G'%. Hence it
suffices to find an sap set on G';,. We will show that this
can be done on the smaller graph G.. First it is con-
“venient to extend the definition of "similar” vertices. In
the current context we say that two external vertices in
the same substitute of G or G', are similar if they are on
copies of the same edge of G, and both copies are
matched or both are unmatched. Substitute vertices that
are matched to external vertices are handled analogously.
The rest of the definition of similarity is unchanged.

It is easy to see that Lemma 3.3 remains valid for G’
and G. In particular, the definition of G, allows the Car-
dinality Matching Reduction Principle to apply in the
proof of Lemma 3.3(i).

Lemma 3.3 allows us to use G to calculate levels and
blossoms in G';. Now we must show how to actually find
the sep’s. The algorithm is based on the following pro-
perty of blossoms. Let an sap have length 2s +1.

Lemma 4.2. In G';, let B be a maximal blossom of tena-
city £ < 2s+1, with base vertex 8. Then no other vertex is
similar to & .

Proof Sketch. Follows from Lemma 3.3 (i),

The Lemma and (Cardinality Blossom Property(ii))
implies that at most one sap passes through any copy of
any edge with a vertex in a blossom. So "most” sap's do
not pass through any blossoms. This allows us to use the
tast techniques for network flows for most sap's.

To carry out this approach we work with two graphs.
The first is a multigraph M, that is essentially G';. Let ij
be an edge of G that has m matched copies in G'; and u
unmatched copies. Then M, has a matched copy of i
with multiplicity m and an unmatched copy with multipli-
city u. {(In our data structure for multigraphs we store
each edge and its an integral multiplicity. Thus M, has
size O(E).) M. is used for sap’s of multiplicity greater
than cne. It is processed with the dynamic tree data
structure of Sleator and Tarjan [ST].

The second graph, U, consists of edges with unit mul-
tiplicity. It is used for sap’s that have multiplicity one. In
particular it handles sap’s that involve blossoms.

453

Now we give the algorithm for a phase. 1t follows the
outline of the algorithm of [MV] given in Section 3. Let an
sap have length 2s +1.

Step 1. Use the graph G to calculate all levels e{v) and
o(v) that are at most s+1. Construct all blossoms that
have tenacity @s +1.

Step 2. Construct the multigraph M,. Initialize the graph
U to be empty. Transfer from M, to U all blossoms and
all edges of multiplicity one. {Comment: M; has no edges
or blossoms of tenacity less than 2s+1. It may have edges
or blossoms of tenacity 2s +1.)

Step 3. Repeat the following steps for every edge vw of
tenacity 2s+1. When no more edges vw remain, go to
Step 4.

Step 3a. Use the method of dynamic trees [ST] to find
a path P, from v to a free vertex, and also a path £,
from w to a free vertex. P, and P, are paths defini
e{v) and e (w) if vw is unmatched, or o(v) and o(;%
otherwise. Let P,(P,) end in the substitute for vertex
i(j) of G. Let 6;{6;) be the largest possible increase
in the degree of is 'S in the current UDCS.

Step 3b. If P, and F, are disjoint then let
M = min {u, 6;, 6;| e is an edge on P,. P, or vwi.
Augment u copies of the path P,, vw, F,,. Go to Step
3d.

Step 3c. Otherwise P, and P, are not disjoint. By the
method of dynamijc trees they join at a vertex j, i.e.,
P, consists of a path from v to j, P,;, followed by a
path from j to a free vertex, P;. Similarly, P, con-
sists of P,; and P;. (Possibly F; is a single vertex.)

Let

1
: %
vw, [is avedge on Fj]. (Comment: u = 0 if the paths
form a blossom of tenacity 2s +1.) Augment u copies
of Py, vw, Py augment 2u copies of F;.

| e is an edge on P, P, or

|

Step 3d. Delete all augmented edge from M.
Transfer any new blossom {of tenacity 2s+1) and any
edge with new multiplicity one, to U. Continue with
Step 3.

Step 4. Transfer the remaining edges of M, to U, giving
themn multiplicity one. However make two copies of the
internal edge of every substitute.

Step 5. Find an sap set on U, using the procedure of Sec-
tion 3, and augment along the saps. Stop.

Theorem 4.1. A maximum cardinality UDCS on a multi-
graph on a multigraph can be found in O{VE log V) Lime
and 0(F) space.

Proof Sketch. For the time bound, note that Step 3 is
implemented with dynamic trees in essentially the same
way as the algorithm for blocking flows [ST]. Also reccall
that the dynamic tree data structure finds deepest com-
mon ancestors.as fast as its other primitive operations.
This allows the join j of P, and P, to be found efficiently

in Step 3c. =

The DCS problem is solved in the same way as in Sec-
tion 3.

