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ABSTRACT 

In this paper a generalization of the factor problem for finite undirected graphs is 
detailed. We prescribe certain inequalities for the valencies of a subgraph. We deduce 
formulas for the minimum "deviation" of this prescription and characterize the 
"optimally approaching" subgraphs. These results include the conditions of Tutte and 
Ore for the existence of a factor and the characterization of maximal independent 
edge-systems given in [3] and [11]. 

Let us associate a non-negative integer f ( x )  with every vertex x o f  a 
graph. 1 A subgraph is said to be an f-factor if its valency is f ( x )  in every 
vertex x. Here many problems arise: When does a graph contain an 
f - fac to r?  I f  it does, how can these factors be characterized; if it does not,  
which are the subgraphs "approach ing"  that wanted factor optimally ? 

Such problems were discussed first by Petersen. Two special cases were 
also discussed: the case o f  1-factors and the case o f  bipartite graphs: these 
special questions can be considered to be solved essentially on the base o f  
many  papers (see, e.g., references 1-5 and 7). 

In the general case Tutte gave a necessary and sufficient condition for 
the existence o f  an f - fac tor  [8]. A different condition is due to Ore [6]. 
These conditions can be proved by the method of  alternating path or by 
reducing the problem to the case o f  a 1-factor [9]. 

In this paper  we follow another method. We try to answer the questions 
asked above. We generalize the problem and prescribe for the valencies o f  
the wanted subgraph not  an integer but an interval. 2 This generalization 
does not  contain essentially more than the original problem, but  it 
simplifies the discussion. A number  8 will be introduced to measure how 

1 We consider finite undirected graphs. Directed graphs could be investigated 
similarly. 

Later (Section 1) we shall formulate this in a more symmetric way. 
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this condition can be satislied. In Sections 1 3 \re examine how ~ changes 
if the intervals ordered to the vertices are modified. 3 x~ill have some 
convexity properties. 

In Sections 4-5 we characterize the structure of the graph and the 
"optimally approaching" subgraphs, besides a special choice of the 
intervals. The general case will be reducible to this case easily (Section 6). 
From our results we can deduce among others the following theorem: 

Let a. b be natural numbers and suppose that the valencies o1" tire vertices 
of a graph are < a ~-? b. Then the graph is the union of two subgraphs 
(i.e., ever); edge oJ" the graph belongs to one of them) so that the valencies of 
the vertices in the subgraphs are ~a  and ~b,  respectively. 

We remark that, if the graph does not contain multiple edges, then this 
theorem follows from a result of Vizing [10]. 

In Section 7 we deduce formulas for ~3. If every prescribed interval 
consists of a single integer, then, substituting the formulas of Theorems 7.3 
and 7.4 into the left-hand side of the equality 3 = 0, we obtain the con- 
ditions of Tutte and Ore (disregarding trivial transformations). 

in Section 8 we specify our results for the case of a 1-factor; we shall 
obtain the results of the mentioned papers, and, further, the following 
theorem: 

Let T be a set consisting of some vertices of a graph. T can be covered by 
an independent edge-system i f  and only if  for any k omitting any k vertices 
of the graph the number of those odd components of the remaining graph 
which contain only vertices of T is <~k. 

If  T is the set of all vertices, then we obtain Tutte's 1-factor theorem. 
On the other hand, if Tis an independent set then we obtain Ore's matching 
theorem for bipartite graphs. Note that Ore's theorem is not a special case 
of Tutte's result, allthough it can be deduced from it easily. 

l would like to close the introduction with thanks to Professor T. Gallai 
for his advice and suggestions. 

NOTAITIONS 

Throughout this paper we consider a finite undirected graph (loops and 
multiple edges are allowed). This graph is fixed; not even an extra notation 
need be introduced for it. Subgraph, vertex, edge, etc. mean subgraph, 
vertex, edge of this graph. S denotes the set of its vertices. 

A subgraph is identified with the set of its edges, If  ~ is a subgraph 
then ~ denotes the set of those edges not contained in ~. I f  A, B C S then 
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we denote by .~(A, B) the set of  those edges, which connect a vertex of A 
to a vertex of B. We put briefly o~(A, A) = ~(A) .  The graph [X] spanned 
by the set X_C S means the graph the vertices and edges of  which are the 
elements of  X and ,~(X), respectively. Note that [X] is not a subgraph. 

