
JOURNAL Ok COMPUTER AND SYSTEM S(‘1EiX;CF.S 31, 148168 (1985)

Scaling Algorithms for Network Problems
HAROLD N. GABOW*

Departmenr of Computer Science, Unicrrsit~~ of Colorado at Boulder,
Boulder. Colorado 80309

Received April 17, 1984; revised May 3 1, 1985

This paper gives algorithms for network problems that work by scaling the numeric
parameters. Assume all parameters are integers. Let n, m, and N denote the number of ver-
tices, number of edges, and largest parameter of the network, respectively. A scaling algorithm
for maximum weight matching on a bipartite graph runs in O(n3% log N) time. For
appropriate N this improves the traditional Hungarian method, whose most efftcient
implementation is O(n(m + n log n)). The speedup results from finding augmenting paths in
batches. The matching algorithm gives similar improvements for the following problems:
single-source shortest paths for arbitrary edge lengths (Bellman’s algorithm); maximum
weight degree-constrained subgraph; minimum cost flow on a cl network. Scaling gives a
simple maximum value flow algorithm that matches the best known bound (Sleator and
Tarjan’s algorithm) when log N = O(log n). Scaling also gives a good algorithm for shortest
paths on a directed graph with nonnegative edge lengths (Dijkstra’s algorithm). 0 1985

Academic Press, Inc.

1. INTRODUCTION

A network is a graph with numeric parameters such as edge lengths, capacities,
costs, or weights. Throughout this paper, n, m, and N denote the number of ver-
tices, number of edges, and largest numeric parameter of the network, respectively.

For optimization problems on networks, one important technique is efficient
priority queues. Priority queues often allow a network problem to be solved by the
approach used for the analogous nonnumeric graph problem, increasing the time
by only a factor of log n.’ For example the shortest path problem is solved by
Dijkstra’s algorithm on networks and breadth-first search on graphs. But priority
queues don’t always do the trick. For example a maximum cardinality matching
can be found in O(n”‘m) time [17,231 whereas the best bound for weighted
matching is O(n(m +n log n)) for bipartite graphs [lo] and slightly more for
general graphs [16]. The complexity gap here and in other problems results from
the fact that the nonnumeric algorithm finds objects in batches, but numeric
parameters force objects to be found one by one.

* This research was supported in part by the National Science Foundation under Grant MCS-
8302648.

’ Throughout this paper, log denotes logarithm to an arbitrary constant base and Ig denotes logarithm
base two.

0022~OOOOj85 $3.00
Copyright 0 1985 by Academic Press, Inc.
All rights of reproductwn in any form reserved.

148

SCALING ALGORITHMS FOR NETWORK PROBLEMS 149

This paper explores the scaling approach to network problems. Scaling can
sometimes be used as an alternative to efficient priority queues. More importantly it
can achieve batching in numeric problems. Edmonds and Karp [S] introduced the
scaling approach for the minimum cost network flow problem. Since then the
method has been largely ignored.

The scaling approach can be stated recursively or iteratively, and both viewpoints
are useful. The recursive version is as follows: Given a network problem, halve the
numeric parameters (i.e., a number 1 becomes Ll/2_l) and solve this scaled-down
problem recursively. Double the solution to get a near-optimum solution on the
original network. Then transform the near-optimum solution to optimum.

The iterative version of scaling is as follows. View each number as its k-bit binary
expansion b, . . b,, where k = Llg Nl + 1. First solve the problem on the network
where all parameters are 0. Then for s =O,..., k - 1, transform the solution for
parameters b 1 . . . b, to a solution for parameters b, . b,v + , .

Scaling relies on two assumptions. Integrality ensures applicability of the method.
It requires the given numbers to be integers. This permits an easy transition from
near-optimum solution to optimum. If the given numbers are rational they must be
scaled up to integers before the method is applicable. Incommensurable real-valued
inputs cannot be handled directly by this method, although this is not a limitation
in practice. In the absence of integrality scaling gives an approximation scheme:
Assume all parameters are normalized to lie in the interval [0, 1) and view them as
binary numbers O.bl b2.. . . Compute solutions to the network, first with all
parameters 0, then with parameters O.b,, then O.bI b2, etc. The accuracy of each
solution can be bounded. So scaling can find a solution with any desired accuracy.’

The second assumption, similarity, concerns efficiency of the method. It requires
that the numbers of the problem be polynomially bounded, that is, if N is the
largest number and n is the number of vertices, then N = no(l). Scaling time bounds
typically involve a factor log N due to lg N scalings of the problem. Similarity
implies log N= O(log n). This allows us to compare scaling bounds to previous
ones. The assumption is for comparative purposes only, and we explicitly state
when it is used. In the absence of similarity scaling algorithms can still be superior.
For example for weighted matching scaling is faster for N= 20(“li4).

We suspect that simi!arity holds quite often in practical cases. Actually if it does
not hold, then traditional algorithms must use a word size of lg N bits rather than
lg n for the time bound to be valid (see Sect. 2.1). This opens the door for new
approaches like bit vector algorithms. For instance if N> 2” so that a machine
word has n bits, the Hopcroft-Karp algorithm (used in the scaling approach) can
be implemented in time 0(n 3’2 log n + m) on a bit vector machine, improving the
usual bound of O(n1/2m) [12].

Table I lists several network problems, the time for the best-known algorithm
and the time for the scaling algorithm. The scaling algorithms for minimum span-
ning tree and bottleneck shortest path are based on the fact that n integers can be

* This approach was suggested by Dr. Robert Tarjan.

150 HAROLD N. GABOW

TABLE I

Algorithms for Network Problems

Best known algorithm Scaling algorithm

Minimum spanning tree
O(m log Bh n)) ft61
Bottleneck shortest path

O(m + n log n) [lo]

Shortest path (nonnegative lengths)
O(m + n log n) [lo]

Maximum value network flow
O(min(n m log n, n3)) 125, 191

Maximum weight matching (bipartite graph)
O(n(m + n log n)) [lo]

Shortest path (arbitrary lengths)
Wm) C31

Degree-constrained subgaph (bipartite graph)
O(U(m+nlogn)) [lo]

Minimum cost network flow (unit capacity)
O(m(m+nlogn)) [lo]

O(m(log,N+a(m, nl))

Oh log, N)

O(m h+ m!n NJ

O(n m log N)

O(n’j4 m log N)

O(n3j4 m log N)

O(U314 m log N), multigraph
0(U’/* n1’3 m log N), graph

O(m714 log N)
O(~I’~~ m3i2 log N), type 1
O(G4 m log N), type 2

Note. n = number of vertices, m = number of edges, N = largest network parameter, Ii = sum of upper
bounds.

radix sorted in O(n log, N) time. (Note that radix sorting is a scaling method.)
Under similarity scaling is faster in both problems.

