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This paper gives algorithms for network problems that work by scaling the numeric 
parameters. Assume all parameters are integers. Let n, m, and N denote the number of ver- 
tices, number of edges, and largest parameter of the network, respectively. A scaling algorithm 
for maximum weight matching on a bipartite graph runs in O(n3% log N) time. For 
appropriate N this improves the traditional Hungarian method, whose most efftcient 
implementation is O(n(m + n log n)). The speedup results from finding augmenting paths in 
batches. The matching algorithm gives similar improvements for the following problems: 
single-source shortest paths for arbitrary edge lengths (Bellman’s algorithm); maximum 
weight degree-constrained subgraph; minimum cost flow on a cl network. Scaling gives a 
simple maximum value flow algorithm that matches the best known bound (Sleator and 
Tarjan’s algorithm) when log N = O(log n). Scaling also gives a good algorithm for shortest 
paths on a directed graph with nonnegative edge lengths (Dijkstra’s algorithm). 0 1985 

Academic Press, Inc. 

1. INTRODUCTION 

A network is a graph with numeric parameters such as edge lengths, capacities, 
costs, or weights. Throughout this paper, n, m, and N denote the number of ver- 
tices, number of edges, and largest numeric parameter of the network, respectively. 

For optimization problems on networks, one important technique is efficient 
priority queues. Priority queues often allow a network problem to be solved by the 
approach used for the analogous nonnumeric graph problem, increasing the time 
by only a factor of log n.’ For example the shortest path problem is solved by 
Dijkstra’s algorithm on networks and breadth-first search on graphs. But priority 
queues don’t always do the trick. For example a maximum cardinality matching 
can be found in O(n”‘m) time [ 17,231 whereas the best bound for weighted 
matching is O(n(m +n log n)) for bipartite graphs [lo] and slightly more for 
general graphs [16]. The complexity gap here and in other problems results from 
the fact that the nonnumeric algorithm finds objects in batches, but numeric 
parameters force objects to be found one by one. 

* This research was supported in part by the National Science Foundation under Grant MCS- 
8302648. 

’ Throughout this paper, log denotes logarithm to an arbitrary constant base and Ig denotes logarithm 
base two. 
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This paper explores the scaling approach to network problems. Scaling can 
sometimes be used as an alternative to efficient priority queues. More importantly it 
can achieve batching in numeric problems. Edmonds and Karp [S] introduced the 
scaling approach for the minimum cost network flow problem. Since then the 
method has been largely ignored. 

The scaling approach can be stated recursively or iteratively, and both viewpoints 
are useful. The recursive version is as follows: Given a network problem, halve the 
numeric parameters (i.e., a number 1 becomes Ll/2_l) and solve this scaled-down 
problem recursively. Double the solution to get a near-optimum solution on the 
original network. Then transform the near-optimum solution to optimum. 

The iterative version of scaling is as follows. View each number as its k-bit binary 
expansion b, . . b,, where k = Llg Nl + 1. First solve the problem on the network 
where all parameters are 0. Then for s =O,..., k - 1, transform the solution for 
parameters b 1 . . . b, to a solution for parameters b, . b,v + , . 

Scaling relies on two assumptions. Integrality ensures applicability of the method. 
It requires the given numbers to be integers. This permits an easy transition from 
near-optimum solution to optimum. If the given numbers are rational they must be 
scaled up to integers before the method is applicable. Incommensurable real-valued 
inputs cannot be handled directly by this method, although this is not a limitation 
in practice. In the absence of integrality scaling gives an approximation scheme: 
Assume all parameters are normalized to lie in the interval [0, 1) and view them as 
binary numbers O.bl b2.. . . Compute solutions to the network, first with all 
parameters 0, then with parameters O.b,, then O.bI b2, etc. The accuracy of each 
solution can be bounded. So scaling can find a solution with any desired accuracy.’ 

The second assumption, similarity, concerns efficiency of the method. It requires 
that the numbers of the problem be polynomially bounded, that is, if N is the 
largest number and n is the number of vertices, then N = no(l). Scaling time bounds 
typically involve a factor log N due to lg N scalings of the problem. Similarity 
implies log N= O(log n). This allows us to compare scaling bounds to previous 
ones. The assumption is for comparative purposes only, and we explicitly state 
when it is used. In the absence of similarity scaling algorithms can still be superior. 
For example for weighted matching scaling is faster for N= 20(“li4). 

We suspect that simi!arity holds quite often in practical cases. Actually if it does 
not hold, then traditional algorithms must use a word size of lg N bits rather than 
lg n for the time bound to be valid (see Sect. 2.1). This opens the door for new 
approaches like bit vector algorithms. For instance if N> 2” so that a machine 
word has n bits, the Hopcroft-Karp algorithm (used in the scaling approach) can 
be implemented in time 0(n 3’2 log n + m) on a bit vector machine, improving the 
usual bound of O(n1/2m) [12]. 

Table I lists several network problems, the time for the best-known algorithm 
and the time for the scaling algorithm. The scaling algorithms for minimum span- 
ning tree and bottleneck shortest path are based on the fact that n integers can be 

* This approach was suggested by Dr. Robert Tarjan. 
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TABLE I 

Algorithms for Network Problems 

Best known algorithm Scaling algorithm 

Minimum spanning tree 
O(m log Bh n)) ft61 
Bottleneck shortest path 

O(m + n log n) [lo] 

Shortest path (nonnegative lengths) 
O(m + n log n) [lo] 

Maximum value network flow 
O(min(n m log n, n3)) 125, 191 

Maximum weight matching (bipartite graph) 
O(n(m + n log n)) [lo] 

Shortest path (arbitrary lengths) 
Wm) C31 

Degree-constrained subgaph (bipartite graph) 
O(U(m+nlogn)) [lo] 

Minimum cost network flow (unit capacity) 
O(m(m+nlogn)) [lo] 

O(m(log,N+a(m, nl)) 

Oh log, N) 

O(m h+ m!n NJ 

O(n m log N) 

O(n’j4 m log N) 

O(n3j4 m log N) 

O(U314 m log N), multigraph 
0( U’/* n1’3 m log N), graph 

O(m714 log N) 
O(~I’~~ m3i2 log N), type 1 
O(G4 m log N), type 2 

Note. n = number of vertices, m = number of edges, N = largest network parameter, Ii = sum of upper 
bounds. 

radix sorted in O(n log, N) time. (Note that radix sorting is a scaling method.) 
Under similarity scaling is faster in both problems. 

The remaining entries in the table are covered in this paper. The next two entries 
are discussed in Section 2. They illustrate how scaling can emulate efficient priority 
queues and other data structures. For shortest paths on directed graphs with non- 
negative edge lengths, Dijkstra’s algorithm relies on an efficient priority queue. 
Under similarity scaling achieves the same efficiency as Johnson’s algorithm [ 181, 
although it is not quite as efficient as the recent algorithm of Fredman and Tarjan 
[lo]. For maximum flow in a network, Sleator and Tarjan’s algorithm [25] 
depends on the dynamic tree data structure. Under similarity scaling achieves the 
same efficiency. 