The valency of the vertex x will be denoted by q~(x) and 5o~(x) in the 
original graph and in the subgraph fd, respectively. 

We shall consider integer valued functions on S. I f  h is such a function 
and X C S, then we put 

h(X) = y~ h(x), 
x E X  

and 

and let Xh denote the set of  those x e X for which 

%~(x)(x) <~ h(x). 

I f  h is a function defined on S, x e S, and k is a number, then we define 
the functions h ~ and hl~ as follows: 

th(y) q- k, if y = x ,  
hk~(Y) = th(v),  if y :7~ x; 

t h ( y ) - - k ,  if y = x ,  
hl~(y) -- lh(y), if y =/: x. 

We put, further, h 1~ = h ~, (h*) ~ = h x'J, etc. 
We shall consider pairs (f,  g) w h e r e f a n d  g are integer valued functions 

sat isfyingf  >~ 0, g ~> 0 , f +  g ~> q~. Let ~ denote the set of  all such pairs 
of  functions. 

1. As we have already mentioned in the introduction we generalize the 
factor problem as follows: Let a pair (f,  g) E N of functions be given. 
When does a subgraph N exist such that 

~0~ ~<f, ~o~ ~< g? (1) 

Furthermore, if  such a subgraph does not exist, which are the "optimally 
approaching" subgraphs and what is the measure of  this "approach"?  

Let fr be a subgraph. In a vertex x, f~ deviates from condition (1) by 
the value a 

3~(f ,g;  x) = ] Trc(x) - - f (x ) t+ -t- I ~ ( x )  --  g(x)[+ �9 

8if a,b are real numbers then we put a n b = m i n ( a , b ) ,  a w b  =max(a,b), 
lal+ = a u 0 .  
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Thus .~r deviates from (1) by 

6:J/i  g) = ,'~:A/I g; S) 

and we can characterize the solvability of (1) by tile \ahte 

8(/; g) : : rain 6:~(L gL 

c3(.[; g) vanishes if and only if there exists a subgraph satisfying (I). 
A subgraph .U will be called (.f: g)-optimal if 

6AI: g) ~(,/: g). 

In the case of tile pair of functions denoted by (./i g) we shall say simply 
"optimal" instead of "(f, g)-optimal.'" 

Let us remark that obviously 

6~,(jlg) ~ ~ ( g , f ) ,  8( . / ;g) - -  8(g , f ) .  

From the point of view of the more detailed investigation of the 
"functional" 8 the following obvious fact will be basic: 

(1.l) Let ( f ,  g) ~ / / .  I f  the subgraph ~" and the rertex x satisj)" 

q,~;(x) . f (x) 

and E is an edge oJ ~,6' incident to x, then jar  the subgraph :~' -- U -- {E} 
14,e ]lal:e 

8:,,.,(jl g) ~-~ S~,(.I; g). 

From this remark it is obvious that 

(1.2) ![(J;  g) ~ ~ and ~ is a (set-theoretically) mhfimal optimal subgraph 
then 

~:~.(x) ~--_.: j (x) .  

Here we note that, because of tile symmetry in j and g, all of our 
theorems have a "dual" one, that we obtain by substituting f ,  g, .~Y for 
g , f ,  U, respectively. Thus, e,g., the "dual" of (1.2) is the following (after 
trivial transformations): 

(1.3) I f  ( f ,  g) ~ ~ is a pair o f  functions and ~ is a maximal  optimal 
subgraph then 

q~ ~ ,~,~, i.e., q~ ~ ~. 

In what follows we shall not formulate the "dual" theorems extra. 



SUBGRAPHS WITH PRESCRIBED VALENCIES 395 

2. We consider connections of some type between subgraphs. The 
investigation of them will lead us to some inequality concerning the 
"functional" & 

Let ( f , g )  E ~  and let ~, N' be two subgraphs. We say that N' is 
accessible from N concerning ( f ,g )  if we can find a sequence 
go = ~, N1 .... , ~ = ~ '  ofsubgraphs such that 4 

] Ni ~ ~i-1 ] ~< 1, ~ ( f ,  g) ~ ~cei_l( f,  g) (i = 1 ..... n). 