Theorem 4.2. A maximum cardinality DCS on a multi-
graph can be found in 0(VE log V) time and O(£) space. ®

5. Maximum Weight, Unit Capacity Problems

This section presents algorithms for the maximum
weight UDCS and DCS problems that use
0{(Zw)min(E lgg V,V?)) time and O(E) space. We start
with the UDCS problem.

Again our approach is to simulate the weighted
matching algorithm on G', the graph with vertex substi-
tutes. Recall how this algorithm works [E65, G, GMG]: A
map is a maximum weight augmenting path. The algo-
rithm repeatly'finds a map and uses it to augment the
matching. This

maximum weight k-matching® fork = 1,2, - - -

Consider a vertex substitute S in &', as in Figure 2.2.
For weighted problems all edges of a substitute are
assigned weight W, the largest edge weight in G. We can
assume that all internal vertices of S are matched, as in
Figure 2.2. (Clearly this gives a maximum weight k-
matching for some k).

"Now we give the principle for sparse substitutes in
weighted problems. Let P be a map. Recall from Section
3 that P traverses a pair of edges in S in one of two direc-
tions.

Weighted Matching Reduction Principle. There is a map
that traverses at most two pairs of edges from a given
substitute, one in each direction.

Proof. Suppose P traverses two pairs in the same direc-
tion. So P has the form ..., wv, vw, ..., zy, Y2, ..., where
vertices v and y are in the substitute and edges uv and
zy are matched. Let P’ be P with the subpath from v to
z replaced by edge vz. We claim P’ has weight at least
that of P, i.e., w(P)—w(P") > 0. Observe that edges vw,
vz, yw and yz all have the same weight. Hence
w(P)—=w(P") is the weight of the alternating cycle formed
by edge yw and the portion of P from w toy. This weight
is nonpositive, since any alternating cycle in a maxim
weight k-matching has nonpositive weight. We conclude
P'is a map, as desired. ®

Suppose G' has a maximum weight k-matching.
Define G, by using a sparse substitute for each vertex, as
in Figure 2.3. All edges in the sparse substitute have
weight . The Reduction Principle imples this result:

Lemma 5.1. A map in G corresponds to a map in G' con-
taining the same edges of G. #

The Lemma justifies our approach of using G to find
a map. Unfortunately we cannot merely input G to the
matching algorithm and find a map. The matching algo-
rithm of |E65] and its efficient implementations [G, GMG]
are primal-dual algorithms [D]: A set of dual variables is
maintained throughout the algorithm. We must show how
to construct dual variables on G from those of G-

it is conventent to describe the search routine of the
_ matching algorithm in terms of its input and output. Both
of these are in the form of a search graph. This is a graph
with a maximum weight ¥ -matching. The graph has a col-
lection of disjoint blossoms (see Section 2). Each vertexi

has a dual variable y; and each blossom B has a dual vari-
able zg = 0. In addition these properties hold:

3 A k-matching has exactly k& edges.

implies that the algorithm finds a-

454

Search Graph Properties
(i) The free vertices have the smallest y;-value, i.e.,
iti is free then ¥ = minfy; | j € V}.

(ii) For every edge ij,
yi+yj+ E zBZ‘IDq.
eB

Note the summation is over all blossoms B that contain
both vertices i and j. Edge i need not be in the sub-
graph B (see Section 2).

(iii) All edges that are matched or in a blossom sub-
gtraph are tight, i.e., the inequality of (ii) holds with equal-
ity.

We will use some. simple properties of the search
algorithm: Throughout its execution, the algorithm main-
tains a search graph structure on the given graph.. It
forms blossoms by combining existing blossoms
I;F‘ldl <i=<2k+1, into a new biossom B. These properties

old:

Search Algorithm Propertias
(i) When a blossom P is formed, zp = 0. If vertex c

is matched to the base b of B, then ¢ is incident to an
unmatched tight edge.

(ii) No dual variable is changed until every blossom
of the search graph is maximal. zp > 0 only if B is a blos-
som in a search graph immediately before a dual variable
is changed.

(iii) Suppose the algorithm finds a map P that con-
tains a vertex of a blossom B. The portion of P in B is an
alternating path that starts with a matched edge of B,

goes to the base of B, and contains only edges of B and
its subblossoms.

Now we examine graph G.. A primary blossom for a
substitute S is the smallest blossom containing an edge of
S. The following result is the analog of Lemma 3.3(ii). It
follows from Search Algorithm Properties (i)-(ii).

Lemma 5.2. Without loss of generality, a vertex of an
internal edge of a substitute is not the base of a primary
blossom. =

(.—‘ internal edge

blossom 4. external vertices

path ——»

(a) 1,1 blossom

blossom

path 2

(b) 2.0 blossom

blossom

¢ path

(c) 0,2 blossom

Figure 5.1

Topologies for primary blossoms.