The main results of this paper are algorithms where scaling takes advantage of 
batching in nonnumeric algorithms. Weighted bipartite matching is discussed in 
Section 3. Table I shows that scaling is superior to the traditional Hungarian 
method, under similarity. Its efficiency results from combining the Hungarian 
method with the cardinality matching algorithm of Hopcroft and Karp. Scaling 
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works for all variants of matching, such as maximum weight matching, complete 
matching, cardinality-k matching and maximum weight maximum cardinality 
matching. Section 3 also gives nonscaling algorithms for matching that are efficient 
when N = 0( 1). For instance in this case maximum weight matching is O(n’12 m). 

The algorithms in the rest of the paper work by reducing the problem to 
matching. This is done for conceptual simplicity; direct approaches can be given 
and are preferable in practice. 

Section 4 presents an algorithm for single-source shortest paths on a directed 
graph with possibly negative edge lengths. Table I shows that similarity implies 
scaling is superior. 

Section 5 presents an algorithm for degree-constrained subgraphs on bipartite 
multigraphs. The two time bounds of Table I both apply to graphs; only the first 
applies if there are multiple edges. The best traditional algorithm works by treating 
the problem as a minimum cost network flow. Similarity implies scaling is superior. 

Section 6 uses the results of Section 5 to solve the minimum cost flow problem on 
O-l networks. These networks were studied by Even and Tarjan [9] for the 
maximum value flow problem. The scaling bounds for the minimum cost problem 
are analogous to their bounds for the maximum value problem. Scaling is superior 
to the traditional algorithm, under similarity. The scaling algorithm works even in 
the presence of negative cycles. Section 7 summarizes some experimental results and 
gives conclusions. 

2. EMULATING EFFICIENT DATA STRUCTURES 

This section describes instances where the efficiency of priority queues and 
dynamic trees can be achieved by simple applications of scaling. It also indicates 
how in some models, the assumption of similarity is unnecessary. 

2.1. Shortest Paths with Nonnegative Lengths 
Consider a directed graph G with source vertex s and nonnegative integral edge 

lengths I,. The shortest path problem is to find di, the minimum length of a path 
from s to i, for each vertex i. This section sketches a scaling algorithm that runs in 
O(m log2 + mln N) time. Under similarity this bound equals Johnson’s [IS] but is 
not quite as good as Fredman and Tarjan’s [lo]. The scaling algorithm is used in 
the matching algorithm of Section 3. It uses Dijkstra’s algorithm [6], and also 
ideas due to Edmonds and Karp [S], Dial [S], and Wagner [27]. For a discussion 
of all this material see [26]. 

Define a “near-optimum” solution to the shortest paths problem to be a function 
di such that (i) d, =O; (ii) di dominates the edge lengths, that is for any edge u, 
di + 1, > dj; (iii) each vertex i has a path from s of length between di and di + m. The 
shortest paths algorithm is based on a procedure that converts a near-optimum 
solution to optimum. To do this first compute modified edge lengths 
I>= di + l,- d,. Then compute shortest paths for the modified lengths using 
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Dijkstra’s algorithm. The modified edge lengths do not change the shortest paths. 
The priority queue of Dijkstra’s algorithm can be implemented by an array Q(k), 
0~ k <m, where Q(k) contains all vertices whose tentative distance from s is k. 
(Condition (iii) implies that all final distances from s are at most m, so this priority 
queue works correctly.) It is easy to see that the total time for this conversion 
procedure is O(m). 

The given shortest path problem is solved by scaling, as follows. If the given 
lengths are all m/n or less, use the conversion procedure directly, starting with the 
near-optimum solution dj = 0. Otherwise scale the graph G to G, a graph with the 
same vertices and edges as G and edge lengths L1,/2 J. Calculate d;, the distances 
from s in c, recursively. The values 2d, are near-optimum for G. So use the conver- 
sion procedure to find the correct shortest paths. The total time is O(m log N), since 
there are lg N scaled graphs G. 

The scaling algorithm can be relined to achieve a time bound of O(m log, + ,,,,* N), 
which is similar to Johnson’s bound, O(m log, +,+, n). To do this scale by 
s = 2 + m/n rather than 2, so that G has edge lengths iti = LIV/s J. Otherwise the 
algorithm is unchanged. (Note that in scaling up the distances sdi are still near- 
optimum.) 

It is an interesting exercise to see why the scaling algorithm fails in graphs with 
negative edge lengths but no negative cycles! 

We close this section by noting that in models that account for the cost of 
arithmetic (e.g., when N is so large that multiprecision arithmetic must be used) the 
time bounds for Johnson’s algorithm and scaling are identical. This results from the 
fact that the scaling algorithm can be modified to work with integers no larger than 
2m. Hence on a machine with words of Ig n bits, each arithmetic operation in the 
scaling algorithm is 0( 1) and the time bound remains O(m log,+,,, N). However 
in Johnson’s algorithm distances can be up to nN. This makes an arithmetic 
operation O(log, N), so the total time becomes O(m log,,,,, N). Similar results 
hold for times calculated in the logarithmic cost model [I]. 

The scaling algorithm that uses small numbers works as follows: For convenience 
we sketch an algorithm that scales by two and uses size 2n numbers; the algorithm 
that scales by 2 + m/n and uses size 2m numbers is similar. Consider the iterative 
version of scaling, that is, there are k = Llg N] + 1 scales corresponding to suc- 
cessive bits in the binary numbers b, . . . bk. Scale 1 views numbers as their leading 
bit b, and computes distances d! for each vertex i; in general scale s computes dis- 
tances 4. To derive the scale s + 1 problem, first replace the current edge lengths I, 
by 1; = 4 + iii - d;; delete edges with 1; > n; finally scale lengths up to 21; + b,v + 1, 
where b,, , is the s+ 1 st bit of the (given) length of edge ij. The scale k shortest 
path tree is a shortest path tree for the original graph. (To prove this, first observe 
that in scale s an edge ij with original length b, ... 6, has length 6, .. . b, + 
x;:; 2”-‘(d:-d,!). Th is implies that any deleted edge is too long to be on a shortest 
path. Further, the quantities C;= i 2”+‘d! are valid distances for edge lengths 
b, ... b,, as desired.) Each distance d; is less than n (by the edge length transfor- 
mation). Hence the algorithm always works with numbers 2n or smaller. Similar 
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transformations can be made for the other scaling algorithms of this paper, but are 
omitted. 

2.2. Maximum Value Network Flow 
Consider a directed graph G with source vertex s, sink vertex t, and integral edge 

capacities cii. The maximum value network flow problem is to find a flow of 
maximum value from s to t. For a discussion of this problem see [26]. This section 
sketches an algorithm with run time O(nm log N). 