The remaining entries in the table are covered in this paper. The next two entries
are discussed in Section 2. They illustrate how scaling can emulate efficient priority
queues and other data structures. For shortest paths on directed graphs with non-
negative edge lengths, Dijkstra’s algorithm relies on an efficient priority queue.
Under similarity scaling achieves the same efficiency as Johnson’s algorithm [181,
although it is not quite as efficient as the recent algorithm of Fredman and Tarjan
[lo]. For maximum flow in a network, Sleator and Tarjan’s algorithm [25]
depends on the dynamic tree data structure. Under similarity scaling achieves the
same efficiency.

The main results of this paper are algorithms where scaling takes advantage of
batching in nonnumeric algorithms. Weighted bipartite matching is discussed in
Section 3. Table I shows that scaling is superior to the traditional Hungarian
method, under similarity. Its efficiency results from combining the Hungarian
method with the cardinality matching algorithm of Hopcroft and Karp. Scaling

SCALINGALGORITHMSFORNETWORK PROBLEMS 151

works for all variants of matching, such as maximum weight matching, complete
matching, cardinality-k matching and maximum weight maximum cardinality
matching. Section 3 also gives nonscaling algorithms for matching that are efficient
when N = 0(1). For instance in this case maximum weight matching is O(n’12 m).

The algorithms in the rest of the paper work by reducing the problem to
matching. This is done for conceptual simplicity; direct approaches can be given
and are preferable in practice.

Section 4 presents an algorithm for single-source shortest paths on a directed
graph with possibly negative edge lengths. Table I shows that similarity implies
scaling is superior.

Section 5 presents an algorithm for degree-constrained subgraphs on bipartite
multigraphs. The two time bounds of Table I both apply to graphs; only the first
applies if there are multiple edges. The best traditional algorithm works by treating
the problem as a minimum cost network flow. Similarity implies scaling is superior.

Section 6 uses the results of Section 5 to solve the minimum cost flow problem on
O-l networks. These networks were studied by Even and Tarjan [9] for the
maximum value flow problem. The scaling bounds for the minimum cost problem
are analogous to their bounds for the maximum value problem. Scaling is superior
to the traditional algorithm, under similarity. The scaling algorithm works even in
the presence of negative cycles. Section 7 summarizes some experimental results and
gives conclusions.

2. EMULATING EFFICIENT DATA STRUCTURES

This section describes instances where the efficiency of priority queues and
dynamic trees can be achieved by simple applications of scaling. It also indicates
how in some models, the assumption of similarity is unnecessary.

2.1. Shortest Paths with Nonnegative Lengths
Consider a directed graph G with source vertex s and nonnegative integral edge

lengths I,. The shortest path problem is to find di, the minimum length of a path
from s to i, for each vertex i. This section sketches a scaling algorithm that runs in
O(m log2 + mln N) time. Under similarity this bound equals Johnson’s [IS] but is
not quite as good as Fredman and Tarjan’s [lo]. The scaling algorithm is used in
the matching algorithm of Section 3. It uses Dijkstra’s algorithm [6], and also
ideas due to Edmonds and Karp [S], Dial [S], and Wagner [27]. For a discussion
of all this material see [26].

Define a “near-optimum” solution to the shortest paths problem to be a function
di such that (i) d, =O; (ii) di dominates the edge lengths, that is for any edge u,
di + 1, > dj; (iii) each vertex i has a path from s of length between di and di + m. The
shortest paths algorithm is based on a procedure that converts a near-optimum
solution to optimum. To do this first compute modified edge lengths
I>= di + l,- d,. Then compute shortest paths for the modified lengths using

152 HAROLD N. GABOW

Dijkstra’s algorithm. The modified edge lengths do not change the shortest paths.
The priority queue of Dijkstra’s algorithm can be implemented by an array Q(k),
0~ k <m, where Q(k) contains all vertices whose tentative distance from s is k.
(Condition (iii) implies that all final distances from s are at most m, so this priority
queue works correctly.) It is easy to see that the total time for this conversion
procedure is O(m).

The given shortest path problem is solved by scaling, as follows. If the given
lengths are all m/n or less, use the conversion procedure directly, starting with the
near-optimum solution dj = 0. Otherwise scale the graph G to G, a graph with the
same vertices and edges as G and edge lengths L1,/2 J. Calculate d;, the distances
from s in c, recursively. The values 2d, are near-optimum for G. So use the conver-
sion procedure to find the correct shortest paths. The total time is O(m log N), since
there are lg N scaled graphs G.

The scaling algorithm can be relined to achieve a time bound of O(m log, + ,,,,* N),
which is similar to Johnson’s bound, O(m log, +,+, n). To do this scale by
s = 2 + m/n rather than 2, so that G has edge lengths iti = LIV/s J. Otherwise the
algorithm is unchanged. (Note that in scaling up the distances sdi are still near-
optimum.)

It is an interesting exercise to see why the scaling algorithm fails in graphs with
negative edge lengths but no negative cycles!

We close this section by noting that in models that account for the cost of
arithmetic (e.g., when N is so large that multiprecision arithmetic must be used) the
time bounds for Johnson’s algorithm and scaling are identical. This results from the
fact that the scaling algorithm can be modified to work with integers no larger than
2m. Hence on a machine with words of Ig n bits, each arithmetic operation in the
scaling algorithm is 0(1) and the time bound remains O(m log,+,,, N). However
in Johnson’s algorithm distances can be up to nN. This makes an arithmetic
operation O(log, N), so the total time becomes O(m log,,,,, N). Similar results
hold for times calculated in the logarithmic cost model [I].

The scaling algorithm that uses small numbers works as follows: For convenience
we sketch an algorithm that scales by two and uses size 2n numbers; the algorithm
that scales by 2 + m/n and uses size 2m numbers is similar. Consider the iterative
version of scaling, that is, there are k = Llg N] + 1 scales corresponding to suc-
cessive bits in the binary numbers b, . . . bk. Scale 1 views numbers as their leading
bit b, and computes distances d! for each vertex i; in general scale s computes dis-
tances 4. To derive the scale s + 1 problem, first replace the current edge lengths I,
by 1; = 4 + iii - d;; delete edges with 1; > n; finally scale lengths up to 21; + b,v + 1,
where b,, , is the s+ 1 st bit of the (given) length of edge ij. The scale k shortest
path tree is a shortest path tree for the original graph. (To prove this, first observe
that in scale s an edge ij with original length b, ... 6, has length 6, .. . b, +
x;:; 2”-‘(d:-d,!). Th is implies that any deleted edge is too long to be on a shortest
path. Further, the quantities C;= i 2”+‘d! are valid distances for edge lengths
b, ... b,, as desired.) Each distance d; is less than n (by the edge length transfor-
mation). Hence the algorithm always works with numbers 2n or smaller. Similar

SCALINGALGORITHMSFORNETWORKPROBLEMS 153

transformations can be made for the other scaling algorithms of this paper, but are
omitted.

