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Abstract 

Efficient algorithms are given for the bidirected net- 
work flow problem and the degree-constrained subgraph 
problem. Four versions of each are solved, depending on 
whether edge capacities/multiplicities are one or arbi- 
trary, and whether maximum value/maximum cardinality 
or minimum cost/maximum weight is the objective. A 
version of the shortest path problem is also efficiently 
solved, The algorithms use a reduction technique that 
solves one problem instance by reducing to a number of 
problems. 

1. I n f r a c t i o n  
Bid i r ee t ed  ne twork  flow, i n t r o d u c e d  by Jack  E d m o n d s  

[E67,L], mode l s  a b road  class  of i n t e g e r  l inear  p r o g r a m -  
rning p rob lems ,  including ord inary  ne twork  flow, g r a p h  
m a t c h i n g ,  d e g r e e - c o n s t r a i n e d  subgraphs ,  s h o r t e s t  p a t h s  
and o the r s .  It is well-known t h a t  p r o b l e m s  in th is  c lass  
c a n  be solved in polynomia l  t ime  by ma tch ing  t e c h n i q u e s  
i t ,  EJ70]. Two a p p r o a c h e s  have  b e e n  used.  The .first is to 
apply  the  ideas  of ma t ch ing  to the  m o r e  gene ra l  p r o b l e m  
and  work ou t  the  deta i l s  of an  eff ic ient  a lgo r i t hm [e.g., 
EJ73, U, W]. This can  be done "in pr inc ip le"  bu t  m a d e  
difficult  by  t h e , c o m p l e x  s t r u c t u r e  of m a t c h i n g  b lossoms .  
tn  fac t  th is  c o n c e p t u a l  complex i ty  has  a p p a r e n t l y  
p r e v e n t e d  r e s e a r c h e r s  f rom developing good a lgo r i t hms  
for s o m e  of t h e s e  p r o b l e m s  (see  our l ist  below). The 
s e c o n d  a p p r o a c h  is to use  a p r o b l e m  reduc t ion ,  f rom the  
m o r e  .genera l  ;problem to a y e l l - u n d e r s t o o d  one. The 
d r a w ba c k  of th is  t echn ique  is expans ion  in p r o b l e m  size, 
which  can  give nonpo lynomia l  a lgo r i thms  i l l  or c a n  
d e g r a d e  the  p e r f o r m a n c e  by one or  m o r e  o r d e r s  of mag-  
n i tude  [Berg, Gol, Sh]. 

This p a p e r  p r e s e n t s  an  eff ic ient  r e d u c t i o n  t echn ique  
for b i d i r e c t e d  ne twork  flow p rob lems .  The ma jo r  
d i f fe rence  f rom prev ious  work is t h a t  we do no t  a t t e m p t  
to r e d u c e  one  p r o b l e m  in s t ance  to  ano the r .  I n s t ead  a 
n u m b e r  of d i f fe ren t  r e d u c t i o n s  are  used  to solve one 
p r o b l e m  ins tance .  Our r e su l t s  a re  for t he  following 
b i d i r e c t e d  flow p rob lems :  

(1) Mazirnum cardinality, unit  capacity problems. 
(i) D~yree-conStrained subgraph (DCS). Given a g r a p h  
w h e r e  e a c h  ve r t ex  i ha s  i n t ege r  bounds  /~ and u, ,  Find a 
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s u b g r a p h  H with  t h e  g r e a t e s t  poss ib le  n u m b e r  of edges ,  
s u c h  t h a t  e a c h  v e r t e x  i has  d e g r e e  ~ H) wi th  
/i ~; di-< ui .  O~ar a lgo r i thm runs  in 0 ( ~ E )  t ime .  
This gene ra l i zes  t he  m a x i m u m  card ina l i ty  m a t c h i n g  algo- 
r i t h m  of Micali and  Vazirani  [MAr] (where  all l i = 0, u i = 1 
and  the  t ime is 0 (V~E) ,  and  in fac t  our  a lgo r i t hm is a 
r e d u c t i o n  to  the i r s .  It improves  the  O((,~vui)Ys) algo- 

r i t h m  of U r q u h a r t  [U]. 
(ii) Bidireeted net~uor/c flo~o (biflovg). Given a 

b i d i r e c t e d  ne twork  wi th  uni t  edge  capac i t ies ,  find a max-  a_ 
i m u m  value flow. Our a lgo r i t hm has  r u n  t ime  0(E e ). This 
gene ra l i ze s  t h e  resu l t  of Even and Tar jan [ET] which  
ach ieves  t he  s a m e  t ime  bound  for t h e  d i r e c t e d  case .  

(2) Maximum cgrdinaliby, arbitrarij c~pacity prob- 
lems. (i) Given a DCS p r o b l e m  as in (1) on a mul t ig raph ,  
where  e a c h  edge  e has  an  in tegra l  mul t ip l ic i ty  p~. Find a 
d e g r e e - c o n s t r a i n e d  s u b g r a p h  with t h e  g r e a t e s t  poss ib le  
n u m b e r  of edges .  (ii) Given a biflow p r o b l e m  as in (1), 
whe re  e a c h  edge e has  in teg ra l  c apac i t y  c , .  F ind a max-  
i m u m  .value flow. For  b o t h  p r o b l e m s  our  a lgo r i t hms  have  
r u n  t ime  0( V E log 1/). This gene ra l i ze s  t h e  a lgo r i t hm of 
S lea tor  and  Tar jan  [SI, ST] for  d i r e c t e d  g r a p h s  (and our  
a lgo r i t hm uses  t he i r s .  Note however  t h a t  t h e y  allow t e a / -  
valued capac i t i es ) .  

R e c e n t  work  of .Ans t ee  [A] offers  a compe t i t i ve  
app roach .  We c a n  i m p l e m e n t  his a lgo r i t hm for t h e  f -  
f ac to r  p r o b l e m  (DCS where  /i = ui  for all v e r t i c e s  i )  in 
O(VE log I0 t ime ,  t he  s a m e  bound  as ours.  His m e t h o d  is 
b a s e d  on  solving one ne twork  flow p rob lem and  one prob-  
l em of t h e  m a t c h i n g  type.  

(3) Max#zrturn weight, unit capacity problems. (i) 
Given a DCS p r o b l e m  as in (1), where  in addi t ion  e a c h  
edge  has  a rea l -va lued  weight.  Find a d e g r e e - c o n s t r a i n e d  
s u b g r a p h  of m a x i m u m  weight.  Our a lgo r i t hm runs  in 
0(( i Z e vUi)min(E log V, pc)) t ime.  This gene ra l i ze s  t h e  max-  
i m u m  weight  m a t c h i n ~  a lgo r i t hm of Galil, Micali, and 
Gabow [G, GMG] (and our  a lgo r i thm uses  the i rs ) .  It 
i m p r o v e s  the  a lgo r i t hm of U r q u h a r t  [U] which is 

(ii) Given a biflow p r o b l e m  as above, w h e r e  in addi-  
t ion  e a c h  edge  has  a rea l -va lued  cost.  Find a m i n i m u m  
e a s t  flow of a pres/oecif ied value. Our a lgo r i t hm runs  in 
0(E m i n ( E  log V, T/~)) t ime.  