Let us agree to omit "concerning (f, g)" in the case of the pair of functions 
denoted by (f, g). 

On the other hand, we say that N' is nearer (f, g) than ~ if 

We can state at once that, in both cases, 

S~'(f, g) < See(f, g); 

consequently if N is optimal then so is N'. Furthermore these relations are 
transitive and reflexive, and among optimal subgraphs also symmetric. 

(2.1) THEOREM. Let (f~,gi)  e ~  ( i =  1 ..... n) and ( f / , g / ) c . ~  
( j  = 1 ..... m); suppose that f~ <~f/ and g~ <~ g /  hold for any 1 ~ i <~ n, 
1 ~ j ~ m. Further, let N 1 , N2 be two subgraphs. Then there exists a 
subgraph which # accessible from fr concerning (fi , gi) for every 1 <~ i <~ n 
and which # nearer (~',  g / )  than N2for every 1 <~ j <~ m. 

(2.2) COROLLARY. I f ( f~ ,  gi) ~ ~ (i = 1 ..... n) and f l  <~fa ~ "'" <~L,  
g~ ~ go. ~ "" <~ gn then there exists a subgraph which is (.~ , gi)-optimal 
./'or every 1 <~ i <~ n. 

(2.3) COROLLARY. Let (f, g) ~ ~ ,  X C S, and f ( X )  + g(X) = q)(X); 
further, let N o be an optimal subgraph. For any optimal subgraph N there 
exists a subgraph fY' accessible from N o such that 

~ , ( x )  = ~ ( x )  

for any x c X. 

PROOF OF THEOREM(2.1): Let us choose a subgraph N which is 
accessible from N~ concerning ( f i ,  gO for every I ~< i ~ n and for which 
I N ~ N~l is minimal. We show that this subgraph satisfies the require- 
ments, i.e., ~ is nearer ( f / ,  g / )  than N~ for every 1 ~ j ~ m. 

4[XI means the number of elements of the se tX;XA Y- - (X- -  Y)~(Y--X).  
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Suppose the opposite statement. Then there exist a I j :Q m and a 
vertex x such that. e.g., 

i ~:~,(x) .... , l i ' ( x ) ,  : ,  ~t~,,(x) - l , '~ .v): ,  
i.e., 

%,4.v) > %,,,~(x), ,f':~(-~) > ,tTix); (2) 

(2) implies that there exists an E e ~ --  5' e incident to x. By (2) 

~,(x) > Z'(x) ;~ Z(x) (1 ,< i -~-~ n). 

The application of (1.1) now gives that  the subgraph ~ '  = .~' --  {E} is 
accessible f rom ~1 concerning (f~, gi) (1 ~ i ~< n), which is a contra- 
diction since 

L ~ ' ~ i  < 1 - ~ 1 .  

PROOF OF COROLLARY (2.2): We use induction on n. In case n - -  1 the 
statement is obvious. Let n > 1 and suppose that  there exists a subgraph 
aj1 which is (f~,g~)-optimal for  1 <Q i ~ n - - 1 .  Take  an arbitrary 
( f~ ,  g~)-optimal subgraph N2. By Theorem (2.1) there exists a subgraph 
which is accessible f rom cg I concerning (f~, g~) if 1 <~ i ~ n --  1 and 
which is nearer ( f~ ,  g,,) than N , .  This subgraph is (fg,  g~)-optimal for 
e v e r y l  ~ < i ~ < n .  

PROOF OF COROLLARY (2.3): Put i = j = 1 , f l  = f ~ '  = f ,  gl =- g~' = g 
in Theorem (2.1). 

We shall need a lemma for real numbers:  

(2.4) I f  a, b, c, dare realnumbers, a ~ b ~ danda + d = b -~ c, then 

i a [ + + i d i + ~ l b ] + + l c [ + .  

PROOF: The center of  the interval connecting the points  (a, [ a i+) and 
(d, I d I+) in the plane has the same abscissa as the center of  the interval 
connecting (b, [b [+) and (c, ] c 1+). By the convexity of  the function I x  1+ 
the latter point  lies lower, i.e., 

! a ! + ' - I d l +  _. I b l - - +  I c l + .  
2 "~ 2 ' 

this proves (2.4). 