2.2. Maximum Value Network Flow
Consider a directed graph G with source vertex s, sink vertex t, and integral edge

capacities cii. The maximum value network flow problem is to find a flow of
maximum value from s to t. For a discussion of this problem see [26]. This section
sketches an algorithm with run time O(nm log N).

Define a “near-optimum” solution to be a flow functionfwhose value is within m
of the maximum value. To convert a near-optimum flowf to a maximum flow, con-
struct the residual network G* forf: This network is defined by assigning edge ij a
capacity ciJ -fti +fii. A maximum flow on G*, when added to f, gives a maximum
flow on G [26]. So find a maximum flow on G* using Dinic’s algorithm [7], and
add it to f to get the desired flow.

The time for this conversion procedure is O(nm). To see this recall that Dinic’s
algorithm has n phases, and each phase uses time O(m + an), where a is the number
of augmenting paths found. Each augmenting path increases the flow by at least
one, since the flow is integral. A maximum flow on G* has value at most m, by
near-optimality. Hence the a’s sum to at most m. The time bound follows easily.

The given flow problem is solved by scaling, as follows. If all capacities are m/n
or less, use the above conversion procedure directly, starting with flow f = 0.
Otherwise scale G to G, the same graph with capacities Lc,/2 J. Find a maximum
flow f on G recursively. The flow 2f is near-optimum for G, by the max flow-min
cut theorem. So the conversion procedure finds a maximum flow on G. The total
time for the algorithm is O(nm log N). The relative simplicity of this scaling
algorithm should make it perform well in practice.

3. WEIGHTED MATCHING

Consider an undirected graph with integral edge weights wii. A matching is a set
of edges with at most one edge incident to any vertex. A free vertex is not incident
to any matched edge. A complete matching has no free vertices. The weight w(M) of
a matching M is the sum of all weights of edges of A4. The maximum weight
matching problem is to find a matching with largest possible weight; the maximum
complete matching problem is defined similarly with respect to complete matchings.
This section presents algorithms for these problems on bipartite graphs, that run in
O(n314m log N) time. Modifications are given for the useful case N = O(l), that are
more efficient and also apply to general graphs.

First consider maximum complete matching. For convenience assume that the
input graph has a complete matching. Also assume that the edge weights wii are
nonnegative integers. (If the given weights lie in an interval [a, b], decrease all
weights by a. This puts the weights in [0, b-a], does not change the maximum
complete matchings and only improves the time bound.)

154 HAROLD N. GABOW

The algorithm is based on the Hungarian method for weighted matching
[20,21]. We begin by sketching this method, concentrating on aspects that are
relevant to the scaling algorithm. Complete developments are in [22,24].

The Hungarian algorithm is a primal-dual algorithm in the sense of linear
programming [4]. Each vertex i has a real-valued dual variable y;. The dual
variables are dominating if for every edge ij,

An edge ij is tight if equality holds. The dual variables are tight with respect to a
matching M if every edge ije M is tight. The quantity Cic y yi is the dual objective
function; the reader need not be familiar with duality theory, but he or she will still
observe the importance of this function in what follows.

A complete matching M* has maximum weight if it has a set of dominating and
tight dual variables. To see this observe that completeness and tightness imply that
the matching’s weight is the dual objective,

w(M*)= 1 y,;
ic v

(1)

dominance implies that any complete matching weighs at most the dual objective.
The Hungarian algorithm has input consisting of a bipartite graph and a set of

dominating dual variables. The output is a complete matching with dominating
tight dual variables. Hence the output is a maximum complete matching.

The Hungarian algorithm starts with the given duals and the empty matching. It
repeatedly does a “Hungarian search” followed by an “augment step” until the
matching is complete. A Hungarian search does zero or more “dual variable
adjustments” until it finds a “wap.” Each dual variable adjustment starts by com-
puting a quantity 6. The duals of all free vertices are decreased by 6; for some
matched edges ij, yi is increased by 6 while yj is decreased by 6. The adjustment
keeps the duals dominating and tight. Eventually the search finds a weighted
augmenting path (wap) P. This is a path joining two free vertices, whose edges are
tight and alternately unmatched and matched. The augment step enlarges the
matching by one edge, by adding the currently unmatched edges of P and removing
the currently matched ones.

The timing analysis of the scaling algorithm depends on an integrality property
of the Hungarian method: If all edge weights and all given duals are integers, then
at any point in the algorithm any dual is a half-integer y/2, y E Z [24, p. 267,
Ex. 21. An alternate formulation, useful in an actual implementation of the scaling
algorithm, is that if all edge weights are even and all given duals are integers of the
same parity, then at any point any dual is integral. (Both properties follow easily
from the observation that in a Hungarian search, the duals of all vertices in search
trees have the same parity.)

Another issue in the analysis of the scaling algorithm is the magnitude of the dual

SCALINGALGORITHMSFORNETWORK PROBLEMS 155

0 N 0 . . . L-La
YI -Yl y2 -y2 Yk -‘k

FIG. 1. Graph and dual values.

variables. The Hungarian method, and indeed any dual variable method, can
produce dual values of size Q(nN). To see this consider the graph of Fig. 1, a path
of n = 2k vertices with weights alternately 0 and N. The unique complete matching
is shown. If yi (as shown) is any corresponding set of dual variables, dominance
and tightness imply y,, , > yj + N. Hence yk > y, + (k - 1) N, as desired.

The scaling algorithm relies on the fact that the Hungarian method does not
make many dual variable adjustments if it starts with good initial values. More
precisely let

D= c y,-w(M*), (2)
it v

where yi are the input dual variables and M* is a maximum complete matching. (D
is nonnegative by dominance.) Consider any given point in the Hungarian
algorithm. Let the current matching have f free vertices; let A be the total of the
quantities 6 in all dual variable adjustments up to the given point.

LEMMA 3.1. fA< D.

ProoJ: Consider the dual objective Cic ,,yi as dual variables are adjusted. A
dual variable adjustment of 6 decreases the objective by gS, where g is the number
of free vertices when the adjustment is made. (To see this note that if vertex i is free,
yi decreases by 6; if edge ij is matched, yj +,v~ does not change.) Every augment
decreases g by two, so every value of g is at least J: Thus the total decrease in the
dual objective (up to the given point in the algorithm) is at least fA. On the other
hand the total decrease is at most D, since (1) holds when the Hungarian algorithm
halts. This proves the lemma. 1

The scaling algorithm first solves the matching problem on a graph whose
weights are half the original ones. This gives duals that have a small D value on the
original graph, and makes the algorithm efficient.