(4) Shortest paths in an undirected graph. Given an  
u n d i r e c t e d  g r a p h  where  e a c h  edge  has a rea l -valued 
length;  edges  may  have negat ive l eng ths  b u t  t h e r e  are  no 
nega t ive  cycles.  Find the  s h o r t e s t  p a t h  b e t w e e n  a given 
pa i r  of ver t i ces ,  o r  m o r e  genera l ly  find the  s h o r t e s t  p a t h  
b e t w e e n  all pa i r s  of ver t i ces .  This p r o b l e m  canno t  be  
solved by the  s t a n d a r d  a lgo r i t hms  for d i r e c t e d  g r a p h s  i l l .  
It is an i n s t a n c e  of a "natura l"  biflow p rob l em.  Our algo- 
r i t h m  for th is  p r o b l e m  (single pa i r  or all pa i r s  vers ion)  
runs  in 0 ( V m i n ( E  log V, pc)) t ime  ( c o m p a r e d  with 
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d i r e c t e d  g r a p h s ,  t h i s  m a t c h e s  t he  b o u n d  for t h e  a l l -pai rs  
p r o b l e m ,  a n d  c o m p a r e s  to 0(VE) for t h e  s ingle  s o u r c e  
p r o b l e m  [T].) B e r n s t e i n  [Bern]  h a s  r e c e n t l y  c l a i med  a n  
0(V 4) a l g o r i t h m  for  th i s  p r o b l e m ,  b a s e d  on Di jks t r a ' s  sho r -  
t e s t  p a t h  a l g o r i t h m .  

O the r  a p p l i c a t i o n s  of t h e  DCS p r o b l e m  inc lude  
e f f ic ien t  a l g o r i t h m s  for t h e  m a t r o i d  p a r i t y  p r o b l e m  on  
m a t c h i n g  m a t r o i d s  and  t h e i r  v a r i a n t s  [GS]. 

(5) Maximum weight problems. (i) The p r o b l e m  is 
t h e  m a x i m u m  weigh t  DCS p r o b l e m  for m u l t i g r a p h s .  (ii) 
The p r o b l e m  is t h e  m i n i m u m  cos t  biflow p r o b l e m  (with 
a r b i t r a r y  i n t eg ra l  capac i t i e s ) .  Our a l g o r i t h m  r u n s  in 
O(E~(log IO(log C)) t i m e  where  C is t he  l a r g e s t  c apac i ty .  
It r e s e m b l e s  t he  a l g o r i t h m  of E d m o n d s  and  Karp  for t he  
m i n i m u m  cos t  n e t w o r k  flow p r o b l e m  [EK]. (Actual ly  it  
g ives  i m p r o v e d  r e s u l t s  for  t he  spec ia l  c a s e  of ne t work  
flows, e.g., an  O(VE(log C)) a l g o r i t h m  for m a x i m u m  va lue  
n e t w o r k  flow, and  o the r s ) .  

The r e s t  of th i s  p a p e r  is o rgan ized  as  follows. S ec t i on  
2 de f ines  t he  above  p r o b l e m s  a n d  also t he  u p p e r  deg ree -  
o o n s t r a i n e d  s u b g r a p h  p r o b l e m  (UDCS); we r e d u c e  all 
p r o b l e m s  to UDCS. This s e c t i o n  also s k e t c h e s  our  r e d u c -  
t /on  techni l ]ue  for a u g m e n t i n g  p a t h s .  S ec t i ons  3-6 s k e t c h  
t h e  a l g o r i t h m s  :for p r o b l e m s  (1) - (4). (Detai ls  t h a t  have  
b e e n  o m i t t e d  due  to s p a c e  l imi t a t ions  c a n  be found  in [G 
83]). (5) will be d i s c u s s e d  e l sewhere .  

2. Bas ic  P ~ b l e m s  a n d  R e d u c t i o n s  

The t h r e e  p r o b l e m s  we inves t iga t e ,  s t a t e d  in  g e n e r a l  
form,  a r e  as follows. 

(i) Bi~ireeted netvgovk f lo~  [L, pp, 223-4]. In  a 
d i r e c t e d  g r a p h  an edge  goes  f r o m  one v e r t e x  to a n o t h e r .  
A bidirecte~ graph allows th i s  poss ibi l i ty  and  two o the r s :  
an  edge  m a y  be  d i r e c t e d  f rom bo t h  of i ts  end ve r t i ce s ,  or  
to b o t h  of t h e m .  (Additionally,  t he  two v e r t i c e s  of an  edge  
m a y  co inc ide . )  

(a) 

Figure  2.1 

(a) An u n d i r e c t e d  g r a p h  with a path• 
(b) C o r r e s p o n d i n g  bid~rected g r a p h  and pat.h. 

(b) 

• F igu re  2.1 i l l u s t r a t e s  t h e  u s e f u l n e s s  of th i s  c o n c e p t  
by giving •n u n d i r e o t e d  g r a p h  with a p a t h  and  t he  
c o r r e s p o n d i n g  ibidirected g r a p h  and  pa th .  (A bidi~'ected 
path is a s e q u e n c e  of v e r t i c e s  and  e d g e s  
v o, e 1, v l . . . . .  e t, v t , s u c h  t h a t  if e~ is d i r e c t e d  to (from)v~ 
t h e n  e~,l is d i r e c t e d  f r o m  (to)v~. P a t h s  in the  u n d i r e c t e d  
a n d  b i d i r e g t e d  v e r s i o n s  c o r r e s p o n d .  This c o r r e s p o n d e n c e  
is a c h i e v e d  v_ithout dup l i ca t i ng  edges ,  as  is done  in t he  
c o r r e s p o n d e n c e  b e t w e e n  u n d i r e c t e d  and  d i r e c t e d  g r a p h s .  
This allows ,one .to solve t he  s h o r t e s t  p a t h  p r o b l e m  ((4) of 
Sec t ion  I). 

Bidirected n e t w o r k  f low (biflow) problems are 
def ined  f r o m  b i d i r e c t e d  g r a p h s ,  by ana logy  with o r d i n a r y  
d i r e c t e d  flows, as  i l l u s t r a t e d  by  t he  above def in i t ion  of 
pa th .  Detai ls  a r e  in [L, pp. 223-4]. 

• (ii) The degree-constrained subgraph (DCS) problem 
is on a n  un~l i ree ted  g r a p h ,  with lower and  u p p e r  b o u n d s / ~  
and  ~z, a t  e a c h  v e r t e x  i ( see  Sec t ion  l).  

(iii) The upper degree-constrained subgraph (UDCS) 
problem is Zhe spec ia l  c a s e  of DCS w h e r e  all lower b o u n d s  
/~ a r e  0. .Any feas ib le  s u b g r a p h  of G (i.e., one t h a t  
sa t i s f ies  t h e  d e g r e e  c o n s t r a i n t s  u~) is a UDCS (upper 
degree-conStrained s'ubgraph). 

We r e d u c e  biflow and  DCS to UDCS. In th is  p a p e r  t he  
r e d u c t i o n s  :[or biflow a r e  o m i t t e d  (see  [L, pp. 224-225] for 
a r e l a t e d  c s n s t r u c t i o n ) .  

Now we s k e t c h  t h e  r e d u c t i o n  t e c h n i q u e  t h a t  f o r m s  
t he  t h e m e  Jof th i s  pape r ,  it  r e d u c e s  a UDCS p r o b l e m  to 
m a t c h i n g  p r o b l e m s .  Cons ide r  a UDCS p r o b l e m  on a g r a p h  
G. Fix a v e r t e x  i .  Let  u = u~ be t he  g iven  d e g r e e  bound;  
le t  d be  i ' s  d e g r e e  in G; def ine  A = d - u ,  t h e  l e a s t  poss i -  
ble n u m b e r  of u n c h o s e n  edges .  It is well-known [e.g.,  
Berg]  t h a t  a UI~CS on G c o r r e s p o n d s  to a m a t c h i n g  on  G', 
w h e r e  G' i s ~ c o n s t r u c t e d  f r o m  G by  r ep l ac ing  e a c h  v e r t e x  i 
by a s'ubsl~tute S t h a t  is t he  c o m p l e t e  b ipa r t i t e  g r a p h  
Ka, a, as  in F igure  2.2. The f igure  shows  how a UDCS of G 
c o r r e s p o n d s  to a m a t c h i n g  on  G' (wavy e d g e s  a re  in t he  
UDCS in F igure  2.2(a)  and  in t h e  m a t c h i n g  in Figure  
2.2(b).)  m d e n o t e s  t h e  n u m b e r  of e d g e s  i n c i d e n t  to i in 
t h e  UDCS. In th i s  r e d u c t i o n  a UDCS on G c o r r e s p o n d s  to  a 
m a t c h i n g  on G' t h a t  cove r s  eve ry  in t e rna l  v e r t e x  of eve ry  
v e r t e x  s u b s t i t u t e .  (Internal a n d  external v e r t i c e s  of a 
s u b s t i t u t e  a r e  i n d i c a t e d  in F igure  2.2.) F u r t h e r ,  m a x -  
i m u m  c a r d i n a l i t y  and  weight  s u b g r a p h s  c o r r e s p o n d .  
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i 

e I ~ ed 

(a) 

e I 

A internal 
vertices 

d external 
KA,d vertices I 

(b) 

Figure  2.2 

(a) Vertex i in UDCS on G. 
(b) Vertex substitute S in matching on G'. 

internal edge 

e i em+A+ k 
1 ~i ~m 1 ~k ~ u-m 

'~-external 
vertex 

em+j 
I_<j_<A 

Figure  2.3 

S p a r s e  s u b s t i t u t e  for i .  