Now it is easy to see that there are three types of pri-
mary blossoms, shown in Figure 5.1. Figure 5.1(a) shows
the blossom when the base is not in the substitute, and
Figure 5.1(b)-(c) show when it is. Observe that these are
the only possibilities, since the Lemma shows the base is
not on an internal edge. (Also, the base is not on an
external vertex on the right of the substitute, since a base
is on at least two unmatched edges. A minor variant of
Figure 5.1(a) and 5.1(c) is when the external vertex on the
left is free.)

A primary blossom is an I, r blossom (with respect to
a given substitute) if it contains ! edges of G on the left of
the substitute and 7 edges on the right. As shown in Fig-
ure 5.1 the three types of blossoms are 1,1; 2,0 and 0,2.

Now recall G is the substitute graph before the k*
augment, and G+; is the substitute graph constructed
after this augment. We define a search graph structure on
Gi+1 by using essentially the same, structure as G,. The
blossoms are the same in both graphs, except that when
the map goes through a substitute the new substitute
edges of Gy, replace the old ones of G.. The dual vari-
ables y;, 2g are the same with one exception: This is Yar
the dual variable for a new vertex 4' in the substitute. d’
is created when an edge of G becomes unmatched,
thereby moving from the left side of the substitute to the

right, thus spawning a new matched edge and new vertex
d’.

455

We will illustrate the details of our policy by consider-
ing one case: when the primary blossom By is 2,0 and the
map enters By from a vertex d, as shown in Figure 5.2(a).
In this figure By's base is §, which is matched to external
vertex €. Vertex d is matched to external vertex e.
Dual variables are easily calculated, and are indicated
next to the vertices (e.g., ¥, = v). :

primary
blossom

(a) 2.0 blossom in G;.

primary
blossom

(b) 0.2 blossom in Gg+1.

Figure 5.2

Augment of a 2,0 blossom.

Consider the map P. Search Algorithm Property (iii)
shows P goes from ¢, through By, to 6. It is easy to see
that P has the form e, b, a,....,a', b, ¢, 8, €. So G4 is
as shown in Figure 5.2(b): o and a' are on unmatched
external edges of By and e is the new base; € ison a
matched external edge and is still joined to By. 1t is easy
to see that all edges of Figure 5.2(b) are tight. So a blos-
som is defined in G 4.

Other cases in the analysis are similar. We conclude
that the structure defined for G, ,, is a search graph.

Theorem 5.1. A maximum weight UDCS can be found in
0{(Yw:)min(E log V, ¥?)) time and 0(E) space.

Proof Sketch. For the time bound, the search routine of
[GMG] runs in Q(F log V) time, and gives our first time
bound. The search routine of [G] runs in O(¥) time.
Minor modifications in the data structure make this 0(V&)
on our graph G, giving our second time bound. =

We solve the weighted DCS problem using the graph
G* of Figure 3.1.

Theorem 5.2. A maximum weight DCS can be found in
O{(3;;)min(E log V, 7)) time and O(E) space. ®

8. Shortest Paths

This section sketches an algorithm for the ali-pairs
shortest path problem on an undirected graph. The run
time is O(V min (£ log 'V, V?)).

The algorithm is based on Lawler’'s reduction of the
single-pair shortest path problem to DCS [L, pp. 220-222].
The reduction resembles the bidirected graph construc-
tion of Figure 2.1: Given an undirected graph with edge
lengths, G. Let G* be G where in addition, each vertex
has a self loop of length 0. Consider a DCS problem on G*
where each vertex i has 4§ =u; =2. This problem is
closely related to any shortest path problem on G: If s is
the source and t is the sink, the shortest s—f path
corresponds to the DCS where the bounds for s and ¢ are
changed to one. This mottivates the following algorithm:

Step 1. Given G, form G* adn find a minimum weight DCS.
(Comment: A minimum weight DCS consists of all the
self-loops, since G has no negative cycles. Our algorithm
finds this solution and more importantly, it constructs the
corresponding dual variables and blossoms.)

Step 2. Repeat the following steps for each vertex.

Step @a. Use G* to form G', a copy of G* with a new
vertex S and edge Ss. Let M be the largest dual vari-
able y; in G* Let Ss have length 2M+1 and let
Ys =M. Letls =ug = 1.

Step @b. Use the DCS algorithm to search for an aug-
menting path from S. (Comment: The search halts
unsuccessfully, since there is no DCS. However it
computes dual variables y;.)

Step Zc. Output each vertex ¢ at distance
ys + ¥, —(BM+1) from s.

Theorem 6.1 The all-pairs shortest path problem on an
undirected graph with no negative cycles can be solved in
O(V min (£ log V, ¥¥) time and 0(F) space.