The recursive procedure S below implements this strategy. S has input G, a
bipartite graph with vertex sets Vi, Vz. It returns with a maximum complete
matching A4 and corresponding dual variables. It works by scaling G, with weights
wii, to G, with weights Lw,/2J. (G and G have the same vertices and edges.)
Step 3.2 below uses the cardinality matching algorithm of Hopcroft and Karp [171.
The version used accepts as input an arbitrary matching A4, and transforms M to a
maximum cardinality matching.

PROCEDURE S(G). Step 0. If all weights wij are 0, return any complete matching
M and all dual variables yi = 0.

156 HAROLD N. GABOW

Step 1. Construct the graph G. Call S(G) recursively to find a maximum complete
matching and corresponding dual variables yi.

Step 2. Let A4 be the empty matching on G. For each vertex in V,, set
yit 2j~;+ 1; for eachjE: V,, set yit 2y,.

Step 3. Repeat the following steps until A4 is a complete matching on G:
Step 3.1. Do a Hungarian search to find a wup.
Step 3.2. Let T be the “tight” subgraph of G containing all edges that are

tight for the current dual variables. Transform M to a maximum cardinality
matching on T, by the Hopcroft-Karp cardinality matching algorithm.

Step 4. Return the complete matching M and the dual variables yi.

LEMMA 3.2. Procedure S returns a maximum complete matching, with
dominating tight dual variables.

ProoJ Induct on the number of calls to S. The base case, when Step 0 is
executed, is clearly correct. For the inductive step assume that the recursive call of
Step 1 returns dominating duals on G, that is for every edge ij, Lw,/2 J 6y,+ yj.
This implies that Step 2 computes dominating duals on G.

Observe that Step 3 maintains duals that are dominating and tight for M: Each
Hungarian search (Step 3.1) maintains dominance and tightness, and Step 3.2
matches only tight edges.

Each iteration of Step 3 increases the number of matched edges by at least one,
since a Hungarian search halts with a wup. So eventually a complete matching with
corresponding duals is found. 1

To derive the time bound, focus on the execution of Step 3 in one recursive call
to S. First observe that Lemma 3.1 holds for Step 3: Define D by (2), where yj are
the duals of Step 2; at any given point in Step 3 let the current matching have f free
vertices; let d be the total of the quantities 6 in all dual variable adjustments in all
Hungarian searches (Step 3.1) up to this point. Lemma 3.1 holds for these quan-
tities, by exactly the same proof.

The number of iterations of Step 3 satisfies two properties:

(i) Step 3.1 is executed less than 2n”* times.
(ii) Step 3.1 is executed at most nil4 times with f > n314.

To show these properties, first note that

D < n/2.

For if M* is a maximum complete matching, the matching of Step 1 shows that
w(M*) 3 CjE V.Yi-n/2*

To prove property (i), count the number of executions of Step 3.1 with f> n”’

SCALING ALGORITHMS FOR NETWORK PROBLEMS 157

and the number with.f< n ‘I2 Iff> r~‘/~ then Lemma 3.1 shows that A < D/f < n l/‘/2. .
Every execution of Step 3.1 adjusts the duals by some positive 6, since after any
execution of Step 3.2 no augmenting path consists entirely of tight edges. Since 6 is
a half-integer, 6 > Y ’ Thus the number of executions with f 2 nli2 is at most FZ’/~. The
number with f < ,‘I2 is less than n1’*/2, since each execution matches two or more
free vertices.

Property (ii) is similar: If f 2 n 3/4 then A 6 D/f < n’14/2, implying (ii).
Now compute the total time for Step 3 (in one recursive call). Step 3.1 can be

implemented in O(m) time; the data structures are essentially the same as for
Dijkstra’s algorithm, Section 2.1. The total time in Step 3.1 is O(n112m) by (i).

Step 3.2 uses the Hopcroft-Karp algorithm, so one execution uses
O(min(n’j2, a) m) time. Here CI is the number of augmenting paths found (the
O(am) bound follows from inspecting the Hopcroft-Karp algorithm). By (ii), the
time for all executions of Step 3.2 with f > n314 is O(n’j4. nli2m) = O(n3j4m). The
executions with f < n 3’4 find fewer than n3j4/2 augmenting paths, and so use
O(n314m) time.

Thus Step 3 is O(n3j4m). Step 2 is O(n), and Step 0 is O(n”‘m). Since the number
of recursive calls is Llg NJ + 2, the total time is O(n3’4m log N). The following result
summarizes the discussion.

THEOREM 3.1. A maximum complete matching on a bipartite graph can be found
in O(n314m log N) time and O(m) space.

Regarding the tightness of this time bound, the discussion after Corollary 3.2
shows that one scale can use time 8(n3’4 m).

The above derivation implicitly assumes that the dual values yi do not grow too
large, so that arithmetic operations are O(1). Now we show this is true: the dual
values have magnitude O(nN).

One execution of Step 3 changes a dual value yi by at most *n/4. (To see this
note that yi changes by at most f A, by the Hungarian algorithm. Further,
A <D/2 <n/4, since any execution of Step 3.1 has f 2 2.) So if ai is defined as the
largest magnitude of a dual value after the ith recursive invocation of procedure S,
then a, = 0 and a. ,+ , < 2aj + n/4 + 1, for 0 6 i < Llg NJ. It follows that a dual value
is at most (2L’eiyJ + ’ - l)(n/4 + 1) < N(n/2 + 2), as desired.

As noted previously, any dual variable method (including the Hungarian
method) needs dual values of size Q(nN) on some graphs. So a word size of
Ig N + lg n + 0(1) bits is necessary and sufficient. This is not unreasonable since the
problem description needs max(lg N, lg n) bits. Thus at worst the algorithm uses
double-word integers for the dual variables.

In an actual implementation some changes would be made to procedure S.
Recursion would be changed to iteration. The programming nuisance of half-
integers can be avoided in two ways. First, one can do the Hungarian search
starting from the free vertices of only one of the vertex sets of the bipartite graph
[22]. Alternatively a different scaling regime can be used: In scale s, instead of con-

158 HAROLDN.GABOW

sidering an edge weight with binary expansion 6, . . ’ b, to be b, . . . b, it is considered
to be b, . . . b, 0. Step 2 scales up all dual values by the assignment yk +- 2yk + 1.
Hence all weights are even and all duals are odd. This ensures that throughout the
algorithm all duals are integers.