= ~ t he  n u m b e r  of e d g e s  a d d e d  is ~}( ye) = f}(VE)). 

However  we will show t h a t  an  a u g m e n t i n g  p a t h  n e e d  only 
p a s s  t h r o u g h  a g iven  s u b s t i t u t e  S twice. B e c a u s e  of th i s  
t h e  s u b s t i t u t e  S in F i g u r e  2.2 c a n  be  r e p l a c e d  by  t h e  
sparse substitute s h o w n  in F igure  2.3. Here  t h e  two 
( m a t c h e d )  i r t t e rna /  edges c o r r e s p o n d  to t h e  two u s e s  of 
t h e  s u b s t i t u t e .  Obse rve  t h a t  a s p a r s e  s u b s t i t u t e  is 
de f ined  ~ t h  vespect to a g iven  m a t c h i n g ;  wh en  t h e  
m a t c h e d  e d g e s  i n c i d e n t  to i change ,  t h e  s u b s t i t u t e  
c h a n g e s .  Also no t e  t h a t  s p a r s e  s u b s t i t u t e s  a r e  eff icient:  
The n u m b e r  of e d g e s  a d d e d  for one  s p a r s e  s u b s t i t u t e  is 
2m +2(u-m) +3A+2= O(d), so the total number of 
edges for all substitutes is 0(E). (The number of vertices 
added is 0(E) but this is not important.) 

Our algorithm work by simulatin~ the appropriate 
matching algorithm on G'. The simulation is done on a 
graph G~, identical to G' except that sparse substitute are 
used. Each time a new matching is formed on G', a new 
graph Gk+] is formed by using sparse substitutes for the 
new matching. Since all graphs C~ have 0(E) edges, the 
matching algorithm runs fast and an efficient algorithm is 
maintained. 

The technical difficulties in carrying out this 
approach are of two types. The cardinality matching algo- 
rithrn finds a number of augmenting paths simultane- 
ously. This causes difficulties in the simulation on G~. 
The weighted matching algorithm maintains a structure 
from one augment to the next. This causes difficulties in 
the switch from G~ to C~÷l. 

We close this section by briefly reviewing the notion 
of a matching blossom. Familiarity with the basic ideas of 
matching such as augmentin~ paths is assumed [see e.g., 
L]. 

A blossom is a subgraph B of a matched graph, 
defined as follows. (See Figure 2.4.) Let k-~ i be an 
integer. The vertices of B are partitioned into sets Bi, 
i ~i < 2k+l, where each Bi either consists of a single 
vertex or is itself a blossom. The edges of B are 
e i, I -~ i g 2/c+I. where e¢ is incident to a vertex in B~ and 
a v e r t e x  m Bi÷l ( w h e n /  = 2 k + l ,  t a k e  i + 1  to be  1), ei is a 

m a t c h e d  edge  iff i is even.  

B2( 
e 2 

~ B2k+l 

This reduction is inefficient since it can increase the 
number of edges to [I(VE). (For instance, if there are 
fl( vertices of degree fl(V) and each such vertex i has 

Y 

Figure 2.4 

A blossom. 
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The shorthand i e B means that i is a vertex of blos- 
som/1. (Note that a blossom is not an induced subgraph, 
so we may have i, j e B without edge ij bemg in H.) A 
simple induction shows that except for one vertex b e B I, 
every vertex i e B has a matched edge ij with j e H. The 
exceptional vertex b is the base vertex of B. Another 
induction shows that for each vertex i e B, B and its sub- 
blossoms contain an alternating path that starts with a 
matched edge, from i to b. (If this path is i, j, k ..... b, it 
is not usually true that k ..... b is k's path, e.g., in Figure 
2.4 let e 2 = i] and ], k e B s. This leads to pitfalls for the 
unwary - the open literature contains a number of 
blunders about blossoms!) 

For cardinality matching blossoms are slightly 
simpler: Subblossoms such as H z and B~*** that are an 
odd distance from b are always vertices. We do not use 
this property here. 

3. M a x i m u m  Card ina l i ty .  U n i t  C a p a c i t y  P r o b l e m s  
] 'his  s e c t i o n  p r e s e n t s  a l g o r i t h m s  for t h e  m a x i m u m  

ca rd ina l i t y  UDCS a n d  DCS p r o b l e m s  t h a t  u se  0 ( ~ / ~ E )  
t i m e  and  0(E)  space .  We s t a r t  wi th  t he  UDCS p rob l em.  

Our a p p r o a c h  is to s i m u l a t e  t he  c a r d i n a l i t y  m a t c h i n g  
a l g o r i t h m  on G', t h e  g r a p h  with v e r t e x  s u b s t i t u t e s .  Recal l  
how the  c a r d i n a l i t y  m a t c h i n g  a l g o r i t h m  works  [HK]: An 
s a p  is a s h o r t e s t  l e n g t h  a u g m e n t i n g  pa th .  An sap set is a 
m a x i m a l  s e t  of v e r t e x  dis jo int  sap's. The a l g o r i t h m  is 
o rgan i zed  in to  phases. E a c h  p h a s e  f inds a n  sap se t ,  a n d  
t h e n  a u g m e n t s  t he  m a t c h i n g  a long t he  p a t h s  of t h e  se t .  
The l e n g t h  of a n  sap i n c r e a s e s  eve ry  phase .  

We c a n  a s s u m e  t h a t  any  m a t c h i n g  we c o n s t r u c t  on  G' 
cove r s  eve ry  i n t e rna l  v e r t e x  of eve ry  s u b s t i t u t e .  This 
allows u s  to  e s t i m a t e  t he  n u m b e r  of p h a s e s  of t he  m a t c h -  
ing a l g o r i t h m  on G'. 

5 Lernma 3.1 At most ~ phases are needed to find a 

maximum matching on G'. 

Proof. The argument is analogous to ones in [HI(] and 
lET]. • 

The Lemma implies that to achieve our time bound it 
suffices to implement a phase of the matching algorithm 
on G' in 0(E) time. We do this by running each phase on 
the graph Ca. Ca is derived from G' and the current 
matching by using sparse substitutes. We must show that 
Ca is a correct model for G', i.e., an sap set of Ca gives an 
so~p s e t  of G'. 

We begin with the basic principle behind the idea of 
sparse substitutes. Consider the graph G', with a match- 
ing that covers all internal vertices, Let S be a vertex 
substitute. ~et P be an sap consisting of edges e i ..... e,. 
Internal edges of S occur as pairs in P, say el, e~,~. In 
each pair one edge is matched and the other is not. We 
say P traverses a pair in one of two directions, depending 
on whether the matched edge is first or second, 

6hr@inality Matching Reduction Principle. An sap 
t r a v e r s e s  a t  m o s t  two p a i r s  of e d g e s  f r o m  a g i ven  subs t i -  
t u t e ,  one in each direction. 