Define a “near-optimum” solution to be a flow functionfwhose value is within m 
of the maximum value. To convert a near-optimum flowf to a maximum flow, con- 
struct the residual network G* forf: This network is defined by assigning edge ij a 
capacity ciJ -fti +fii. A maximum flow on G*, when added to f, gives a maximum 
flow on G [26]. So find a maximum flow on G* using Dinic’s algorithm [7], and 
add it to f to get the desired flow. 

The time for this conversion procedure is O(nm). To see this recall that Dinic’s 
algorithm has n phases, and each phase uses time O(m + an), where a is the number 
of augmenting paths found. Each augmenting path increases the flow by at least 
one, since the flow is integral. A maximum flow on G* has value at most m, by 
near-optimality. Hence the a’s sum to at most m. The time bound follows easily. 

The given flow problem is solved by scaling, as follows. If all capacities are m/n 
or less, use the above conversion procedure directly, starting with flow f = 0. 
Otherwise scale G to G, the same graph with capacities Lc,/2 J. Find a maximum 
flow f on G recursively. The flow 2f is near-optimum for G, by the max flow-min 
cut theorem. So the conversion procedure finds a maximum flow on G. The total 
time for the algorithm is O(nm log N). The relative simplicity of this scaling 
algorithm should make it perform well in practice. 

3. WEIGHTED MATCHING 

Consider an undirected graph with integral edge weights wii. A matching is a set 
of edges with at most one edge incident to any vertex. A free vertex is not incident 
to any matched edge. A complete matching has no free vertices. The weight w(M) of 
a matching M is the sum of all weights of edges of A4. The maximum weight 
matching problem is to find a matching with largest possible weight; the maximum 
complete matching problem is defined similarly with respect to complete matchings. 
This section presents algorithms for these problems on bipartite graphs, that run in 
O(n314m log N) time. Modifications are given for the useful case N = O(l), that are 
more efficient and also apply to general graphs. 

First consider maximum complete matching. For convenience assume that the 
input graph has a complete matching. Also assume that the edge weights wii are 
nonnegative integers. (If the given weights lie in an interval [a, b], decrease all 
weights by a. This puts the weights in [0, b-a], does not change the maximum 
complete matchings and only improves the time bound.) 
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The algorithm is based on the Hungarian method for weighted matching 
[20,21]. We begin by sketching this method, concentrating on aspects that are 
relevant to the scaling algorithm. Complete developments are in [22,24]. 

The Hungarian algorithm is a primal-dual algorithm in the sense of linear 
programming [4]. Each vertex i has a real-valued dual variable y;. The dual 
variables are dominating if for every edge ij, 

An edge ij is tight if equality holds. The dual variables are tight with respect to a 
matching M if every edge ije M is tight. The quantity Cic y yi is the dual objective 
function; the reader need not be familiar with duality theory, but he or she will still 
observe the importance of this function in what follows. 

A complete matching M* has maximum weight if it has a set of dominating and 
tight dual variables. To see this observe that completeness and tightness imply that 
the matching’s weight is the dual objective, 

w(M*)= 1 y,; 
ic v 

(1) 

dominance implies that any complete matching weighs at most the dual objective. 
The Hungarian algorithm has input consisting of a bipartite graph and a set of 

dominating dual variables. The output is a complete matching with dominating 
tight dual variables. Hence the output is a maximum complete matching. 

The Hungarian algorithm starts with the given duals and the empty matching. It 
repeatedly does a “Hungarian search” followed by an “augment step” until the 
matching is complete. A Hungarian search does zero or more “dual variable 
adjustments” until it finds a “wap.” Each dual variable adjustment starts by com- 
puting a quantity 6. The duals of all free vertices are decreased by 6; for some 
matched edges ij, yi is increased by 6 while yj is decreased by 6. The adjustment 
keeps the duals dominating and tight. Eventually the search finds a weighted 
augmenting path (wap) P. This is a path joining two free vertices, whose edges are 
tight and alternately unmatched and matched. The augment step enlarges the 
matching by one edge, by adding the currently unmatched edges of P and removing 
the currently matched ones. 

The timing analysis of the scaling algorithm depends on an integrality property 
of the Hungarian method: If all edge weights and all given duals are integers, then 
at any point in the algorithm any dual is a half-integer y/2, y E Z [24, p. 267, 
Ex. 21. An alternate formulation, useful in an actual implementation of the scaling 
algorithm, is that if all edge weights are even and all given duals are integers of the 
same parity, then at any point any dual is integral. (Both properties follow easily 
from the observation that in a Hungarian search, the duals of all vertices in search 
trees have the same parity.) 

Another issue in the analysis of the scaling algorithm is the magnitude of the dual 
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FIG. 1. Graph and dual values. 

variables. The Hungarian method, and indeed any dual variable method, can 
produce dual values of size Q(nN). To see this consider the graph of Fig. 1, a path 
of n = 2k vertices with weights alternately 0 and N. The unique complete matching 
is shown. If yi (as shown) is any corresponding set of dual variables, dominance 
and tightness imply y,, , > yj + N. Hence yk > y, + (k - 1) N, as desired. 

The scaling algorithm relies on the fact that the Hungarian method does not 
make many dual variable adjustments if it starts with good initial values. More 
precisely let 

D= c y,-w(M*), (2) 
it v 

where yi are the input dual variables and M* is a maximum complete matching. (D 
is nonnegative by dominance.) Consider any given point in the Hungarian 
algorithm. Let the current matching have f free vertices; let A be the total of the 
quantities 6 in all dual variable adjustments up to the given point. 

LEMMA 3.1. fA< D. 

ProoJ: Consider the dual objective Cic ,,yi as dual variables are adjusted. A 
dual variable adjustment of 6 decreases the objective by gS, where g is the number 
of free vertices when the adjustment is made. (To see this note that if vertex i is free, 
yi decreases by 6; if edge ij is matched, yj +,v~ does not change.) Every augment 
decreases g by two, so every value of g is at least J: Thus the total decrease in the 
dual objective (up to the given point in the algorithm) is at least fA. On the other 
hand the total decrease is at most D, since (1) holds when the Hungarian algorithm 
halts. This proves the lemma. 1 

The scaling algorithm first solves the matching problem on a graph whose 
weights are half the original ones. This gives duals that have a small D value on the 
original graph, and makes the algorithm efficient. 

The recursive procedure S below implements this strategy. S has input G, a 
bipartite graph with vertex sets Vi, Vz. It returns with a maximum complete 
matching A4 and corresponding dual variables. It works by scaling G, with weights 
wii, to G, with weights Lw,/2J. (G and G have the same vertices and edges.) 
Step 3.2 below uses the cardinality matching algorithm of Hopcroft and Karp [ 171. 
The version used accepts as input an arbitrary matching A4, and transforms M to a 
maximum cardinality matching. 