The scaling algorithm extends to variants of the matching problem, including
maximum weight matching, maximum weight maximum cardinality matching, and
maximum weight cardinality-k matching. Here we discuss maximum weight
matching (other variants are in Sect. 5). Even if a graph has a complete matching
and all weights are positive, a maximum weight complete matching need not be a
maximum weight matching. However maximum weight matching reduces to
maximum complete matching as follows.

Let G be the graph for maximum weight matching. Construct a graph G from
two copies of G, say G, , GZ; each vertex i in G, with copies i, , i, in G,, G,, has an
edge iii, in G with weight 0. G is bipartite if G is. A maximum complete matching
on G gives a maximum weight matching on G, = G.

COROLLARY 3.1. A maximum weight matching on a bipartite graph can he ,found
in O(n3j4m log N) time and O(m) space.

For maximum weight matching all negative edges can be deleted from the graph.
So in the above time bound N refers to the largest positive weight. (If the given
weights lie in an interval [a, b] then N = b; N cannot be reduced to b-a as in
complete matching.)

The time bound for maximum weight matching can be relined to O(nym log N),
where n, = 1 V, 1. The algorithm must be modified as follows: Recall that graph d is
the input to procedure S. In Step 2, set J i J t 2yi + 1 for all vertices i in either copy of
V, (that is, iE V,(G,)u Vl(G2)); set y, t 2y, for all i in either copy of V?. (Note
that V,(G,)u V,(G,), V,(G,)u V,(G,) is not a bipartition of G.) In Step3 (and
Step 0), always maintain the same matching and duals on G, and G,.

The timing analysis depends on two observations. First, D < 2n i, because of the
modified Step 2. Second, the Hopcroft-Karp algorithm runs in time O(nti2 m). This
follows from an analysis similar to [171. The key point is that a set of augmenting
paths contains mostly edges of the original graph G. More precisely, on the tight
graph T of Step 3.2, a matching M that is identical on G, and G, has a set A of dis-
joint augmenting paths such that MO A is a maximum cardinality matching and
further, each path in A has at most one edge i, i2 joining G, to G,. The rest of the
timing analysis follows the one given above and is left as an exercise.

Scaling is efficient on “small” edge weights like N = no”‘. If the weights are
extremely small like N = 0(1), scaling can be dispensed with. This case is useful in
practice, especially N = 1 or 2. Now we sketch algorithms for this case, for
maximum complete matching and maximum weight matching.

The algorithm for complete matching is: Start with M empty and all duals
yj = N; then execute Step 3 of procedure S. This gives the desired matching. An
analysis similar to Theorem 3.1 shows the time is O(N”2n3/4m). This matches

SCALING ALGORITHMS FOR NETWORK PROBLEMS 159

Theorem 3.1 when N= O(l), in which case the simplicity of the algorithm makes it
preferable.

The algorithm for maximum weight matching is: Start with A4 empty and all
duals yi = N, then execute Step 3 of procedure S, terminating when either a com-
plete matching has been found or the duals of all free vertices are 0. (Note that at
any point in the algorithm all free vertices have the same dual value.)

Correctness of this method follows from the fact that a matching has maximum
weight if it has a set of duals that is dominating, tight and consistent, that is, all
dual values are nonnegative and all free vertices have dual value 0. This can be
proved by the argument at the beginning of this section (or see [22]).

The time bound is O(min(N ‘I* 3’4 A%z”~) m). The first term of the bound is n ,
derived as above. The second term results from the fact that Steps 3.1-3.2 are
executed at most N times.

I 0 “’ I 0

(0) (b)

FIG. 2. Worst-case graph for matching: (a) module of A,; (b) initial matching and duals; (c)
Matching and duals after j iterations.

160 HAROLD N.GABOW

COROLLARY 3.2. If N = 0(1) a maximum complete matching on a bipartite graph
can be found in O(n314m) time and a maximum weight matching can be found in
O(n1i2m) time; both algorithms use O(m) space.

These algorithms extend to general graphs (see [131).
The above bounds on the running times are tight. For maximum weight

matching, see [9]. Here we consider maximum complete matching, and in par-
ticular the case where all edges weights are zero or one. We show that there are
graphs of any density (i.e., any value of m between n and n’) with run time
0(n3j4m).

Consider the family of graphs Ak illustrated in Fig. 2a. For each integer
i = k’,,.., 2k2, Ak contains a “module” consisting of a “base path” plus “side paths.”
The base path for i consists of 2i+ 1 edges, each of weight one. For each integer
j = O,..., k, every base path has two side paths of 2j + 1 edges, with weights alter-
nately zero and one; the last vertex of a side path for j is the jth vertex from one of
the ends of the base path. Finally, to achieve arbitrary densities, Ak contains S, a
bipartite graph on 2k4 vertices that has a complete matching plus any number of
additional, arbitrary edges; each edge of S has weight one; in each module the first
vertex of one side path for i = k is joined by a weight zero edge to each vertex of Sr ,
one of the two vertex sets of S. Observe that there are @(k’) modules, each contain-
ing @(k’) vertices and edges. Hence for A,, n = O(k4) and m can take on any value
between n and n2 (to within a constant factor) by adjusting the number of edges in
S.

The algorithm starts with the duals shown in Fig. 2b, and the first execution of
the Hopcroft-Karp algorithm gives the matching shown. (Assume duals are
initialized in the best way, i.e., Step 2 of procedure S.) Then for i = O,..., k, the jth
Hungarian search makes a dual variable adjustment with 6 = 1; augmenting paths
are found that use all side paths with 2j+ 1 edges; the Hopcroft-Karp algorithm
finds these O(k’) augmenting paths, one per phase. (Observe that each augmenting
path has a different length, and so is found in a different phase of the Hop-
croft-Karp algorithm.) The matching and duals after j iterations is illustrated in
Fig. 2c.

To summarize, the number of iterations is O(k). Each execution of the Hop-
croft-Karp algorithm finds @(k*) augmenting paths, one per phase. Each phase
uses 8(m) time, since the number of tight edges is always 8(m). Hence the total
time is 8(k3m) = @(n3j4m).

The problem we have discussed might be dubbed red-green matching: Given a
graph with each edge colored red or green, find a complete matching with the
greatest possible number of red edges. It would be of interest to improve the time
bound for red-green matching.

SCALlNGALGORITHMSFORNETWORK PROBLEMS 161

4. SHORTEST PATHS WITH ARBITRARY LENGTHS

This section shows that in a directed graph where edge lengths are arbitrary
positive or negative integers, the single-source shortest path problem (defined in
Sect. 2.1) can be solved in O(n3’4m log N) time.

The approach is based on Edmonds and Karp’s transformation to get non-
negative edge lengths [8; also see 261. As in Section 2.1 this amounts to finding a
function di that dominates the edge lengths, that is for any edge ij, di + l,> d,. A
dominating function is derived from the matching dual variables as follows.