Proof. Suppose P traverses two pairs in the same direc- 
tion. So P has the form .... uv, ~w ..... zy, yz ..... where 
vertices v and y are in the same substitute, and edges uv 
and zy are matched. P can be shortened by replacing 
the subpath from v to z with the edge vz. This contradic- 
tion proves the result. • 

Note  t h a t  ff G is b ipa r t i t e  only one  d i rec t ion ,  an d  
h e n c e  one  pa i r  of  e d g e s ,  is poss ib le  for  a s u b s t i t u t e .  

This  p r inc ip le  imp l i e s  t h a t  sap's in G' a n d  Ca 
c o r r e s p o n d .  We m u s t  show t h a t  sap sets on t h e  two 
g r a p h s  c o r r e s p o n d ,  in  fac t  t h e y  do not: a n  sap s e t  m a y  
p a s s  t h r o u g h  a s u b s t i t u t e  up  to two t i m e s  on  each aug- 
m e n t i n g  p a t h .  We ana lyze  how an  sap s e t  u s e s  a subs t i -  
t u t e ,  a n d  show t h a t  Ca c a n  still  be  u s e d  as  a c o r r e c t  
mode l .  

| t  is c o n v e n i e n t  to work  wi th  a g r a p h  G'k t h a t  is in te r -  
m e d i a t e  b e t w e e n  G' a n d  C,~. G'~ u s e s  t h e  s a m e  s p a r s e  
s u b s t i t u t e s  a s  Ca: t he  only  d i f f e rence  is t h a t  t h e  su b s t i -  
t u t e  for  a v e r t e x  i of G c o n t a i n s  di i n t e r n a l  e d g e s  (as  
o p p o s e d  to  two i n t e r n a l  e d g e s  in Ca). 

L e m r - a  3.2. An sap se t  in G' k c o r r e s p o n d s  to an  sap s e t  in 
G' c o n t a i n i n g  t he  s a m e  e d g e s  of G. " 

The  L e m m a  shows  t h a t  we c a n  t ake  ou r  goal  to be  
f inding a n  s a p  s e t  on  G'e. We ana lyze  t h e  s t r u c t u r e  of 
s u c h  a s e t  by  us ing  i d e a s  f r om t h e  ca rd ina l i t y  m a t c h i n g  
a l g o r i t h m  of [MV]. Cons ide r  an  a r b i t r a r y  m a t c h e d  g r ap h .  
For  a v e r t e x  v ,  t h e  even level of v ,  e (v), is t he  l e n g t h  of a 
s h o r t e s t  even  l e n g t h  a l t e r n a t i n g  p a t h  f r o m  a f ree  v e r t e x  
to v ; t h e  odd. level  o (v) is def ined  s imi lar ly .  (We a lso  r e f e r  
to " p a t h s  def ining e ( v ) o r  o(v) ", wi th  t he  obvious  
i n t e r p r e t a t i o n . )  The t e n a c / t y  of an  edge  e ,  t ( e ) ,  is t h e  
l e n g t h  of a s h o r t e s t  a l t e r n a t i n g  p a t h  t h a t  c o n t a i n s  e and  
e n d s  a t  f ree  ve r t i ces ,  b u t  is not necessarily s imple .  (If it 
is  s i m p l e  i t  is a n  a u g m e n t i n g  pa th . )  So for e = vw,  t (e)  is 
o ( v ) + o ( ~ )  + 1 f f  e is m a t c h e d  and  e ( v )  + e ( w ) +  1 

otherw,  se. A blossom 17 of  tenacity t is defined,  as in Sec-  
t ion  2, f r o m  b l o s s o m s  B:  . . . . .  Bz~+l a n d  e d g e s  e l  . . . . .  eze+,. 
The only d i f f e rence  is t h e  a d d e d  r e q u i r e m e n t  t h a t  blos- 
s o m s  g~ have  t e n a c i t y  a t  m o s t  t ,  and  e d g e s  % have  t en a -  
c i ty  t .  ' 

We will r e f e r  to two s imp le  b u t  i m p o r t a n t  p r o p e r t i e s  
of b lo s soms .  In  a n  a r b i t r a r y  m a t c h e d  g r aph ,  le t  a n  sap 
have  l e n g t h  ?,s + 1. 

6hrdinality Blossom Properties 

(i) Let  v~u be  a n  edge  of t e n a c i t y  t ( w u ) <  2 s + l .  
Then  s o m e  b l o s s o m  of t e n a c i t y  a t  m o s t  t(v~v) c o n t a i n s  
b o t h  v e r t i c e s  v a n d  w .  

(ii) Let  B be  a m a m m a l  b l o s s o m  of t e n a c i t y  t ,  where  
t < 2 s + l ,  a n d  le t  b be  i ts  base .  For  a n y  v e r t e x v  e B,  
any  p a t h  defining, e (v)  or  o (v)  p a s s e s  t h r o u g h  b. 

These  p r o p e r t i e s  a r e  obvious in [MV]. Al te rna t ive ly  
t h e y  c a n  be  p r o v e d  d i r ec t ly  f r om the  def ini t ions .  (It is 
c o n v e n i e n t  t o  pnove t h e m  t o g e t h e r ,  i n d u c t i n g  on  t .  We 
leave t h i s  as  a n  eKercise . )  

We show t h a t  s a p  s e t s  on G"~ c a n  be  found  us ing  Ca. It 
is c o n v e n i e n t  to de f ine  a r e l a t i on  of "s imi la r i ty"  b e t w e e n  
v e r t i c e s  in Ca and  G'~: Let  v a n d  v '  be  v e r t i c e s  in e i t h e r  
of t h e  two g r a p h s  ( p e r h a p s  t he  s a m e  g raph) .  T h e n  v an d  
v '  a r e  s / r n / / a r  if t h e y  are  in s u b s t i t u t e s  for  t h e  s a m e  ver-  
t e x  of G, a n d  e i t h e r  t h e y  a re  e x t e r n a l  v e r t i c e s  on  t h e  
s a m e  edge  of G, or  t h e y  a r e  m a t c h e d  to  e x t e r n a l  v e r t i c e s  
on  t he  s a m e  e d g e  of IG, or  t h e y  a r e  v e r t i c e s  on t h e  s a m e  
(left  or  r igh t )  s ide  of a n  i n t e r n a l  edge .  

t This definitionman easily be proved equivalent to the one in [MV]: 
mammal blossoms of, a gi'aen tenacity are iaentical in both definitions. 
We use our definition since it is the same as for weighted matching. It 
also appears to s imply  the algorithm of [MV], eliminating the Double 
Depth First Search, 
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L e m m a  3.3 (i) if v and v '  are s imilar  ver t ices  t hen  
their  levels arc equal: e(v)  = e(v')  and o ( v )  = o(v ' ) .  

(ii) ]f v and v '  are similar  ver t ices  in the same  
graph,  any maximal  b lossom of t enac i ty  t con ta ins  bo th  
ver t ices  or nei ther .  

(iii) Let B be a maximal  b lossom of tenac i ty  t in G~ 
or G'~. l,et /3" cons is t  of ~1 ver t ices  in the o the r  g r a p h  
tha t  are  s imilar  to a ver tex  of B. Then H' is a maximal  
b lossom of tenacity t. 

Proof  Sketch.  (0 Uses the Cardinality Matching Reduc- 
tion Principle. (ii) and (iii) use Cardinality Blossom Pro- 
pe r ty  (i). 

Now we show how to find an  sap  se t  on G'~ using C~. 
Firs t  we give a high-level descr ip t ion  for  a phase  in the  
ma t ch ing  a lgo r i thm of [Iv]V]: Let an sap have l eng th  P,s + 1. 

Step 1. Calculate all levels e (v )  and o(v)  t ha t  a re  at  m o s t  
s + l .  Cons t ruc t  all b l o s som s  tha t  have t enac i ty  less t h a n  
~+i. 