(2.5) THEOREM. For any pair (f,  g) c ~ and subgraphs ~1,  f~  

8~qw~=(f, g) q- 8~mfe=(f, g) >~ 8~,(f, g) q- 8%(f, g). 
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(2.6) COROLLARY. I f  (f ,  g) E aM, fYl C f~ C_ fY2 and fYl , fr are optimal 
subgraphs, then so is ft. 

(2.7) COROLLARY. I f ( f ,  g) ~ aM and ~x C fr are optimal subgraphs, then 
they are accessible from each other. 

PROOF Or THEOREM (2.5): We are going to apply (2.4): 

(qo~,u~ 2 - - f )  + ((P~c~= - - f )  = ( ? ~  - - f )  + (9~= - - f ) ,  

hence by (2.4) 

I ~ , , ~ =  - f l +  + I ~ r e ~ ,  - f l +  > [ ~%~ - f l +  + I ~0~= - f l +  ; (3) 

similarly 

I q ~  - g l+ -/- I ~ 7 ~ - 2  - g I+ >~ I q~Tg~ - g I+ + I m>,  - -  g l+ .  (4)  

From (3) and (4) the statement follows by addition. 

PROOF OF COROLLARY (2.6): Put 

"(Lift = "(~1 ~ (*~2 - -  "~)" 

Then ~ u ~ '  = f#2, f# n ~ '  ---- fgt ; hence by Theorem (2.5) 

8~(f, g) -1- 8~r g) ~ 8~,(f, g) -1- 8~2(f, g) = 28(f, g). 

This implies 
8re(f, g) = 8~,(f, g) = 8(f, g). 

Corollary (2.7) follows from corollary (2.6) immediately. 

3. In this section we investigate how 3(f, g) changes if we v a r y f a n d  g. 
First it is obvious that, if f or g increases, then 8(f, g) decreases (not 
necessarily strictly). A further trivial observation is the following: 

(3.1) Le t ( f , g ) eaM,  x c S .  

(a) 8 ( f  % g) < 8(f, g) i f  and only i f  there exists an (f, g)-optimal subgraph 
such that q~re(x) > f(x).  

(b) Suppose f ( x )  -? g(x) > q~(x). Then 8(f~, g) > 8( f ,g)  i f  and only i f  
every (f, g)-optimal subgraph fY satisfies q~e(x) >~ f (x ) .  

(3.2) THEOREM. I f  ( f~ ,g0  ~ aM (i ~= 1,2, 3, 4) and f~ <~f~ <~f~, 
g~ <~ g~ <~ g~ , f~ q-f~ = f~ + fa , gl + g~ = g~ -k ga then 

3(A,  gl) + 8(A,  gO ~ 8(A,  g~) + 8(fa, ga). 
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I f ( J ;  g) e ,'/', x ~ S , f ( x )  -i g(x)  2" q:(x) and 

8(.s g) :~: 6(s g), 

6(f ~, g) -=- 8(,/; g). 

/ f  (.1; g) e ,#, x �9 S, f ( x )  -+ g(x) >, ~c(x) then 

8(f, g) = 8(.s g) n 8(f, gx) -- 8(/~', g) u a(f, g~). 

PROOF Or THEOREM (3.2): The same argument as used in the proof of 
Theorem (2.5) shows that for any C~ 

85'(fl, gl) -~- 88'(f4, g4) > a'3;~(k, g2) q- 8v(.f3, ga)- (5) 

Let us choose a subgraph ~' which is (f~, gl)-optimal and ( f4 ,  g~)-optimal; 
such a subgraph exists by corollary (2.2). Then by (5) 

8(.1~, g,) q- 8(A , gO = 8~'(A, g,) + 8~(A, g4) 

> &,,'(A, ge) + 8~;(fa, ga) 
> a(A,  g~) + 8 ( k ,  g~). 

PROOF' OF COROLLARY (3.3): By Theorem (3.2) 

a(f,,, g) + 8(/, ,  g) > 28(s g); 

hence by our conditions 

8(f*, g) > a(f, g). 

This gives the conclusion because of the monotonity of 8. 

PROOF OFCOROLLARY(3.4): The first equality follows from (3.1). 
We suppose, e.g., 

8(L,, g) = 8(J; g); 

hence by Corollary (3.3) 

s ( . / ~ ,  g) - 8(f, g). 