PROCEDURE S(G). Step 0. If all weights wij are 0, return any complete matching 
M and all dual variables yi = 0. 
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Step 1. Construct the graph G. Call S(G) recursively to find a maximum complete 
matching and corresponding dual variables yi. 

Step 2. Let A4 be the empty matching on G. For each vertex in V,, set 
yit 2j~;+ 1; for eachjE: V,, set yit 2y,. 

Step 3. Repeat the following steps until A4 is a complete matching on G: 
Step 3.1. Do a Hungarian search to find a wup. 
Step 3.2. Let T be the “tight” subgraph of G containing all edges that are 

tight for the current dual variables. Transform M to a maximum cardinality 
matching on T, by the Hopcroft-Karp cardinality matching algorithm. 

Step 4. Return the complete matching M and the dual variables yi. 

LEMMA 3.2. Procedure S returns a maximum complete matching, with 
dominating tight dual variables. 

ProoJ Induct on the number of calls to S. The base case, when Step 0 is 
executed, is clearly correct. For the inductive step assume that the recursive call of 
Step 1 returns dominating duals on G, that is for every edge ij, Lw,/2 J 6y,+ yj. 
This implies that Step 2 computes dominating duals on G. 

Observe that Step 3 maintains duals that are dominating and tight for M: Each 
Hungarian search (Step 3.1) maintains dominance and tightness, and Step 3.2 
matches only tight edges. 

Each iteration of Step 3 increases the number of matched edges by at least one, 
since a Hungarian search halts with a wup. So eventually a complete matching with 
corresponding duals is found. 1 

To derive the time bound, focus on the execution of Step 3 in one recursive call 
to S. First observe that Lemma 3.1 holds for Step 3: Define D by (2), where yj are 
the duals of Step 2; at any given point in Step 3 let the current matching have f free 
vertices; let d be the total of the quantities 6 in all dual variable adjustments in all 
Hungarian searches (Step 3.1) up to this point. Lemma 3.1 holds for these quan- 
tities, by exactly the same proof. 

The number of iterations of Step 3 satisfies two properties: 

(i) Step 3.1 is executed less than 2n”* times. 
(ii) Step 3.1 is executed at most nil4 times with f > n314. 

To show these properties, first note that 

D < n/2. 

For if M* is a maximum complete matching, the matching of Step 1 shows that 
w(M*) 3 CjE V.Yi-n/2* 

To prove property (i), count the number of executions of Step 3.1 with f> n”’ 
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and the number with.f< n ‘I2 Iff> r~‘/~ then Lemma 3.1 shows that A < D/f < n l/‘/2. . 
Every execution of Step 3.1 adjusts the duals by some positive 6, since after any 
execution of Step 3.2 no augmenting path consists entirely of tight edges. Since 6 is 
a half-integer, 6 > Y ’ Thus the number of executions with f 2 nli2 is at most FZ’/~. The 
number with f < ,‘I2 is less than n1’*/2, since each execution matches two or more 
free vertices. 

Property (ii) is similar: If f 2 n 3/4 then A 6 D/f < n’14/2, implying (ii). 
Now compute the total time for Step 3 (in one recursive call). Step 3.1 can be 

implemented in O(m) time; the data structures are essentially the same as for 
Dijkstra’s algorithm, Section 2.1. The total time in Step 3.1 is O(n112m) by (i). 

Step 3.2 uses the Hopcroft-Karp algorithm, so one execution uses 
O(min(n’j2, a) m) time. Here CI is the number of augmenting paths found (the 
O(am) bound follows from inspecting the Hopcroft-Karp algorithm). By (ii), the 
time for all executions of Step 3.2 with f > n314 is O(n’j4. nli2m) = O(n3j4m). The 
executions with f < n 3’4 find fewer than n3j4/2 augmenting paths, and so use 
O(n314m) time. 

Thus Step 3 is O(n3j4m). Step 2 is O(n), and Step 0 is O(n”‘m). Since the number 
of recursive calls is Llg NJ + 2, the total time is O(n3’4m log N). The following result 
summarizes the discussion. 

THEOREM 3.1. A maximum complete matching on a bipartite graph can be found 
in O(n314m log N) time and O(m) space. 

Regarding the tightness of this time bound, the discussion after Corollary 3.2 
shows that one scale can use time 8(n3’4 m). 

The above derivation implicitly assumes that the dual values yi do not grow too 
large, so that arithmetic operations are O(1). Now we show this is true: the dual 
values have magnitude O(nN). 

One execution of Step 3 changes a dual value yi by at most *n/4. (To see this 
note that yi changes by at most f A, by the Hungarian algorithm. Further, 
A <D/2 <n/4, since any execution of Step 3.1 has f 2 2.) So if ai is defined as the 
largest magnitude of a dual value after the ith recursive invocation of procedure S, 
then a, = 0 and a. ,+ , < 2aj + n/4 + 1, for 0 6 i < Llg NJ. It follows that a dual value 
is at most (2L’eiyJ + ’ - l)(n/4 + 1) < N(n/2 + 2), as desired. 

As noted previously, any dual variable method (including the Hungarian 
method) needs dual values of size Q(nN) on some graphs. So a word size of 
Ig N + lg n + 0( 1) bits is necessary and sufficient. This is not unreasonable since the 
problem description needs max(lg N, lg n) bits. Thus at worst the algorithm uses 
double-word integers for the dual variables. 

In an actual implementation some changes would be made to procedure S. 
Recursion would be changed to iteration. The programming nuisance of half- 
integers can be avoided in two ways. First, one can do the Hungarian search 
starting from the free vertices of only one of the vertex sets of the bipartite graph 
[22]. Alternatively a different scaling regime can be used: In scale s, instead of con- 
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sidering an edge weight with binary expansion 6, . . ’ b, to be b, . . . b, it is considered 
to be b, . . . b, 0. Step 2 scales up all dual values by the assignment yk +- 2yk + 1. 
Hence all weights are even and all duals are odd. This ensures that throughout the 
algorithm all duals are integers. 

The scaling algorithm extends to variants of the matching problem, including 
maximum weight matching, maximum weight maximum cardinality matching, and 
maximum weight cardinality-k matching. Here we discuss maximum weight 
matching (other variants are in Sect. 5). Even if a graph has a complete matching 
and all weights are positive, a maximum weight complete matching need not be a 
maximum weight matching. However maximum weight matching reduces to 
maximum complete matching as follows. 

Let G be the graph for maximum weight matching. Construct a graph G from 
two copies of G, say G, , GZ; each vertex i in G, with copies i, , i, in G,, G,, has an 
edge iii, in G with weight 0. G is bipartite if G is. A maximum complete matching 
on G gives a maximum weight matching on G, = G. 