Proof Sketch. Correctness can be seen by noting that
Step 2b simulates the DCS algorithm when G* is modified
to make t the sink. For the timing, Step 1 runs in the
desired time. Each execution of Step 2b uses
O(min (£ log V. V%)) time. So Step 2 is also within the
desired time bound. ®

'REFERENCES
{A] R.P. Anstee, "An algorithmic proof of Tutte's f-
factor theorem"”, Res. Rept. CORR 81-28, Dept. of

Combinatorics and Optimization, Univ. of Water-
loo, Waterloo, Ontario, 1981,

C. Berge, Graphs and Hypergraphs, North-
Holland, Amsterdam, 1973.

R. Bernstein, "Shortest paths in undirected

%gghs", M.3. Thesis, Stevens Inst. Technology,

G'.B. Dantzig, Linear Programming and Erten-
méoggs Princeton Univ. Press, Princeton, NJ,
1963.

[Berg]

[Bern]

[D]

456

[E85)

[E67]

[EJ70]

[EI73]

[EK]

(ET]

(G83)

[al

[Gol]

[GMG]

Edmonds, J., "Maximum matching and a
polyhedron with 0,1-vertices,” J. Res. Nut. Bur.
Standards 698 (1965), 125-130.

J. Edmonds, "An introduction to matching,”
Notes of Engineering Summer Conference, Univ.
of Michigan, Ann Arbor, 1967.

J. Edmonds and E.L. Johnson, "Matching: A well-
solved class of integer linear programs,' Proc.
Calgray Int. Conf. on Combinatorial Structures
and Their Applications, Gordon and Breach, New
York, 1970, pp. B9-92.

J. Edmonds and E.L. Johnson, "Matching, Euler
tours and the Chinese postman,” Math. Program-
ming 5, 1973, pp. 88-124.

J. Edmonds and R.M. Karp, "Theoretical improve-
ments in algorithmic efficiency for network flow
problems,” J. ACM 19, 2, 1972, pp. 248-264.

3. Even and R.E. Tarjan, "Network flow and test-
ing graph connectivity”, SIAM J. Comput. 4, 4,
1975, pp. 507-518. :

H. Gabow, "An efficient reduction technique for
degree-constrained subgraph and bidirectied
network flow problems,” Tech. Rept. CU-CS-243-
B3, University of Colorado, Boulder, Colorado,
1983.

H. Gabow, 'An efficient implementation of
Edmonds' algorithm for maximum weight match-
ing on graphs,” Tech. Rept. CU-CS-075-75,
University of Colorado, Boulder, Colorado, 1975.

A.J. Goldman, "Optimal matchings and degree-
constrained subgraphs,” J. Res. National Bureau
of Standards 685, 1, 1964, pp. 27-29.

Z. Galil, S. Micali, H. Gabow, "Priority queues
with variable priority and an O(£ Vlog V) algo-
rithm for finding a maximal weighted matching
in general graphs,” Proc. 23rd Annual Symp. on
Foundation of Comp. Sci., 1982, pp. 225-261.
H.N. Gabow and M. Stallman, "Scheduling multi-
task jobs with deadlines on one processor,”
abstract.

s
Hopcroft, J. and Karp, R, "An n? algorithm for
maximum matchings in bipartite graphs,” SIAM .
J. Comp. 2, 4, 1973, pp. 225-231.
E.L. lawler, Combinatorial Optimizotion: Net-
works and Matroids, Holt, Rinehart and Winston,
New York, 1976.

S. Micali and V.V. Vazirani, "An O(VV]-|E|)
algorithm for finding maximum matching in gen-
eral graphs,” Proc. 21ist Annual Symp. on
Found. of Comp. Seci., 1980, pp. 17-27.

Y. Shiloach, "Another look at the degree con-
strained subgraph problem," Inf. Proc. Letters
12, 2, 1981, pp. B9-92.

D.DK Sleator, "An 0(nm logn) algorithm for
maximum network flow,” Ph.D. Diss., Tech. Rept.
STAN-CS-80-831, Stanford Univ., Stanford, CA,
1980.

D. Sleator and R.E. Tarjan, "A data structure for
dynamic trees,” Proc. 13th Annual ACM Symp.
on Th. of Computing, Milwaukee, Wisc., 1981, pp.
114-122.

R.E. Tarjan, "Shortest paths,” Ch. 17 in unpub-
lished manuscript, 1982.

R.J. Urquhart, "Degree-constrained subgraphs of
linear graphs,” Ph.D. Diss., University of Michi-.
gan, 1967.

L.J. White, “A parametric study of malchings and
covering in weighted graphs,” Ph.D. Diss., Sys-
tems Eng. Lab., Dept. of Electrical Eng., Univer-
sity of Michigan. Ann Arbor, 1967.