Given a directed graph G, construct a corresponding bipartite graph G*. A vertex
i of G corresponds to two vertices i,, i, in G*. An edge ij of G corresponds to an
edge i,j, of G* with weight -1,. In addition G* has an edge ili, of weight 0 for
each i.

There is a one-to-one correspondence between the complete matchings on G*
and the partitions of the vertices of G into cycles and single vertices. Specifically, a
set of matched edges of the from i, j2,jlk2 ,..., r s , 2, s, i, corresponds to the cycle i, j,
k,..., r, s, i; a matched edge i, i2 corresponds to the vertex i. So a maximum complete
matching on G* has positive weight when G has a negative cycle, and it has zero
weight when G has no negative cycles.

Now without loss of generality assume that every vertex in G is reachable from
the source s. The shortest path problem on G has a solution if and only if G has no
negative cycles. So assume a maximum complete matching on G* has weight zero.
Observe that in a corresponding set of dual variables, y, = -yi2 for every vertex i of
G. This is clear if i, i, is matched. If i, i, is unmatched then there is an alternating
cycle of the form ilj,,j,j,,j,k,,..., s2s1, sli2, i, i, The matched edges of the cycle
have total weight zero, since the unmatched edges do. Hence dominance and
tightness imply yi, = -yiz.

For each vertex i of G let di = yi,. Then for any edge ij of G, -I, < y,, + y,> =
d, - d,. Thus the function di dominates.

This justifies the following shortest path algorithm: Construct G* and find a
maximum complete matching with corresponding duals. (If the matching has
positive weight, stop; the problem is ill-defined.) Use the dominating function
derived from the duals to transform edge lengths so they are nonnegative (thus the
transformed length of ij is l> = d, + I, - dj). Finally run Dijkstra’s algorithm on the
graph with transformed edge lengths.

THEOREM 4.1. In a directed graph with arbitrary integral edge lengths, the single-
source shortest path problem can be solved in O(n314m log N) time and O(m) space.

This algorithm solves the shortest path problem for O(n314) sources in the same
time.

511/31/2-2

162 HAROLDN.GABOW

5. DEGREE-CONSTRAINED SUBGRAPHS

Consider an undirected multigraph where each vertex i has two associated
integers Ii, ui. In a degree-constrained subgraph (DCS) each vertex i has degree di,
Ii 6 d, 6 ui. In a complete DCS each degree achieves its upper bound, di = ui. This
section presents algorithms for the maximum complete DCS and maximum weight
DCS problems. (These problems generalize matching and are defined analogously.)
The time is 0(U3j4m log N) on multigraphs; it is also 0(U”2n”3m log N) on graphs.
Here U= Cie v ui, and m counts each edge according to its multiplicity. (The time
bounds are oriented toward graphs of small multiplicity.)

We reduce the complete DCS problem to matching. Let G be the given mul-
tigraph. Define a graph G’ as follows. A vertex i in G corresponds to a vertex sub-
stitute K, d in G’. Here d is the degree of i in G; A is the desired “deficiency” of i,
that is if i’has upper degree bound u = U, then A = d - u; Kd,d is a complete bipartite
graph consisting of A internal vertices in one vertex set and d external vertices in the
other. An edge ij in G corresponds to an edge joining an external vertex in is sub-
stitute to one in Is; each external vertex of each substitute in G’ is on exactly one
copy of an edge of G. In G’ copies of edges of G have the same weight as in G. An
edge in any substitute K,,, has weight N* = 2L’g”“f’ - 1. A maximum complete
DCS on G corresponds to a maximum complete matching on G’. Hence DCS
reduces to matching.

The graph G’ can have Q(nm) edges. For efficiency we do not work directly with
G’, but insead simulate the scaling algorithm S on G’. To simulate Step 3.1 (the
Hungarian search) we use a “sparse substitute” graph, employing the technique of
[111. For Step 3.2 (cardinality matching) we use another sparse graph. For the
simulations to work correctly we maintain this additional invariant: the matching
on G’ always covers every internal vertex of every vertex substitute. The details of
the two sparse graphs are as follows.

Consider a matching M on G’, and a vertex i of G whose substitute has w 6 u
external vertices matched on edges of G. The sparse substitute for a vertex i (with
respect to M) is illustrated in Fig. 3. Of the d- w external vertices that are not on
matched edges of G, u - w vertices (chosen arbitrarily) are free; each of the other A
external vertices is matched to a vertex of the sparse substitute. The sparse sub-

b C

EXTERNAL
VERTEX

w EDGES u-w EDGES A EDGES

FIG. 3. Sparse substitute for i.

SCALING ALGORITHMS FOR NETWORK PROBLEMS 163

stitute contains two vertices b, c joined by a matched edge. The other edges of the
sparse substitute are as illustrated (each edge of Fig. 3, except bc, stands for w,
u - w, or A edges). Each edge in the sparse substitute has weight N*. The sparse
substitute graph Gk (with respect to a matching M) is the graph G’ except that every
vertex has a sparse substitute.

Graph Gk has these properties (assuming the invariant that the matching on G’
covers every internal vertex of every vertex substitute):

(i) Gk has O(m) edges.
(ii) There is a one-to-one correspondence between augmenting paths in Gk,

and augmenting paths in G’ that pass through each substitute at most once.
(iii) Dominating tight dual variables on G’ give dominating tight duals on

Gk, and vice versa.

Property (i) holds because a sparse substitute has u + 24 + 1 6 2d + 1 edges.
Property (ii) follows from Fig. 3. (The term “augmenting path” is topological and
ignores edge weights, as contrasted with wap. Observe that the edge bc allows an
augmenting path in Gk to pass through a substitute only once. An augmenting path
in G’ need only pass through a substitute once.)

Property (iii) is proved as follows. The precise statement is that for a given sub-
stitute, the dual values of the external vertices can be taken the same in G’ and G,;
the remaining duals are then implied. Given duals on G’, there is a corresponding
set of duals on G,, since every edge in the sparse substitute has a corresponding
edge in the vertex substitute. (Edge bc corresponds to any matched edge of the ver-
tex substitute.) Conversely assume dual values on Gk. In a given sparse substitute
let b and c have dual values y and N* -y, respectively. Without loss of generality
the A other matched edges in the substitute have dual values y for the internal ver-
tex and N* -y for the external vertex. (Dominance implies that the internal dual is
at least y, so the external dual is at most N* -y; increasing the external dual to
exactly N* -y preserves dominance on the external edge.) Hence in the
corresponding vertex substitute of G’ all external vertices can be assigned their dual
values in Gk and all internal vertices can be assigned the dual value y.