COROLLARY 3.1. A maximum weight matching on a bipartite graph can he ,found 
in O(n3j4m log N) time and O(m) space. 

For maximum weight matching all negative edges can be deleted from the graph. 
So in the above time bound N refers to the largest positive weight. (If the given 
weights lie in an interval [a, b] then N = b; N cannot be reduced to b-a as in 
complete matching.) 

The time bound for maximum weight matching can be relined to O(nym log N), 
where n, = 1 V, 1. The algorithm must be modified as follows: Recall that graph d is 
the input to procedure S. In Step 2, set J i J t 2yi + 1 for all vertices i in either copy of 
V, (that is, iE V,(G,)u Vl(G2)); set y, t 2y, for all i in either copy of V?. (Note 
that V,(G,)u V,(G,), V,(G,)u V,(G,) is not a bipartition of G.) In Step3 (and 
Step 0), always maintain the same matching and duals on G, and G,. 

The timing analysis depends on two observations. First, D < 2n i, because of the 
modified Step 2. Second, the Hopcroft-Karp algorithm runs in time O(nti2 m). This 
follows from an analysis similar to [ 171. The key point is that a set of augmenting 
paths contains mostly edges of the original graph G. More precisely, on the tight 
graph T of Step 3.2, a matching M that is identical on G, and G, has a set A of dis- 
joint augmenting paths such that MO A is a maximum cardinality matching and 
further, each path in A has at most one edge i, i2 joining G, to G,. The rest of the 
timing analysis follows the one given above and is left as an exercise. 

Scaling is efficient on “small” edge weights like N = no”‘. If the weights are 
extremely small like N = 0( 1 ), scaling can be dispensed with. This case is useful in 
practice, especially N = 1 or 2. Now we sketch algorithms for this case, for 
maximum complete matching and maximum weight matching. 

The algorithm for complete matching is: Start with M empty and all duals 
yj = N; then execute Step 3 of procedure S. This gives the desired matching. An 
analysis similar to Theorem 3.1 shows the time is O(N”2n3/4m). This matches 



SCALING ALGORITHMS FOR NETWORK PROBLEMS 159 

Theorem 3.1 when N= O(l), in which case the simplicity of the algorithm makes it 
preferable. 

The algorithm for maximum weight matching is: Start with A4 empty and all 
duals yi = N, then execute Step 3 of procedure S, terminating when either a com- 
plete matching has been found or the duals of all free vertices are 0. (Note that at 
any point in the algorithm all free vertices have the same dual value.) 

Correctness of this method follows from the fact that a matching has maximum 
weight if it has a set of duals that is dominating, tight and consistent, that is, all 
dual values are nonnegative and all free vertices have dual value 0. This can be 
proved by the argument at the beginning of this section (or see [22]). 

The time bound is O(min(N ‘I* 3’4 A%z”~) m). The first term of the bound is n , 
derived as above. The second term results from the fact that Steps 3.1-3.2 are 
executed at most N times. 

I 0 “’ I 0 

(0) (b) 

FIG. 2. Worst-case graph for matching: (a) module of A,; (b) initial matching and duals; (c) 
Matching and duals after j iterations. 
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COROLLARY 3.2. If N = 0( 1) a maximum complete matching on a bipartite graph 
can be found in O(n314m) time and a maximum weight matching can be found in 
O(n1i2m) time; both algorithms use O(m) space. 

These algorithms extend to general graphs (see [ 131). 
The above bounds on the running times are tight. For maximum weight 

matching, see [9]. Here we consider maximum complete matching, and in par- 
ticular the case where all edges weights are zero or one. We show that there are 
graphs of any density (i.e., any value of m between n and n’) with run time 
0(n3j4m). 

Consider the family of graphs Ak illustrated in Fig. 2a. For each integer 
i = k’,,.., 2k2, Ak contains a “module” consisting of a “base path” plus “side paths.” 
The base path for i consists of 2i+ 1 edges, each of weight one. For each integer 
j = O,..., k, every base path has two side paths of 2j + 1 edges, with weights alter- 
nately zero and one; the last vertex of a side path for j is the jth vertex from one of 
the ends of the base path. Finally, to achieve arbitrary densities, Ak contains S, a 
bipartite graph on 2k4 vertices that has a complete matching plus any number of 
additional, arbitrary edges; each edge of S has weight one; in each module the first 
vertex of one side path for i = k is joined by a weight zero edge to each vertex of Sr , 
one of the two vertex sets of S. Observe that there are @(k’) modules, each contain- 
ing @(k’) vertices and edges. Hence for A,, n = O(k4) and m can take on any value 
between n and n2 (to within a constant factor) by adjusting the number of edges in 
S. 

The algorithm starts with the duals shown in Fig. 2b, and the first execution of 
the Hopcroft-Karp algorithm gives the matching shown. (Assume duals are 
initialized in the best way, i.e., Step 2 of procedure S.) Then for i = O,..., k, the jth 
Hungarian search makes a dual variable adjustment with 6 = 1; augmenting paths 
are found that use all side paths with 2j+ 1 edges; the Hopcroft-Karp algorithm 
finds these O(k’) augmenting paths, one per phase. (Observe that each augmenting 
path has a different length, and so is found in a different phase of the Hop- 
croft-Karp algorithm.) The matching and duals after j iterations is illustrated in 
Fig. 2c. 

To summarize, the number of iterations is O(k). Each execution of the Hop- 
croft-Karp algorithm finds @(k*) augmenting paths, one per phase. Each phase 
uses 8(m) time, since the number of tight edges is always 8(m). Hence the total 
time is 8(k3m) = @(n3j4m). 

The problem we have discussed might be dubbed red-green matching: Given a 
graph with each edge colored red or green, find a complete matching with the 
greatest possible number of red edges. It would be of interest to improve the time 
bound for red-green matching. 
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4. SHORTEST PATHS WITH ARBITRARY LENGTHS 

This section shows that in a directed graph where edge lengths are arbitrary 
positive or negative integers, the single-source shortest path problem (defined in 
Sect. 2.1) can be solved in O(n3’4m log N) time. 

The approach is based on Edmonds and Karp’s transformation to get non- 
negative edge lengths [8; also see 261. As in Section 2.1 this amounts to finding a 
function di that dominates the edge lengths, that is for any edge ij, di + l,> d,. A 
dominating function is derived from the matching dual variables as follows. 

Given a directed graph G, construct a corresponding bipartite graph G*. A vertex 
i of G corresponds to two vertices i,, i, in G*. An edge ij of G corresponds to an 
edge i,j, of G* with weight -1,. In addition G* has an edge ili, of weight 0 for 
each i. 

There is a one-to-one correspondence between the complete matchings on G* 
and the partitions of the vertices of G into cycles and single vertices. Specifically, a 
set of matched edges of the from i, j2,jlk2 ,..., r s , 2, s, i, corresponds to the cycle i, j, 
k,..., r, s, i; a matched edge i, i2 corresponds to the vertex i. So a maximum complete 
matching on G* has positive weight when G has a negative cycle, and it has zero 
weight when G has no negative cycles. 