That proves the second equality. 

The following lemma shows the connection between the structure of the 
graph and the values of 8(.f, g): 

(3.5) I f ( f ,  g) ~ ~ ,  x, y e S, and 

8 ( f  x, g) = 8(f ,  g~) = 8(f ,  g), 8 ( .A ,  g) = 8(f ,  gx) --  8(f ,  g) --  1, 

then x and y are not joined. 
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PROOF: First of all we notice that by (3.1) we have for any (f ,g)-  
optimal subgraph 

3~(f, g; x) = 0 (6) 

and by Corollary (3.4) 
f (y )  + g(y) --- q~(y). (7) 

Suppose now that indirectly there exists an edge E joining x and y. 
Let N be an optimal subgraph; suppose, e.g., E e  N. By (3.1) there exists 
an optimal subgraph N' for which 

q~'(y) > f (y ) .  

By Theorem (2.1) we can choose for f#' a subgraph accessible from ~'. 
First we show E 6 f#'. Really, if E e f#', then putting f#" = f~' --  {E}, 

equation (6) gives 
3~.(f, g; x) = 3~,(f, g; x) = 0 

and obviously 

thus 
3~-(f, g; y) = 8~,(f, g; y) -- 1; 

8~-(f, g) < 8~r g) = 8(f, g), 

a contradiction. Thus E r N'. 
Since ~ '  is accessible from fr there exists a sequence 

fr = ~, W1 ..... c#~ = fr 

of optimal subgraphs such that ] ~'i A Ni-l[ ~ 1. There exists a last 
member Ni of this sequence containing E. Then fr = ~r {E}. But 
this is a contradiction since by (6) and (7) 

3 ~ i + l ( f  ~ g) -- 8~,(f, g) = +1.  

4. Throughout this section we consider a pair (f, g) e ~ such that 

f ~ % g ~ % 8(f, g) = 80, (8) 

where 3 o is a fixed integer and (f, g) is maximal among all pairs of functions 
satisfying (8). This latter supposition can be expressed as follows: if x e S 

a nd f ( x )  < 9(x), then 
3(f  ~, g) < 3o 

and if x e S, g (x )  < iv(x) then 

a(f,  gx) < ao. 

Such a pair of functions will be called simply maximal 
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Let A, B, C, D denote the sets where in order 

f ( x )  -- cp(x), g(x) ~-: q~(x); 

f ( x )  -< 9(x), g(x) :=  q:(x); 

f ( x )  -~ g(x) = q~(x); 

f ( x )  < ~(x),  g(x)  < ~(x). 

Corollary (3.4) implies that if x ~ D then 

f ( x )  + g(x) = ~(x). 

(4.1) I f  x ~ A and g(x) > 0 then (j; g~) is also maximal and 

8(L g~) = ~(L g) + 1 = 8o + 1. 

PROOF: The second conclusion follows from Corollary (3.3). If y e S 
a n d f ( y )  < q~(y)then 

8(f  u,gx) ~ 3 ( f  u , g ) +  1 < 8 0 q -  1 ~ 8(f, gx), 

and ifg~(y) < q)(y) then 

~(f, gx~) ~< ~(f, g,S) + 1 < 30 _ 1 = 6(f, gx). 

This proves the maximality of (f, g~). 
By (3.5), 

(4.2) o~(C, D) = 2,. 

We are going to investigate the vertices of D in more detail. 

(4.3) Let x c D, k, l >~ O, k + l > O. Then 

S(fa~, g;~) ~- ~ o -  1. 

PROOF: It is clear that 

~(f,,~,, g,~,) <~ ~o - i. 

On the other hand by Corollary (3.4) 

3(f~, g~) = ~(fx, g) c~ ~(f, g~) = 80 -- 1. 

Suppose, e.g., k > 0. Then 

8(f, g~) _=__ 8(f~, g~:) 

and hence by Corollary (3.3) 

3(fl,.x, gx) = 3 0 _  1. 
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Thus 
3(f  k~, g ) -  3(fk% g~) = 3 o -- 1 

and using Corollary (3.3) again we obtain what we wanted to prove. 

(4.4) Let  x, y ~ D. Then 

3(f ,u ,  g~u) = 3(f ,u ,  g) = 3(f, gXU) = 8( fx  gV) = 3(fv, g~). 