Step 2, Repeat the following steps until the graph does 
not contain an sap of length 2~ + I: 

Step 2a. Use level numbers and blossoms to find an 
sap I'. Augment the matching along P. 

Step ~. Delete vertices (along with their incident 
edges) that cannot be in an sap: First delete all ver- 
tices of P. Then repeatedly delete vertices (that are 
not in blossoms) whose "predecessor count" (see 
[ivW]) d e c r e a s e s  to 0. F u r t h e r m o r e ,  whenever  the 
base  of a b los som is deleted,  delete  all ver t ices  m the 
b lossom.  Continue with Step 2. 
When Step  2 ends, all ver t ices  and edges of the  g r a p h  

are r e s t o r e d  and the  nex t  phase  is begun. 
Note t ha t  Cardinal i ty Blossom P r o p e r t y  (ii) justifies 

the  b l o s s o m  delet ion policy in Step 2b. It implies  t ha t  any 
sap conta in ing a ve r tex  of a b lossom B conta ins  the  base  
of /3 .  Hence  B can  be dele ted  when its base  occur s  on ~tn 
sap or b e c o m e s  un reachab le .  

Consider  how this a lgo r i thm works  on  G'~. In a given 
subs t i tu t e ,  a t  m o s t  two in te rna l  edges  are dele ted  
because  they  arc  in P. All o the r  delet ions in Step 2b 
r emove  o2/ in te rna l  edges  of the  subs t i tu te .  This is t rue  
because  all in te rna l  edges  are  in the s ame  maximal  blos- 
som, by  L e m m a  3.3(ii); also " p r e d e c e s s o r  counts"  are 
ba sed  on  level n u m b e r s  and ver tex  adjacencies,  which are 
the  s a m e  for each  in te rna l  edge by L e m m a  3.3(0. 

We can  r u n  this a lgor i thm on G~ ins tead  of G'k and 
still find an sap se t  of G'~. Step 1 is the s a m e  on b o t h  
g raphs ,  by L e m m a  3.8 (i) and (iii). S tep 2 on C~ will s imu- 
late Step 2 on  G'~ if we make  one modification: When P 
p a s s e s  t h r o u g h  a s u b s t i t u t e  whose in terna l  edges  are n o t  
in a b lossom,  these  in te rna l  ec~es  are  not  dele ted  (nor  
are they  r e m a t c h e d  in the augment ) .  The r e a s o n  is tha t  
in G'~ the  s u b s t i t u t e  has d i - 2  o ther  in ternal  edges  tha t  
can  be u sed  in o the r  sa:p's. We keep the  two in te rna l  
edges  in C.~ to model  t.He~e edges.  On the  o the r  hand, all 
o t h e r  dele t ions  in Step 2 r emove  all in ternal  edges  of a 
s u b s t i t u t e  in e i the r  path ,  and so work the  s ame  in G~ and 
G'~:. 

Thus we have shown tha t  the  ma tch ing  a lgor i thm 
(with the  sl ight  change  given above) finds an sap se t  of 
G'~. This gives the  des i red  resul t .  

Theorem 3.1. A maximum cardinality UDCS can be found 
in 0 ( - ~ - ~ E )  t ime and 0(E) space,  • 

We tu rn  our a t t en t ion  to the DCS prob lem.  Recall 
that  in this p rob lem each  ve r t ex  i has  b o t h  an  u p p e r  
bound u~ and a lower bound  li on i ts degree.  We will 
t r a n s f o r m  DCS so our  UDCS a lgor i thm applies. (This prob-  
lem reduc t ion  a p p r o a c h  differs f rom previous  ones  [U,S].) 

Consider a DCS p r ob l e m on a g r a p h  G. Figure 3.1 
shows a cor responding  UDCS p r o b l e m  on a g r aph  G*. G* 
contains  two copies of G. Both copies  of a ve r tex  i have 
upper  bound ui,  the  same  uppe r  bound  as in G. In addi- 
tion the two copies of i are joined by u~-/~ paths of length 
three. Each of the 2(z~-/i) intermediate vertices on 
these paths has degree two in G* and has upper bound 
one. 

1 1 

u-l paths 

Figure 3.1 

Graph G* 

It is easy to see that a DCS H on G has a correspond- 
ing complete 2 UDCS H* on G*. Conversely a complete 
UDCSH*on G'induces aDCSH en G. H need not have 
maximum cardinality, but it leads to the solution to our 
problem. Here is the complete algorithm for the DCS 
problem. 

Step I. Construct the UDCS problem G* from G. Find a 
maximum cardmality UDCS H*. Assume H* is complete 
(else the DCS problem is infeasible). Let H be the DCS on 
G induce d by H*. 

Step 2. Run the maximum cardinality UDCS algorithm on 
G, using H as the initial solution. 

For Step 2, recall that the maximum cardinality 
matching algorithm of [MV] can be started with any initial 
matching. Hence the same is true of our UDCS algorithm, 
as required in Step 2. Next recall that the UDCS algo- 
rithm works by augmenting paths. Hence no degree of a 
vertex is ever decreased. So the algorithm halts with a 
subgraph that satisfies all upper and lower bounds ui,/~. 
It 3~_as maximum cardinality among all subgraphs that 
satisfy the upper bounds. Hence it is a maximum cardi- 
nality UDCS. 

Theorem 3.2. A maximum cardinality DCS can be found in 
0(Z~.E) time and 0(E) space. • 

4. Maximum CardinaUty, Arbitrary Capacity Problems 
This section presents algorithms for the maximum 

eardinality UDCS and DCS problems, when edges e have 
arbitrary integral multiplicities u~. The algorithms run in 
0(FElogl D time and 0(E)space. 

• In a comp~te UDCS, every upper degree bound ~i holds with 
equality. 

452 



We beg in  wi th  UDCS. Define t h e  g r a p h  G' a s  u s u a l  
u s ing  t h e  s u b s t i t u t e s  of F igure  ~..2. An edge  i j  in G 
c o r r e s p o n d s  to u~/ d i s t i n c t  e d g e s  in G', e a c h  joining an  
e x t e r n a l  v e r t e x  in i ' s  s u b s t i t u t e  to one  in j ' s .  As m Sec- 
t ion  B, eve ry  i n t e r n a l  v e r t e x  of G' is m a t c h e d .  

Our a p p r o a c h  is to s i m u l a t e  t he  c a r d i n a l i t y  m a t c h i n g  
a l g o r i t h m  on  G'. The Card ina l i ty  Match ing  R e d u c t i o n  
Pr inc ip le  b o u n d s  t he  l e n g t h  of an  sap and  g ives  th i s  es t i -  
ma te :  

L e m m a  4.1. At m o s t  3 V + l  p h a s e s  a re  n e e d e d  to find a 
m a x i m u m  m a t c h i n g  on G'. • 

The  L e m m a  impl i e s  t h a t  for  ou r  t i m e  b o u n d  it 
su f f i ces  to  i m p l e m e n t  a p h a s e  on  g '  m 0(E log V) t ime .  To 
do th is ,  as  in  Se c t i on  3 it is c o n v e n i e n t  to work  with 
g r a p h s  G ' ,  and  G~. Bo th  a r e  de r ived  f r o m  G' and  t h e  
c u r r e n t  m a t c h i n g  by us ing  s p a r s e  s u b s t i t u t e s .  In G'a a 
s u b s t i t u t e  h a s  d~ i n t e r n a l  edges ;  in C~,it h a s  two i n t e rna l  
edges ,  F u r t h e r m o r e ,  s u p p o s e  ij is a n  edge  of G, hav ing  m 
m a t c h e d  cop ie s  and  u u n m a t c h e d  cop ies  in t h e  c u r r e n t  
m a t c h i n g  on  G'. (So p~j = m + u . )  T hen  G'k c o n t a i n s  m 
m a t c h e d  copies  and  u u n m a t c h e d  cop ies  of i j ;  Q: con- 
t a ins  min(2,m) m a t c h e d  cop ies  and  min(2,u) u n m a t c h e d  
copies .  