Now without loss of generality assume that every vertex in G is reachable from 
the source s. The shortest path problem on G has a solution if and only if G has no 
negative cycles. So assume a maximum complete matching on G* has weight zero. 
Observe that in a corresponding set of dual variables, y, = -yi2 for every vertex i of 
G. This is clear if i, i, is matched. If i, i, is unmatched then there is an alternating 
cycle of the form ilj,,j,j,,j,k,,..., s2s1, sli2, i, i, The matched edges of the cycle 
have total weight zero, since the unmatched edges do. Hence dominance and 
tightness imply yi, = -yiz. 

For each vertex i of G let di = yi,. Then for any edge ij of G, -I, < y,, + y,> = 
d, - d,. Thus the function di dominates. 

This justifies the following shortest path algorithm: Construct G* and find a 
maximum complete matching with corresponding duals. (If the matching has 
positive weight, stop; the problem is ill-defined.) Use the dominating function 
derived from the duals to transform edge lengths so they are nonnegative (thus the 
transformed length of ij is l> = d, + I, - dj). Finally run Dijkstra’s algorithm on the 
graph with transformed edge lengths. 

THEOREM 4.1. In a directed graph with arbitrary integral edge lengths, the single- 
source shortest path problem can be solved in O(n314m log N) time and O(m) space. 

This algorithm solves the shortest path problem for O(n314) sources in the same 
time. 

511/31/2-2 
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5. DEGREE-CONSTRAINED SUBGRAPHS 

Consider an undirected multigraph where each vertex i has two associated 
integers Ii, ui. In a degree-constrained subgraph (DCS) each vertex i has degree di, 
Ii 6 d, 6 ui. In a complete DCS each degree achieves its upper bound, di = ui. This 
section presents algorithms for the maximum complete DCS and maximum weight 
DCS problems. (These problems generalize matching and are defined analogously.) 
The time is 0( U3j4m log N) on multigraphs; it is also 0( U”2n”3m log N) on graphs. 
Here U= Cie v ui, and m counts each edge according to its multiplicity. (The time 
bounds are oriented toward graphs of small multiplicity.) 

We reduce the complete DCS problem to matching. Let G be the given mul- 
tigraph. Define a graph G’ as follows. A vertex i in G corresponds to a vertex sub- 
stitute K, d in G’. Here d is the degree of i in G; A is the desired “deficiency” of i, 
that is if i’has upper degree bound u = U, then A = d - u; Kd,d is a complete bipartite 
graph consisting of A internal vertices in one vertex set and d external vertices in the 
other. An edge ij in G corresponds to an edge joining an external vertex in is sub- 
stitute to one in Is; each external vertex of each substitute in G’ is on exactly one 
copy of an edge of G. In G’ copies of edges of G have the same weight as in G. An 
edge in any substitute K,,, has weight N* = 2L’g”“f’ - 1. A maximum complete 
DCS on G corresponds to a maximum complete matching on G’. Hence DCS 
reduces to matching. 

The graph G’ can have Q(nm) edges. For efficiency we do not work directly with 
G’, but insead simulate the scaling algorithm S on G’. To simulate Step 3.1 (the 
Hungarian search) we use a “sparse substitute” graph, employing the technique of 
[ 111. For Step 3.2 (cardinality matching) we use another sparse graph. For the 
simulations to work correctly we maintain this additional invariant: the matching 
on G’ always covers every internal vertex of every vertex substitute. The details of 
the two sparse graphs are as follows. 

Consider a matching M on G’, and a vertex i of G whose substitute has w 6 u 
external vertices matched on edges of G. The sparse substitute for a vertex i (with 
respect to M) is illustrated in Fig. 3. Of the d- w external vertices that are not on 
matched edges of G, u - w vertices (chosen arbitrarily) are free; each of the other A 
external vertices is matched to a vertex of the sparse substitute. The sparse sub- 

b C 

EXTERNAL 
VERTEX 

w EDGES u-w EDGES A EDGES 

FIG. 3. Sparse substitute for i. 
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stitute contains two vertices b, c joined by a matched edge. The other edges of the 
sparse substitute are as illustrated (each edge of Fig. 3, except bc, stands for w, 
u - w, or A edges). Each edge in the sparse substitute has weight N*. The sparse 
substitute graph Gk (with respect to a matching M) is the graph G’ except that every 
vertex has a sparse substitute. 

Graph Gk has these properties (assuming the invariant that the matching on G’ 
covers every internal vertex of every vertex substitute): 

(i) Gk has O(m) edges. 
(ii) There is a one-to-one correspondence between augmenting paths in Gk, 

and augmenting paths in G’ that pass through each substitute at most once. 
(iii) Dominating tight dual variables on G’ give dominating tight duals on 

Gk, and vice versa. 

Property (i) holds because a sparse substitute has u + 24 + 1 6 2d + 1 edges. 
Property (ii) follows from Fig. 3. (The term “augmenting path” is topological and 
ignores edge weights, as contrasted with wap. Observe that the edge bc allows an 
augmenting path in Gk to pass through a substitute only once. An augmenting path 
in G’ need only pass through a substitute once.) 

Property (iii) is proved as follows. The precise statement is that for a given sub- 
stitute, the dual values of the external vertices can be taken the same in G’ and G,; 
the remaining duals are then implied. Given duals on G’, there is a corresponding 
set of duals on G,, since every edge in the sparse substitute has a corresponding 
edge in the vertex substitute. (Edge bc corresponds to any matched edge of the ver- 
tex substitute.) Conversely assume dual values on Gk. In a given sparse substitute 
let b and c have dual values y and N* -y, respectively. Without loss of generality 
the A other matched edges in the substitute have dual values y for the internal ver- 
tex and N* -y for the external vertex. (Dominance implies that the internal dual is 
at least y, so the external dual is at most N* -y; increasing the external dual to 
exactly N* -y preserves dominance on the external edge.) Hence in the 
corresponding vertex substitute of G’ all external vertices can be assigned their dual 
values in Gk and all internal vertices can be assigned the dual value y. 

Step 3.1, the Hungarian search on G’, is simulated as follows. Assign dual 
variables to G,, using property (iii). Then do a Hungarian search on Gk. The 
search gives new dual variables on G’ that have a tight wap, by (ii)-(iii), as desired. 