PROOF: It is clear that 3(ff~, g~V) is not greater than the other values. 
We show that it is equal to any one of them. It is enough to prove the 
following two inequalities: 

(a) 3( f  ~u,g~u) >/3(f~u,  g). 

(b) 3(f  ~u, g~U) >~ 3(f% gU). 

PROOF OF (a): Using Theorem (3.2) twice and (4.3) 

3(f~u, g~u) ~ 3(f~u, gu) + 3(f~, g~) _ 3(f~, g) 
= 3(f~,s, gV) >/3( fxv ,  g) + 3(fu, gU) _ 3(fu, g) = 3(f~v, g). 

PROOF OF (b): Similarly: 

3(f~u, g~V) ~ 3(f~y, gU) ~ 3(f~, gU) 

+ 3(fv,  gU) _ 3(f, gV) _~ 3(f~, gU). 

Let x, y ~ D. We write x ~-~ y if 

3 ( f  ~ ,  g~U) = 3 o -  1. 

Obviously x ~ y means 

3(f ,u,  g,U) = 30 -- 2. 

(4.5) The relation x ,~  y is an equivalence-relation. 

PROOF: (a) x , ~ x  by (4.3); (b) if x ~ y  then obviously y ~ x ;  
(c) suppose x ,~ y and y ~ z, then by (4.3) and (3.2) x ~ z: 

8 ( f  ~z, g~Z) ~ 3 ( f  ~vz, gXyz) 

3(f~u, g~U) _q_ 3 ( f  uz, gVZ) _ 3 ( f  v, gO = 3o - -  1. 

Let us remark here that (4.3), (4.4), and (3.1)give that for any 
equivalence-class Do and for any optimal subgraph 

3~(f, g, Do) ~ 1. (9) 

(4.6) I f  x, y ~ D and x and y are joined by an edge then x ~., y. 



402 LO\~SZ 

PROOF: Suppose indirectly that x ,< y. By (4.3). 

8(. f ' " . .~)  . 8(f,*. g.") 6t/". ~) 
and by (4.4) 

a(.t-"", g) - a(.f", g,,) ~(.t". v) ~. 

This contradicts Lemma (3.5) if we apply it on (/-.", g). 
This lemma shows that the classification induced by the equivalence- 

relation x ,~ y is rougher than the decomposition of the graph [D] into 
connected components. Under further conditions (detailed in Section 5 
below) these classifications come to be identical. 

5. We say that a maximal pair of functions (.!ig) is simple if 
g ( A ) - - f ( B )  = 0. Throughout this section we suppose that the con- 
sidered pair of functions (f, g) is simple. 

Let ~ be an (f, g)-optimal subgraph. Obviously 

,y(A) _c cr ~ (B)  c .~r .Y(A, C) _C .% ~ ( 8 ,  C) C :#. 

If moreover 

.~(C) C ~, ~ B) C ~.g, ,~-(A. D) C ~, J ( B ,  D) C_ re, 

then we say that ~ is simple. 
If cg is any optimal subgraph, then by ( l . l )  

L~ = [~ -- .Y(B, D)] U ~(A,  D) u .~(A, B) u Y(C)  

is optimal too; .~g) is obviously simple. 
Consider now the connected components of the graph [D]; let 

[Dd, [D2],..., [D~] be these components. By (4.2) these are connected 
components of [C to D] too. 

(5.1) Let ~ be a simple subgraph. Then 

a~,(. L g; D,) ~ f(D~) q [.Y(A. D,) (mod 2). 

PROOF: 

a~(J; g; D,) : ~ 1.1~-,-)-- w:,,.(.v) 
a?~De 

l i D , . ) .  ~,~,(D,) (rood 2). 

Put <X' = C# ~ 5(D,) .  We know that D~ is not joined to C, hence by 
our condition that C~ is simple 

~- f(D~) + '.2#-(A, DO[ (mod 2). 
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Let x c D e  and let f~ be an (fLg)-optimal subgraph. By (1.1), -~ is 
( fL  g)-optimal again; on the other hand it is trivially ( f ,  g)-optimal too. 
Since by (3.1) 

q@(x) = f ( x )  + 1, 

we obtain 

and thus by (9) 

8~(.s g; Di) > 1, 

8~(f, g; DO = 1. 