Step 3.1, the Hungarian search on G’, is simulated as follows. Assign dual
variables to G,, using property (iii). Then do a Hungarian search on Gk. The
search gives new dual variables on G’ that have a tight wap, by (ii)-(iii), as desired.

The second sparse graph, T’, models the tight graph T of G’ used in Step 3.2. T
is defined as follows. Consider a typical vertex substitute Kd,d of G’. Each of the A
internal vertices has the same dual value y. (This follows from tightness and
dominance, or alternatively from the proof of (iii).) So the tight edges of Kd,d form
a complete bipartite graph Kd,a, for some 6 with A dhdd. Construct the mul-
tigraph T from T as follows. For each vertex substitute of T, contract the tight sub-
graph Kd,s and give the resulting vertex a degree constraint of 6 -A; also contract
the remaining d - 6 external vertices (to a single vertex) and give the resulting ver-
tex a degree constraint of d- 6. It is easy to see that T’ has these properties:

164 HAROLD N. GABOW

(i) T’ has 2n vertices, at most m edges, and the same U value as G.
(ii) There is a one-to-one correspondence between DCS’s on T and

matchings on T that cover all internal subsititute vertices.
To simulate Step 3.2 on T, construct T and find a maximum cardinality DCS on

it. This gives the desired maximum cardinality matching on T, by (ii).
To summarize, the following scaling algorithm finds a maximum complete DCS

on a bipartite multigraph G. Construct the graph G’ (without explicitly con-
structing the vertex substitutes Kn,d). Then simulate S(G’): In Step 0 find the com-
plete matching on G’ by solving the complete DCS cardinality problem on G. In
Step 2 match the internal vertices of each subsitute of G’ to A (arbitrary) external
vertices. In Step 3.1 construct the sparse substitute graph Gk and do a Hungarian
search on it. In Step 3.2 construct the multigraph T’ and find a maximum car-
dinality DCS on it. Convert this to a matching on G’.

The timing analysis is similar to the matching algorithm. Lemma 3.1 shows that
fA <D, where these quantities are calculated on G’. Observe that D d U/2: A com-
plete matching on G’ consists of U/2 edges of G plus edges in vertex substitutes. The
substitute edges are tight after Step 2 by the definition of N*. This shows D 6 U/2.

These inequalities imply that at most U 1,‘4 iterations of Step 3 have J’> U”4.
Clearly less than U3!4/2 augments are done with f < U3j4. Since Step 3.2 is
O(min(U”*, a) m) [9], the total time is 0(U3j4m log N).

An alternative bound holds if G has no parallel edges. In this case Step 3.2 is
O(n2j3m) [9]. A similar calculation shows the total time is 0(U”2n”3m log N). This
improves the first bound when U = Q(Pz~‘~).

THEOREM 5.1. A maximum complete DCS on a bipartite multigraph can be found
in 0(U314m log N) time. The time is also 0(U’/2n1f3m log N) for graphs. The space is
O(m).

Other time bounds can be derived for multigraphs (and are sometimes superior).
For instance if Step 3.2 is implemented with Karzanov’s algorithm [191 the time is
O(n(Unm)1/2 log N).

Theorem 5.1 implies that a maximum weight cardinality-k matching can be found
in O(n3j4m log N) time, since the matching problem can be converted to a complete
DCS problem by adding just two vertices. The same bound holds for maximum
weight maximum cardinality matching.

Next consider the maximum weight DCS problem. Let G be a bipartite mul-
tigraph with lower bounds li and upper bounds ui. Construct a bipartite multigraph
G by making two copies of G, say G1 and G2; for each vertex i, with copies i, and
i,, add ui - Zi copies of edge i, i, with weight 0. A maximum complete DCS on G
gives a maximum weight DCS on G. So the complete DCS algorithm, executed on
G, gives an algorithm for maximum weight DCS that has the multigraph time
bound of Theorem 5.1.

The graph time bound of Theorem 5.1 also holds. This relies on the fact that the
bound for maximum cardinality DCS on a graph extends to multigraphs with

SCALINGALGORITHMSFORNETWORK PROBLEMS 165

“limited parallelism”: Recall that the cardinality DCS algorithm works by finding
shortest length augmenting paths (saps). The argument of [9] generalizes to prove
the following.

PRINCIPLE 5.1. Let the maximum cardinality DCS algorithm be executed on a
bipartite multigraph. Suppose that for any k, when the algorithm find saps of length
k there are Q(k) levels where no two saps contain parallel edges. Then the algorithm
runs in O(n213m) time.

We analyze Step 3.2 of the scaling algorithm, executed on the multigraph G, by
using the principle as follows. Assume as in Section 3 that the scaling algorithm
maintains the same matching and duals on Gi and G2, the two isomorphic halves
of G. So T’, the sparse multigraph of Step 3.2, is composed of T, and T2, two
isomorphic graphs, joined by a number of multiedges i, i,. A sap contains at most
one “joining” edge i, i, ; further, all saps contain their joining edge at the same level.
Thus Principle 5.1 applies to show that Step 3.2 is O(n2’3 m). This in turn implies
the graph bound of Theorem 5.1.

COROLLARY 5.1. A maximum weight DCS on a bipartite multigraph can be found
in 0(U314m log N) time. The time is also 0(U’i2n’J3m log N) for graphs. The space is
O(m).

Corollary 5.1 remains valid if we take U = min(C,, ,,, ui, Cis ,+ ui). (This depends
on the analogous fact for maximum weight matching shown in Sect. 3.) So for
instance if all vertices in V, have degree constraint one, the time bound for
maximum weight DCS is the same as matching.

For very small weights Corollary 3.2 has the following analog.

COROLLARY 5.2. If N = 0(1) a maximum weight DCS on a bipartite multigraph
can be found in 0(U’/* m) time. The time is also O(n213 m) on a graph. The space is
O(m).

6. &~NETWORK FLOW

Consider a directed graph G with source vertex s, sink t, nonnegative integral
edge capacities cij, and integral costs ati. The minimum costflow problem is to find a
flow with smallest possible cost, subject to the constraint that it has a given flow
value v.

A 0-l network has all capacities one. Parallel edges are allowed (and need not
have equal cost.) A type 1 network has no parallel edges, except for edges directed
from s or to t. A type 1 + network has no parallel edges at all. The mindegree of a
vertex is the minimum of its indegree and its outdegree. In a type 2 network each
vertex (other than s or t) has mindegree exactly one. (These important special cases
were introduced by Even and Tarjan [9]. Their type 1 corresponds to our type 1 + .
Our type 1 is more general, but their results still apply by Principle 5.1. Our type 1

166 HAROLDN.GABOW

and type 1 + are both natural classes of networks: Type 1 corresponds to DCS
problems. Type 1 networks have flow value at most m; type 1+ networks have
value at most n.)