The second sparse graph, T’, models the tight graph T of G’ used in Step 3.2. T 
is defined as follows. Consider a typical vertex substitute Kd,d of G’. Each of the A 
internal vertices has the same dual value y. (This follows from tightness and 
dominance, or alternatively from the proof of (iii).) So the tight edges of Kd,d form 
a complete bipartite graph Kd,a, for some 6 with A dhdd. Construct the mul- 
tigraph T from T as follows. For each vertex substitute of T, contract the tight sub- 
graph Kd,s and give the resulting vertex a degree constraint of 6 -A; also contract 
the remaining d - 6 external vertices (to a single vertex) and give the resulting ver- 
tex a degree constraint of d- 6. It is easy to see that T’ has these properties: 
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(i) T’ has 2n vertices, at most m edges, and the same U value as G. 
(ii) There is a one-to-one correspondence between DCS’s on T and 

matchings on T that cover all internal subsititute vertices. 
To simulate Step 3.2 on T, construct T and find a maximum cardinality DCS on 

it. This gives the desired maximum cardinality matching on T, by (ii). 
To summarize, the following scaling algorithm finds a maximum complete DCS 

on a bipartite multigraph G. Construct the graph G’ (without explicitly con- 
structing the vertex substitutes Kn,d). Then simulate S(G’): In Step 0 find the com- 
plete matching on G’ by solving the complete DCS cardinality problem on G. In 
Step 2 match the internal vertices of each subsitute of G’ to A (arbitrary) external 
vertices. In Step 3.1 construct the sparse substitute graph Gk and do a Hungarian 
search on it. In Step 3.2 construct the multigraph T’ and find a maximum car- 
dinality DCS on it. Convert this to a matching on G’. 

The timing analysis is similar to the matching algorithm. Lemma 3.1 shows that 
fA <D, where these quantities are calculated on G’. Observe that D d U/2: A com- 
plete matching on G’ consists of U/2 edges of G plus edges in vertex substitutes. The 
substitute edges are tight after Step 2 by the definition of N*. This shows D 6 U/2. 

These inequalities imply that at most U 1,‘4 iterations of Step 3 have J’> U”4. 
Clearly less than U3!4/2 augments are done with f < U3j4. Since Step 3.2 is 
O(min( U”*, a) m) [9], the total time is 0( U3j4m log N). 

An alternative bound holds if G has no parallel edges. In this case Step 3.2 is 
O(n2j3m) [9]. A similar calculation shows the total time is 0( U”2n”3m log N). This 
improves the first bound when U = Q(Pz~‘~). 

THEOREM 5.1. A maximum complete DCS on a bipartite multigraph can be found 
in 0( U314m log N) time. The time is also 0( U’/2n1f3m log N) for graphs. The space is 
O(m). 

Other time bounds can be derived for multigraphs (and are sometimes superior). 
For instance if Step 3.2 is implemented with Karzanov’s algorithm [ 191 the time is 
O(n( Unm)1/2 log N). 

Theorem 5.1 implies that a maximum weight cardinality-k matching can be found 
in O(n3j4m log N) time, since the matching problem can be converted to a complete 
DCS problem by adding just two vertices. The same bound holds for maximum 
weight maximum cardinality matching. 

Next consider the maximum weight DCS problem. Let G be a bipartite mul- 
tigraph with lower bounds li and upper bounds ui. Construct a bipartite multigraph 
G by making two copies of G, say G1 and G2; for each vertex i, with copies i, and 
i,, add ui - Zi copies of edge i, i, with weight 0. A maximum complete DCS on G 
gives a maximum weight DCS on G. So the complete DCS algorithm, executed on 
G, gives an algorithm for maximum weight DCS that has the multigraph time 
bound of Theorem 5.1. 

The graph time bound of Theorem 5.1 also holds. This relies on the fact that the 
bound for maximum cardinality DCS on a graph extends to multigraphs with 
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“limited parallelism”: Recall that the cardinality DCS algorithm works by finding 
shortest length augmenting paths (saps). The argument of [9] generalizes to prove 
the following. 

PRINCIPLE 5.1. Let the maximum cardinality DCS algorithm be executed on a 
bipartite multigraph. Suppose that for any k, when the algorithm find saps of length 
k there are Q(k) levels where no two saps contain parallel edges. Then the algorithm 
runs in O(n213m) time. 

We analyze Step 3.2 of the scaling algorithm, executed on the multigraph G, by 
using the principle as follows. Assume as in Section 3 that the scaling algorithm 
maintains the same matching and duals on Gi and G2, the two isomorphic halves 
of G. So T’, the sparse multigraph of Step 3.2, is composed of T, and T2, two 
isomorphic graphs, joined by a number of multiedges i, i,. A sap contains at most 
one “joining” edge i, i, ; further, all saps contain their joining edge at the same level. 
Thus Principle 5.1 applies to show that Step 3.2 is O(n2’3 m). This in turn implies 
the graph bound of Theorem 5.1. 

COROLLARY 5.1. A maximum weight DCS on a bipartite multigraph can be found 
in 0( U314m log N) time. The time is also 0( U’i2n’J3m log N) for graphs. The space is 
O(m). 

Corollary 5.1 remains valid if we take U = min(C,, ,,, ui, Cis ,+ ui). (This depends 
on the analogous fact for maximum weight matching shown in Sect. 3.) So for 
instance if all vertices in V, have degree constraint one, the time bound for 
maximum weight DCS is the same as matching. 

For very small weights Corollary 3.2 has the following analog. 

COROLLARY 5.2. If N = 0( 1) a maximum weight DCS on a bipartite multigraph 
can be found in 0( U’/* m) time. The time is also O(n213 m) on a graph. The space is 
O(m). 

6. &~NETWORK FLOW 

Consider a directed graph G with source vertex s, sink t, nonnegative integral 
edge capacities cij, and integral costs ati. The minimum costflow problem is to find a 
flow with smallest possible cost, subject to the constraint that it has a given flow 
value v. 

A 0-l network has all capacities one. Parallel edges are allowed (and need not 
have equal cost.) A type 1 network has no parallel edges, except for edges directed 
from s or to t. A type 1 + network has no parallel edges at all. The mindegree of a 
vertex is the minimum of its indegree and its outdegree. In a type 2 network each 
vertex (other than s or t) has mindegree exactly one. (These important special cases 
were introduced by Even and Tarjan [9]. Their type 1 corresponds to our type 1 + . 
Our type 1 is more general, but their results still apply by Principle 5.1. Our type 1 
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and type 1 + are both natural classes of networks: Type 1 corresponds to DCS 
problems. Type 1 networks have flow value at most m; type 1+ networks have 
value at most n.) 

The 0-l minimum cost flow problem reduces to maximum complete DCS, as 
follows. Given a network G, construct a bipartite multigraph G* (similar to 
Sect. 4): A vertex i of G corresponds to two vertices i,, i, of G*; G* has an edge i, i2 
of weight 0 and multiplicity mindegree(i). An edge jk of G corresponds to an edge 
j, k, of G* of weight -ajk. Finally the degree constraints on G* are ui, = uil = 
mindegree(i) for i # s, t; us2 = mindegree(s), a,, = u.s2 + u, a,, = mindegree( t), 
u,, = u,, + u. 