Lemma (5.1) now gives 

(5.2) I f  [Di] is a connected component of [D] then 

f (Di)  4- [~ (A,  DO[ = I (mod 2). 

By combining (5.1), (5.2), and (9) we obtain that in (9) the equality 
holds, if ~ is simple: 

(5.3) I f  fY is a simple subgraph then ~ differs from f i n  just one vertex of 
Di and here by 1. 

(4.3) and (3.1) now give that, if 1 ~< i < j  ~ r, then there exist an 
x ~ Di and an y ~ D~ such that x ~-~ y, and thus 

(5.4) The classification of the set D induced by the equivalence-relation 
x ~-~ y coincides with the decomposition of [D] into connected components. 

Calculate now the value of 8(f, g). Let f# be a simple subgraph. By (5.2) 
and (5.3), 

8~(f, g; D) = r. 

Furthermore 

and 

hence 

a~(l; g; C) = ac~(f, g; B) = 0, 

a~(.s g; A) = I ~ ( A ,  B)/; 

a( f, g) - ~ + I ~ ( a ,  B)I. (10) 

We call a graph f-critical, if it contains no f-factor, but, prescribing any 
vertex x of it and r = ~ 1 in an arbitrary way, there exists a subgraph of 
it the valency of which is f ( x )  4- E in the vertex x a n d f ( y )  in any other 
vertex y. The argument before (5.2) gives 

(5.5) The graph [O,] is ( f (x)  -- [ Y ( A ,  x)])-eritical. 
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Now ~e are able to characterize tile optimal subgraphs. We have to 
determine which edges of J (A) ,  .~:(B), ,~(C), ,T(D), .T(A. B),-;;(A, C). 
.~(B, C).-Y(A, D), ,~'-(B, D) such a subgraph ';" contains. 

By (5.3). the valency of the subgraph f# ~ ,Y(D) :';D dill'ors from 
./(x) -- i -~(A, x)! in just one vertex uz of Df and here by 1. Say i c: ~ ,  if 

50%(uJ = - f ( u j -  [ J ( A ,  uJ ' , --  1 
and i ~ ,Y; if 

50~...,,~.uJ - / ( u J  - I ~ : (A ,  , ,)1 + 1. 

The removal of an edge of the subgraph ,~'1 = t4 cq ~(B,  D) does not 
decrease the value of 8.,,,,(.f, g). Hence the edges of J ' l  join vertices of B to 
vertices of form u~ (i e ~) ,  and every u~ is the end-point of at most one edge 
o f ~ .  

Similarly, ~ -- N c~ Y(A, D) contains all edges of J ( A ,  D) except at 
most one edge joining D to u~ for any i e ~a. 

As we have already mentioned, o~(A) C f4, ,W(A, C) _C N, :~(B) _C ~, 
and o~(B, C) _C g7. From ~(A,  B) and ,N(C), .~g may contain an arbitrary 
system of edges. 

(5.6) THEOREM. The subgraphs characterized above and only these 
subgraphs are optimal. 

As we have seen, the properties listed are really necessary. Their 
sufficiency can be verified by a simple computation on the basis of (10). 

We close this section with a property of simple pairs of functions which 
does not belong closely to our discussion but seems to complete it: 

(5.7) THEOREM. I f  (f ,  g) is a simple pair of functions then any two 
(f, g)-optimal subgraphs are accessible from each other concerning (f, g). 

Here we note that, if (j; g) e ~ ,  f § g = 50, and our graph is f-critical, 
then (f, g) is a simple pair of functions. 

PROOF: Let two optimal subgraphs J ,  (~' be given. Take two subgraphs 
Cf:, L~l' such that L~, and fr are accessible from f~ and off', respectively, 
and I fr Acda' I is minimal. We shall show that f#l oN, '. 

Since ~ and ~a' are also accessible from f~ and cd', respectively, by 
Corollary (2.7) (or by 1.1), 

we may suppose that ~ : ,  ~':' are simple. 
We say that the vertex y is normal if no edge of ~ ~ ~'  is incident to y. 

To show ~': = ~: '  we have to prove that every vertex is normal. This is 
trivial for the vertices of A u B u C. 
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Let y ~ D~. 
The characterization (5.6) of the optimal subgraphs and (5.5) show that 

there exists a simple subgraph N0 such that 

'~o(Y) @ f(Y).  