The 0-l minimum cost flow problem reduces to maximum complete DCS, as
follows. Given a network G, construct a bipartite multigraph G* (similar to
Sect. 4): A vertex i of G corresponds to two vertices i,, i, of G*; G* has an edge i, i2
of weight 0 and multiplicity mindegree(i). An edge jk of G corresponds to an edge
j, k, of G* of weight -ajk. Finally the degree constraints on G* are ui, = uil =
mindegree(i) for i # s, t; us2 = mindegree(s), a,, = u.s2 + u, a,, = mindegree(t),
u,, = u,, + u.

A flow of value u on G corresponds to a complete DCS on G*; minimum cost
corresponds to maximum weight. So the flow problem can be solved using the
algorithm of Section 5 on G *. Note that for a t&l network, G* has 2n vertices,
O(m) edges, and U= O(m); for type 2, U= O(n). Although G* is a multigraph, if G
is type 1 then the graph bound of Theorem 5.1 applies, by Principle 5.1.

THEOREM 6.1. A minimum cost flow on a (rl network can he found in
O(m7j4 log N) time. The time is also O(n’13m 3/2 log N) for type 1 networks and
O(n314m log N) for type 2. The space is O(m).

Theorem 6.1 is valid even on networks with negative cycles. The same bounds
apply to finding a minimum cost flow of maximum value, since the desired value u
can be found using Dinic’s algorithm [9].

The Edmonds-Karp algorithm can be superior to the scaling algorithm on
type 1 + networks with no negative cycles. It runs in O(n(m + n log n)) time [lo],
and if m = Q(n413) this is faster than Theorem 6.1. However using an approach
similar to Dijkstra’s algorithm (Sect. 2.1), the scaling bound improves to
Wnm log2 + min NJ.

7. CONCLUSIONS

Scaling leads to efficient algorithms for network problems. Under the assumption
of similarity these algorithms are asymptotically faster than previous ones. In prac-
tice scaling algorithms perform well because of their simplicity. This was confirmed
in experiments on an implementation of the weighted matching algorithm in
PASCAL on a VAX 11/780. About 1000 randomly generated networks were tested,
with between 100 and 1500 vertices, various densities and N values. For networks
with N = n scaling usually beat the Hungarian method by the theoretically pre-
dicted factor of n114 or more. In order for the Hungarian method to be faster than
scaling (because of large N) the weights had to be so large that machine overflow
usually occurred in computing the weight of the maximum matching [2].

Scaling is a general method. Applications to computational geometry are given in
[151. Network problems on general graphs are discussed in [131; matroid intersec-
tion problems are in [141.

SCALING ALGORITHMS FOR NETWORK PROBLEMS 167

ACKNOWLEDGMENTS

The author thanks Dr. Robert Tarjan for insightful advice that resulted in new algorithms and better
presentation, and Dr. Ann Bateson for many perceptive comments.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. C. A. BATESON, “Performance Comparison of Two Algorithms for Weighted Bipartite Matchings,”
M. S. thesis, Department of Computer Science, University of Colorado, Boulder, Colo., 1985.

3. R. E. BELLMAN, On a routing problem, Quart. Appl. Math, 16 (1958), 87-90.
4. G. B. DANTZIG, “Linear Programming and Extensions,” Princeton IJniv. Press, Princeton,

N. J., 1963.
5. R. B. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM 12 (1969),

632-3.
6. E. DIJKSTRA, A note on two problems in connexion with graphs, Numer. Mud 1, (1959), 269-271.
7. E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power

estimation, Soviet Math. Dokl. 11 No. 5, (1970), 1277-1280.
8. J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow

problems, J. Assoc. Comput. Much. 19, No. 2 (1972), 248-264.
9. S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, SIAM .I. Comput. 4

No. 4 (1975), 507-518.
10. M. L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network

optimization algorithms, in “Proc. 25th Annual Symp. on Found. of Comput. Sci., 1984.”
pp. 338-346.

11. H. N. GABOW, An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems, in “Proc. Fifteenth Annual ACM Sympos on Theory of Computing, 1983,”
pp. 4488456.

12. H. N. GABOW, Efficient graph algorithms using adjacency matrices, manuscript, 1985.
13. H. N. GABOW, A scaling algorithm for weighted matching on general graphs, in “Proc. 26th Annual

Symp. on Found. of Comput. Sci., 1985,” to appear.
14. H. N. GABOW, Scaling algorithms for matroid intersection problems, manuscript, 1985.
15. H. N. GABOW, J. L. BENTLEY, AND R. E. TARJAN, Scaling and related techniques for geometry

problems”, in “Proc. 16th Annual ACM Symp. on Theory of Computing, 1984,” pp. 135-143.
16. H. N. GABOW, Z. GALIL, AND T. H. SPENCER, Efficient implementations of graph algorithms using

contraction, in “Proc. 25 th Annual Symp. on Found. of Comput. Sci., 1984,” pp. 347-357.
17. J. HOPCROFT AND R. KARP, An n 5/Z algorithm for maximum matchings in bipartite graphs, SIAM J.

Comput. 2, No. 4, (1973), 225-231.
18. D. B. JOHNSON, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Much.

24, No. 1 (1977) 1-13.
19. A. V. KARZANOV, Determining the maximal flow in a network by the method of preflows, Souiel

Math. Dokl. 15 (1974), 434437.
20. H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quarf. 2

(1955), 83-97.
21. H. W. KUHN, Variants of the Hungarian method for assignment problems, Nuoal Res. Logisl. Quart.

3 (1956), 253-258.
22. E. L. LAWLER, “Combinatorial Optimization: Networks and Matroids,” Hoh, Rinehart, & Winston,

New York, 1976.
23. S. MICALI AND V. V. VAZIRANI, An O(m. 1 El) algorithm for finding maximum matching in

general graphs, in “Proc. 21st Annual Symp. on Found. of Comput. Sci., 1980,” pp. 17-27.

168 HAROLD N. GABOW

24. C. H. PAPADIMITRIOU AND K. STEIGLITZ, “Combinatorial Optimization: Algorithms and Com-
plexity,” Prentice-Hall, Englewood Cliffs, N. J. 1982.

25. D. D. K. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput. System Sci. 26,
(1983), 362-391.

26. R. E. TARJAN, “Data Structures and Network Algorithms,” Sot. Indus. Appl. Math., Philadelphia,
P., 1983.

27. R. A. WAGNER, A shortest path algorithm for edge-sparse graphs, L Assoc. Comput. Math. 23, No. 1
(1976), 5(r57.