A flow of value u on G corresponds to a complete DCS on G*; minimum cost 
corresponds to maximum weight. So the flow problem can be solved using the 
algorithm of Section 5 on G *. Note that for a t&l network, G* has 2n vertices, 
O(m) edges, and U= O(m); for type 2, U= O(n). Although G* is a multigraph, if G 
is type 1 then the graph bound of Theorem 5.1 applies, by Principle 5.1. 

THEOREM 6.1. A minimum cost flow on a (rl network can he found in 
O(m7j4 log N) time. The time is also O(n’13m 3/2 log N) for type 1 networks and 
O(n314m log N) for type 2. The space is O(m). 

Theorem 6.1 is valid even on networks with negative cycles. The same bounds 
apply to finding a minimum cost flow of maximum value, since the desired value u 
can be found using Dinic’s algorithm [9]. 

The Edmonds-Karp algorithm can be superior to the scaling algorithm on 
type 1 + networks with no negative cycles. It runs in O(n(m + n log n)) time [lo], 
and if m = Q(n413) this is faster than Theorem 6.1. However using an approach 
similar to Dijkstra’s algorithm (Sect. 2.1), the scaling bound improves to 
Wnm log2 + min NJ. 

7. CONCLUSIONS 

Scaling leads to efficient algorithms for network problems. Under the assumption 
of similarity these algorithms are asymptotically faster than previous ones. In prac- 
tice scaling algorithms perform well because of their simplicity. This was confirmed 
in experiments on an implementation of the weighted matching algorithm in 
PASCAL on a VAX 11/780. About 1000 randomly generated networks were tested, 
with between 100 and 1500 vertices, various densities and N values. For networks 
with N = n scaling usually beat the Hungarian method by the theoretically pre- 
dicted factor of n114 or more. In order for the Hungarian method to be faster than 
scaling (because of large N) the weights had to be so large that machine overflow 
usually occurred in computing the weight of the maximum matching [2]. 

Scaling is a general method. Applications to computational geometry are given in 
[ 151. Network problems on general graphs are discussed in [ 131; matroid intersec- 
tion problems are in [ 141. 



SCALING ALGORITHMS FOR NETWORK PROBLEMS 167 

ACKNOWLEDGMENTS 

The author thanks Dr. Robert Tarjan for insightful advice that resulted in new algorithms and better 
presentation, and Dr. Ann Bateson for many perceptive comments. 

REFERENCES 

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer 
Algorithms,” Addison-Wesley, Reading, Mass., 1974. 

2. C. A. BATESON, “Performance Comparison of Two Algorithms for Weighted Bipartite Matchings,” 
M. S. thesis, Department of Computer Science, University of Colorado, Boulder, Colo., 1985. 

3. R. E. BELLMAN, On a routing problem, Quart. Appl. Math, 16 (1958), 87-90. 
4. G. B. DANTZIG, “Linear Programming and Extensions,” Princeton IJniv. Press, Princeton, 

N. J., 1963. 
5. R. B. DIAL, Algorithm 360: Shortest path forest with topological ordering, Comm. ACM 12 (1969), 

632-3. 
6. E. DIJKSTRA, A note on two problems in connexion with graphs, Numer. Mud 1, (1959), 269-271. 
7. E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power 

estimation, Soviet Math. Dokl. 11 No. 5, (1970), 1277-1280. 
8. J. EDMONDS AND R. M. KARP, Theoretical improvements in algorithmic efficiency for network flow 

problems, J. Assoc. Comput. Much. 19, No. 2 (1972), 248-264. 
9. S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, SIAM .I. Comput. 4 

No. 4 (1975), 507-518. 
10. M. L. FREDMAN AND R. E. TARJAN, Fibonacci heaps and their uses in improved network 

optimization algorithms, in “Proc. 25th Annual Symp. on Found. of Comput. Sci., 1984.” 
pp. 338-346. 

11. H. N. GABOW, An efficient reduction technique for degree-constrained subgraph and bidirected 
network flow problems, in “Proc. Fifteenth Annual ACM Sympos on Theory of Computing, 1983,” 
pp. 4488456. 

12. H. N. GABOW, Efficient graph algorithms using adjacency matrices, manuscript, 1985. 
13. H. N. GABOW, A scaling algorithm for weighted matching on general graphs, in “Proc. 26th Annual 

Symp. on Found. of Comput. Sci., 1985,” to appear. 
14. H. N. GABOW, Scaling algorithms for matroid intersection problems, manuscript, 1985. 
15. H. N. GABOW, J. L. BENTLEY, AND R. E. TARJAN, Scaling and related techniques for geometry 

problems”, in “Proc. 16th Annual ACM Symp. on Theory of Computing, 1984,” pp. 135-143. 
16. H. N. GABOW, Z. GALIL, AND T. H. SPENCER, Efficient implementations of graph algorithms using 

contraction, in “Proc. 25 th Annual Symp. on Found. of Comput. Sci., 1984,” pp. 347-357. 
17. J. HOPCROFT AND R. KARP, An n 5/Z algorithm for maximum matchings in bipartite graphs, SIAM J. 

Comput. 2, No. 4, (1973), 225-231. 
18. D. B. JOHNSON, Efficient algorithms for shortest paths in sparse networks, J. Assoc. Comput. Much. 

24, No. 1 (1977) 1-13. 
19. A. V. KARZANOV, Determining the maximal flow in a network by the method of preflows, Souiel 

Math. Dokl. 15 (1974), 434437. 
20. H. W. KUHN, The Hungarian method for the assignment problem, Naval Res. Logist. Quarf. 2 

(1955), 83-97. 
21. H. W. KUHN, Variants of the Hungarian method for assignment problems, Nuoal Res. Logisl. Quart. 

3 (1956), 253-258. 
22. E. L. LAWLER, “Combinatorial Optimization: Networks and Matroids,” Hoh, Rinehart, & Winston, 

New York, 1976. 
23. S. MICALI AND V. V. VAZIRANI, An O(m. 1 El) algorithm for finding maximum matching in 

general graphs, in “Proc. 21st Annual Symp. on Found. of Comput. Sci., 1980,” pp. 17-27. 



168 HAROLD N. GABOW 

24. C. H. PAPADIMITRIOU AND K. STEIGLITZ, “Combinatorial Optimization: Algorithms and Com- 
plexity,” Prentice-Hall, Englewood Cliffs, N. J. 1982. 

25. D. D. K. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput. System Sci. 26, 
(1983), 362-391. 

26. R. E. TARJAN, “Data Structures and Network Algorithms,” Sot. Indus. Appl. Math., Philadelphia, 
P., 1983. 

27. R. A. WAGNER, A shortest path algorithm for edge-sparse graphs, L Assoc. Comput. Math. 23, No. 1 
(1976), 5(r57. 