L e m m a  3.2 still appl ies  to g r a p h  G'~. Hence  it 
suf f ices  to f ind a n  sap se t  on G'~. We will show t h a t  th i s  
c a n  be  done  on t h e  s m a l l e r  g r a p h  C~. F i r s t  it is con-  

' v e n i e n t  to e x t e n d  t h e  def in i t ion  of "s imi la r"  ve r t i ce s .  In  
t h e  c u r r e n t  c o n t e x t  we say  t h a t  two e x t e r n a l  v e r t i c e s  in  
t he  s a m e  s u b s t i t u t e  of C~ or  G'k are similar if t h e y  a r e  on  
cop ies  of the s a m e  edge  of G, and bo t h  cop ies  a re  
m a t c h e d  or  b o t h  a r e  u n m a t c h e d .  S u b s t i t u t e  v e r t i c e s  t h a t  
a r e  m a t c h e d  to e x t e r n a l  v e r t i c e s  a re  h a n d l e d  ana logous ly .  
The r e s t  of t h e  def ini t ion of s i m i l a r i t y  is u n c h a n g e d .  

It is e a s y  to s ee  t h a t  L e m m a  3.3 r e m a i n s  valid for  G'k 
a n d  C~. In  pa r t i cu l a r ,  t h e  def in i t ion  of C~ allows t h e  Car- 
d ina l i t y  Match ing  R e d u c t i o n  Pr inc ip le  to app ly  in  t h e  
p roof  of L e m m a  3.3(0.  

L e m m a  B.3 allows us  to u se  C~ to c a l cu l a t e  levels  and  
b l o s s o m s  in G'k, Now we m u s t  show how to ac tua l ly  find 
t h e  sap's. The a l g o r i t h m  is b a s e d  on t h e  following pro-  
p e r t y  of b l o s s o m s .  Let  an  sap have  l e n g t h  2s +1. 

L e m m a  4.~-. In G'e, le t  B be  a m a x i m a l  b l o s s o m  of t ena -  
c i ty  t < 2s  + 1. wi th  b a s e  v e r t e x  b. T hen  no  o t h e r  v e r t e x  is 
s im i l a r  to  b. 

Proof  S k e t c h .  Follows f r o m  L e m m a  3.3 (ii). • 

The L e m m a  a n d  (Cardinal i ty  B los som Proper ty ( i i ) )  
impl ies  t h a t  a t  m o s t  one  sap p a s s e s  t h r o u g h  a n y  copy  of 
any  edge  with a v e r t e x  in a b lossom.  So "mos t "  sap's do 
no t  p a s s  t h r o u g h  a n y  b l o s soms .  This allows u s  to u s e  t he  
f a s t  t e c h n i q u e s  for n e t w o r k  flows for m o s t  sap's. 

To c a r r y  out  th i s  a p p r o a c h  we work wi th  two g r a p h s .  
The f i rs t  is a m u l t i g r a p h  Mk t h a t  is e s s en t i a l l y  G'k. Let  i j  
be an  edge  of G t h a t  h a s  m m a t c h e d  cop ies  in G'~ a n d  u 
u n m a t c h e d  copies .  T h e n  M~ has  a m a t c h e d  copy  of ij 
with  mul t ip l i c i ty  rn  a n d  a n  u n m a t c h e d  copy wi th  mul t ip l i -  
c i ty  u .  (In ou r  d a t a  s t r u c t u r e  for m u l t i g r a p h s  we s t o r e  
e a c h  edge  a n d  i ts  a n  in t eg ra l  mul t ip l ic i ty .  Thus  M~ h a s  
size 0(E) . )  M~ is u s e d  for  s~p's of mul t ip l i c i ty  g r e a t e r  
t h a n  one.  It is p r o c e s s e d  with the  d y n a m i c  t r e e  d a t a  
s t r u c t u r e  of S l ea to r  a n d  Tar jan  [ST]. 

The s e c o n d  g raph ,  U, c o n s i s t s  of edges  wi th  un i t  mu l -  
t iplici ty.  It is u s e d  for  sap's t h a t  have  mul t ip l i c i ty  one.  ]n  
p a r t i c u l a r  it h a n d l e s  sap's t h a t  involve b lo s soms .  

Now we give t h e  a l g o r i t h m  for a phase .  ]t  follows t h e  
out l ine  of t h e  a l g o r i t h m  of [MV] g iven  in S e c t i o n  3. Let  a n  
sup have  l e n g t h  2s  +1. 

Step 1. Use t h e  g r a p h  C~ to  c a l cu l a t e  all levels  e ( v )  an d  
o(v) t h a t  a r e  a t  m o s t  s + l .  C o n s t r u c t  all b l e s s o m s  t h a t  
have  t e n a c i t y  2s  + 1. 

Step 2. Construct t h e  m u l t i g r a p h  M~. Initialize the g r a p h  
U to be  empty •  T r a n s f e r  f r o m  M~ to U all b l o s s o m s  m~d 
all e d g e s  of mul t ip l i c i ty  one.  (Cor~ment: M~ h a s  no ed g es  
or b l o s s o m s  of t e n a c i t y  less  t h a n  2 s + l .  It m a y  have  ed g es  
or b l o s s o m s  of t e n a c i t y  2s  + 1.) 

Step 3. R e p e a t  t he  following s t e p s  for  eve ry  edge  wu  of 
t e n a c i t y  2 s + 1 .  When no m o r e  e d g e s  vzv r e m a i n ,  go to 
S tep  4. 

Step 3a. Use t he  m e t h o d  of d y n a m i c  t r e e s  [ST] to find 
a p a t h  Pv f r o m  v to  a f ree  ver tex ,  and  also a p a t h  Pw 
f r o m  ¢u to a f ree  ver tex .  Pv a n d  P~ a r e  p a t h s  def ining 
e(v) a n d  e ( ~ )  if v w  is u n m a t c h e d ,  or  o(v) and  o ( ~ )  
o therwise .  Let  Pv (Pw) end  in the  s u b s t i t u t e  for v e r t e x  
i ( j )  of G. Let  5~(5,) be t he  l a r g e s t  poss ib le  i n c r e a s e  
in t he  d e g r e e  of i(j~ in t h e  c u r r e n t  UDCS. 

Step 3b. If Pv and  Pw are  d is jo int  then let  
; z = m i n ~ . / z , . 6 ~ , 6 j .  I e is a n  edge  on  Pv, Pw, or v~u I. 
A u g m e n t  ~ cop ies  of t he  p a t h  P~, vw ,  P,~. Go to S tep  
3d. 

S t e p  3e. Otherwise  Pv and  P,~ a re  no t  disjoint .  By t h e  
m e t h o d  of d y n a m i c  t r e e s  t h e y  join a t  a v e r t e x  j ,  i.e., 
Pv c o n s i s t s  of a p a t h  f r o m  v to j ,  P~j, followed by a 
p a t h  f r o m  j to a f ree  ver tex ,  Pi. Similar ly,  Pw con-  
s i s t s  of Pwj and  Pi .  (Possibly Pi is a s ingle  ve r tex . )  

Let  

v ~ ;  f is a n , e d g e  on PiI" (Comment.'# = 0 if t he  p a t h s  
L ~  k J 

f o r m  a b l o s s o m  :of t e n a c i t y  ~ +1.) A u g m e n t  ~ copies  
of Pvj, vw, Pwi; a u g m e n t  2# cop ie s  of P i  

Step 3d. Dele t e  all a u g m e n t e d  edge  f rom  Ma. 
T r a n s f e r  any  new b l o s s o m  (of t e n a c i t y  2s + 1) a n d  an y  
e d g e  wi th  new mul t ip l i c i ty  one,  to U. Con t inue  with 
S t ep  B. 

Step 4. T r a n s f e r  t h e  r e m a i n i n g  e d g e s  of Me to U, giving 
t h e m  mul t ip l i c i ty  one. However  m a k e  two copies  of t h e  
i n t e r n a l  edge  of eve ry  s u b s t i t u t e .  

,52ep 5. Find an  sap s e t  on U, us ing  the  p r o c e d u r e  of See- 
t ion  3, a n d  a u g m e n t  a long  the  saps. Stop. 

Theo rena  4.1. A m a x i m u m  ea rd ina l i t y  UDCS on a mul t i -  
g r a p h  on  a m u l t i g r a p h  c a n  be found  in 0(VE log V) t i m e  
and  0(E)  space .  

P roof  S k e t c h .  F o r  t h e  t i m e  bound ,  no te  t h a t  S tep  3 is 
i m p l e m e n t e d  with d y n a m i c  t r e e s  in e s s e n t i a l l y  t h e  s a m e  
way as  t h e  a l g o r i t h m  for b locking  flows [ST]. Also reca l l  
t ha t  t he  d y n a m i c  t r e e  d a t a  s t r u c t u r e  finds d e e p e s t  c o m -  
m o n  a n c e s t o r s  ,as f a s t  as  i t s  o t h e r  p r imi t ive  ope ra t i o n s .  
This allows t h e  jo in  j of Pv and  Pw to be found  eff ic ient ly  
in S tep  3c. • 

The  DCS pnob l em is solved in t h e  s a m e  way as in Sec-  
t ion  3. 

453 



T h e o r e m  4.~.. A m a x i m u m  c a r d i n a l i t y  DCS on  a mu l t i -  
g r a p h  c a n  be  found  in  0(VE log V) t i m e  and  0(E)  space .  • 

5. Mas'imum Weight ,  U n i t  Capacity P r o b l e m s  
This  s e e t i a n  p r e s e n t s  a l g o r i t h m s  for  t h e  m a x i m u m  

weight UDCS a n d  DCS problems that use 
O ( ( E ~ ) m i n ( E  lqg V, ;I~)) time and O(E) space. We start 
with the UDCS problem. 

Again our approach is to simulate the weighted 
matching algorithm on G', the graph with vertex substi- 
tutes. Recall how this algorithm works [E85, G, GMG]: A 
map is a maximum weight augmenting path. The algo- 
rithm repeatly'finds a map and uses it to augment the 
matching. This implies that the algorithm finds a 

maximum weight k-matching, ~ for k = I, 2, • ' • 
Censider a vertex substitute S in G', as in Figure 2.2. 

For weighted problems all edges of a substitute are 
assigned weight W, the largest edge weight in G. We can 
assume that all internal vertices of S are matched, as in 
Figure 2.2. (Clearly this gives a maximum weight k- 
matching for some/c ). 

• Now we give the principle for sparse substitutes in 
weighted problems. Let P be a map. Recall from Section 
8 that P traverses a pair of edges in S in one of two direc- 
tions. 

Weighted Matching Reduction Principle. T he re  is a vnap 
t h a t  t r a v e r s e s  a t  m o s t  two p a i r s  of e d g e s  f r o m  a g iven  
s u b s t i t u t e ,  one  in e a c h  d i rec t ion .  

Proof. Suppose P traverses two pairs in the same direc- 
tion. So P has the form .... uv, vw ..... zy, yz ..... where 
vertices v and y are in the substitute and edges uv and 
zg are matched, Let P' be P with the subpath from v to 
z replaced by edge oz. We claim P' has weight at least 
that of P, i.e., w(P)--'w(P') ~ O. Observe that edges vw, 
v z ,  y ~  a n d  yz all have  t h e  s a m e  weight .  H e n c e  
~v(P)--w(P') is t h e  we igh t  of t h e  a l t e r n a t i n g  cyc le  f o r m e d  
by  edge  y%v and  t h e  p o r t i o n  of P f r o m  w to y .  This  w e i ~  
is nonpos i t ive ,  s i nce  any  a l t e r n a t i n g  cyc le  in a m a x i m l m  
weight  k - m a t c h i n g  h a s  nonpos i t ive  weight .  We c o n c l u d e  
P '  is a ~ .ap ,  as  des i red .  • 

S u p p o s e  G' h a s  a m a x i m u m  weight  k - m a t c h i n g .  
Define Ca by us ing  a s p a r s e  s u b s t i t u t e  for  e a c h  ver tex ,  as 
in F igure  2.3. All e d g e s  in t he  s p a r s e  s u b s t i t u t e  have  
weight  W. The R e d u c t i o n  Pr inc ip le  imp les  th i s  resu l t :  

L e m m a  5.1. A m a p  in G~ c o r r e s p o n d s  to a m a p  in G' con-  
ra in ing  t he  s a m e  e d g e s  of G. • 

The  L e m m a  jus t i f i es  ou r  a p p r o a c h  of u s i ng  Ca to f ind 
a map. U n f o r t u n a t e l y  we c a n n o t  m e r e l y  i n p u t  Ca to  t h e  
m a t c h i n g  a l g o r i t h m  and  find a map. The matchJ_ng algo_- 
r i t h m  of [E65] and  i t s  e f f ic ient  i m p l e m e n t a t i o n s  LG, GMG] 
a r e  p r i m a l - d u a l  a l g o r i t h m s  [D]: A s e t  of dua l  va r i ab l e s  is 
m a i n t a i n e d  t h r o n g h o u t  t h e  a lgo r i thm:  We m u s t  show how 
to c o n s t r u c t  dua l  v a r i a b l e s  on  Ca f r o m  t h o s e  of C a - r  

It is c o n v e n i e n t  to d e s c r i b e  t h e  s e a r c h  r o u t i n e  of t h e  
m a t c h i n g  a l g o r i t h m  in  t e r m s  of i t s  i n p u t  a n d  ou t pu t .  Bo th  
of t h e s e  a r e  in  t h e  f o r m  of a searehgraph. This  is a g r a p h  
wi th  a m a x i m u m  we igh t  k - m a t c h i n g .  The g r a p h  h a s  a col- 
l ec t ion  of d is jo in t  b l o s s o m s  (see  S ec t i on  2), E a c h  v e r t e x  i 
h a s  a dua l  va r iab le  y~ a n d  e a c h  b l o s s o m  B h a s  a dua l  var i-  
ab le  z B ~- 0. In  a d d i t i o n  t h e s e  p r o p e r t i e s  hold: 

Search Graph Propels 
(i) The free vertices have the smallest ycvalue, i.e., 

if i is f r ee  t h e n  y~ = min~yj  I J ~ V]. 
(ii) For every edge ~j, 

t J  ~B 

Note the summation is over all blossoms B that contain 
both vertices i and j. Edge ij need not be in the sub- 
graph B (see Section 2). 

(iii) All edges that are matched or in a blossom sub- 
graph are t#@ht, i.e., the inequality of (ii) holds with equal- 
ity. 

We will use some• simple properties of the search 
algorithm: Throughout its execution, the algorithm main- 
tams a search graph structure on the given graph., It 
forms blossoms by oombiniug existing blossoms 
~, 1 < i < P.k4:l, into a new blossom B. These properties 
hold: 

Seo~'ch Algorithm Prope~ies 
(i) When  a b l o s s o m  B is f o r m e d ,  zB = 0. If v e r t e x  c 

is m a t c h e d  to  t h e  b a s e  b of B ,  t h e n  e is i n c i d e n t  to  a n  
u n m a t c h e d  t i g h t  edge .  

(ii) No dua l  va r i ab l e  is c h a n g e d  un t i l  eve ry  b l o s s o m  
of the search graph is maximal, z B > 0 only if B is a blos- 
som in a search graph immediately before a dual variable 
is changed. 

(rio Suppose the algorithm finds a .tap P that con- 
tains a vertex of a blossom B. The portion of P in B is an 
alternating path that starts with a matched edge of B, 
goes to the base of B, and contains only edges of B and 
its subblossoms. 

Now we examine graph Ca. A pr/mary blossowt for a 
substitute S is the smallest blossom containing an edge of 
S. The following result is the analog of Lemma 3,300. It 
follows from Search Algorithm Properties (i)-(ii), 

l.emma 5.2. Without loss of generality, a vertex of an 
internal edge of a substitute is not the base of a primary 
blossom. • 

~ 'q~internal edge 

4x---external vertices 

(a) I,] blossom 

3 A k'-mo~ch/~ has exactly k edges. 
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blossom / 

p a t h  "~.tl, l 

(b) 2,0 blossom 

blossom 

(c) 0,2 blossom 

Figure 5.1 

Topologies for p r i m a r y  blossoms•  

Now it is easy  to s ee  t h a t  t h e r e  are  t h r e e  t ypes  of pri-  
m a r y  b lossoms ,  shown in Figure 5.1. Figure 5.1(a) shows 
the  b lossom when  the  base  is no t  in t he  subs t i tu te ,  and  
Figure 5.1(b)-(c) show when  it is. Observe t h a t  t h e s e  are  
the  only possibil i t ies,  s ince  the  L e m m a  shows the  base  is 
no t  on  an in te rna l  edge .  (Also, t he  base  is not  on an  
ex t e r na l  ve r t e x  on the  r igh t  of the  subs t i tu te ,  .since a base  
is on at  l eas t  two u n m a t c h e d  edges .  A m i n o r  va r i an t  of 
Figure 5. l (a)  and 5. ](c) is when  the  e x t e r n a l  v e r t e x  on the  
lef t  is f ree . )  

A p r i m a r y  b los som is a n  l, r b l o s s o m  (with r e s p e c t  to 
a given subs t i tu t e )  if i t  con ta ins  I edges  of G on  the  left  of 
t he  subs t i t u t e  and r edges  on the  right.  As shown in Fig- 
u re  5.1 t he  t h r e e  t y p e s  of b los soms  a re  1,1; ~,0 and 0,8. 

Now reca l l  C~ is t he  subs t i t u t e  g r a p h  be fo re  the  /c ¢u 
augmen t ,  and  C~. 1 is the  subs t i t u t e  g r a p h  c o n s t r u c t e d  
a f t e r  this  augment .  We define a s e a r c h  g r a p h  s t r u c t u r e  on  
G#+1 by using essent ia l ly  t he  same ,  s t r u c t u r e  as  Gk. The 
b los soms  a re  t h e  s a m e  in b o t h  g raphs ,  e x c e p t  t ha t  when  
the  m a p  goes  t h r ough  a subs t i t u t e  the  new subs t i t u t e  
e d g e s  of  G~+l r ep l ace  the  old ones  of Gk. The dual vari- 
ables  Yi, zB a re  t he  s a m e  with one  except ion:  This is y~., 
t h e  dual variable for a new ve r t ex  ~l' in t he  subs t i tu t e ,  d '  
is c r e a t e d  when an edge  of G b e c o m e s  u n m a t c h e d ,  
t h e r e b y  moving f rom t h e  left  s ide  of t h e  subs t i t u t e  to t he  
right,  thus  spawnir~g a new m a t c h e d  edge  and new ve r t ex  

We will i l lus t ra te  t h e  de ta i l s  of our  pol icy  by cons ider -  
ing one case:  when  the  p r i m a r y  b los som B0 is 2,0 and  the  
m a p  e n t e r s  Bo f rom a ve r t ex  d,  as  shown in Figure  5.2(a). 
In th is  f igure Bo's base  is 6, which  is m a t c h e d  to ex t e rna l  
v e r t e x  e .  Ve r t ex  d is m a t c h e d  to  ex t e rna l  ve r t ex  e .  
Dual var iables  a re  easi ly  ca lcu la ted ,  and  a re  i nd ica t ed  
n e x t  to t h e  ve r t i c e s  (e.g., Yb = v) .  

(a) 8.0 blossom in C%. 

primary 

Ye bI~°m 

(b) 0,2 blossom in C,~+I. 

F i g u r e 5 . 2  

Augmen t  of a 2,0 b lossom.  

Consider the map R Search Algorithm Property (iii) 
shows P goes from c, through/?0, to 6. It is easy to see 
t ha t  P has  the  fo rm c,  b, a . . . . .  a ' , b ' , c ' , & ,  e .  S o G k + l i s  
as  shown in Figure 5.2(b): a a n d  ~'  a re  on u n m a t c h e d  
e x t e r n a l  e d g e s  of B0 and  e is t h e  new base;  e is on a 
m a t c h e d  ex t e rna l  edge  and is still jo ined  to  B0. It is easy  
to see  t h a t  all edges  of Figure  5.2(b) a r e  t ight .  So a blos- 
som is def ined  in G~+1. 

Other  c a s e s  in t h e  analysis  are  similar.  We conc lude  
t h a t  the  s t r u c t u r e  def ined  for C~+1 is a s e a r c h  graph.  

T h e o r e m  5.1. A m a x i m u m  weight  UDCS c a n  be  found in 
0 ( ( ~ ) m i n ( E  log V, Fe)) t ime  and 0(E)  space .  

Proof Sketch. Fbr the time bound, the search routine of 
[GMG] runs in Q(E log TO time. and gives our first time 
bound. The s e a r c h  rou t ine  of [G] r u n s  in 0(Y e) t ime .  
Minor modi f ica t ions  in t he  d a t a  s t r u c t u r e  m a k e  this  0(l~) 
on our graph Ca, giving our second time bound. • 

455 



We solve the weighted DCS problem using the graph 
G* of Figure 3.1. 

Theorem 5.2. A maximum weight DCS can be found in 
0((~ui) rn in(E log V, pc)) time and 0(E) space. • 

B. Shortest Paths 
This sect ion sketches  an algorithm for the all-pairs 

shor tes t  p a t h  problem on an undirected graph. The run 
t ime is 0(V rain (E log 'V, VZ)). 

The algorithm is based on Lawler's reduct ion of the 
single-pair shor tes t  pa th  problem to DCS [L, pp. 2"20-222]. 
The reduct ion resembles  the bidirected graph construc-  
tion of Figure 2.1: Given an undirected graph with edge 
lengths, G. Let G* be G where in addition, each ver tex 
has a self loop of length 0. Consider a DCS problem on G* 
where each ver tex i has /~ = u: = 2. This problem is 
closely related to any shor tes t  path  problem on G: I f s  is 
the source and t is the sink, the shor tes t  s - t  pa th  
corresponds to the DCS where the bounds for s and t are 
changed to one. This mott ivates the following algorithm: 

Step 1. Given G, form G* adn find a minimum weight DCS. 
(Comment: h minimum weight DCS consists of all the 
self-loops, since G has no negative cycles. Our algorithm 
finds this solution and more importantly, it constructs  the 
corresponding dual variables and blossoms.) 

Step 2. Repeat the following steps for each vertex. 

Step,?a. Use G* to form G', a copy of G * w i t h a n e w  
vertex S and edge Ss.  Let M be the largest dual vari- 
able y~ in G*. Let Ss have length 2M+l and let 
Ys =M. L e t l  s = u  s = 1. 

Step Zb. Use the DCS algorithm to search  for an aug- 
menting path  from S. (Comment: The search  halts 
unsuccessfully, since there  is no DCS. However it 
computes  dual variables Yi.) 

Step 2c. Output each vertex t at distance 
Ys + y : - ( 2 M + l )  from s.  

Theorem 6.1 The aU-pairs shortes t  path  problem on an 
undirected  graph  with no negative cycles can be solved in 
0( V mtn (E log V, V~) time and O(E) space. 

Proof Sketch.  Correctness  can be seen by noting that  
Step 2b simulates the DCS algorithm when G* is modified 
to make t the sink. For the timing, Step 1 runs in the 
desired time. Each execution of Step 2b uses 
O(min (E log V, Ye)) time. So Step 2 is also within the 
desired time bound. • 
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