Let now ~2 and ff~' be simple subgraphs accessible from fr and N', 
respectively, such that 

~f2 A if2' = ffl A ~1' 

and ] ~o A if2 I is minimal. (5.3) now gives that there exists an x ~ Di such 
that 

~ ( x )  = . l ( x )  4- 1. 

We prove first that x is normal. We confine ourselves to the case 

~ . ( x )  = f ( x )  - 1. 

The other case could be detailed similarly. 
Suppose indirectly that there exists an E e if2 /k ffz' incident to x. Since 

~2,(x)  ~ f (x)  -- 1 = q)%(x), 

we may suppose E ~  ff~' -- if2. By (1.1) fr = if2 w {E} is optimal again; 
since obviously E ~ o~(Di), fr is even simple, and accessible from fq. But 
this is a contradiction since 

To complete our proof  it is enough to show x = y. Suppose indirectly 
x if= y. Then (5.3) shows that 

~ o ( x )  = f ( x ) .  

Consequently there exists an E E f r o -  fr incident to x; obviously 
E~o~(Di). By (1.1) f#3 = f~zu{E} and i f 3 ' =  ff2't-){ E} are simple 
subgraphs accessible from f~ and if', respectively, which is a contradiction 
since x being normal 

~3 A ~3' = (r A ff~' = (r A (r 

a n d  

I ~z A ~ol  < I ~2 A ~o1. 
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6. Now we deal with an arbitrary pair of functions. We may suppose 
that. /  :-;~- % g -'-./.- % since 

6 ( . l n  9 ,  g n 9)  ~ 8(,1: x).  

(6.1) There exists just one maximal pair i f ,  g) of jimclions such that 
f ~ f, g < ,~ and 

a ( f ,  g )  = a ( / ;  g).  

PROOF: The interesting part of this lemma is naturally the statement 
that only one such pair exists. Suppose that (f ,  g) and ( f* ,  g*) are two 
maximal pairs of the properties mentioned in the lemma. By Theorem i3.2) 

t) * 8 ( f c ~ f * , g c ~ g * ) + 8 ( f  f , g u g * )  > ~ 8 ( f , g ) + 8 ( f * , g * )  

= 2a(f, g). (11) 

S incef  <~ f n f * ~ f, g ~ ~ N g* <~ '2, the monotonity of 8 implies 

a ( f n  * f , g n g * )  = a(f ,g),  

and thus by i l l )  we obtain 

8( f  u f *, g tO g*) > 8(f, g). 

Because of the monotonity of 8 here the equality holds. This contradicts 
the maximality of ( f ,  g) and ( f* ,  g*). 

Let us consider now the sets A, B, C, D defined for (f ,  g); i.e., let 

A = { x : f ( x )  = q~(x), g(x) < q~(x)}; 

B = { x : f ( x )  < ~(x),  g(x)  = ,~,(x)}; 

c = { x : f ( x )  = ~ ( x )  --- ~(x)};  

D = {x : f (x )  "< q~(x), g(x) "< qc(x)}. 

These sets depend only on the pair (./; g) ~ ~ .  Two other characterizations 
of them can be given. A, B, C, D are the sets of those vertices x for which 

(I) A: 8(f*, g) = a(f, g), aif, g~) < 8(f,g);  

B: 8(fL g) < 8(.s g), 8(/; g~) 3(f, g); 

C: 8(f  ~, g) 8(f, g:") : 8(f, g); 

D: 8(f ~,g) = 8(f,g*) = 8( . f ,g)--  1. 

On the other hand, 
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(II) A: for any optimal subgraph (f 

~(x) ~ f(x), 

but there exists an optimal ~ such that 

~(x)  > g(x); 

B: for any optimal subgraph 

~(x) ~ g(x), 

but there exists an optimal .~g such that 

%~(x) > f(x); 

C: for any optimal subgraph 

~(x) ~ f(x), ~(x)  < g(x); 

D: there exist two optimal subgraphs N, (~' such that 

~ ( x )  :>f(x) ,  ~ , ( x )  > g(x). 

Characterization (I) follows from Corollary (3.3) and from the unicity 
of  (f ,  ~); (I1) can be obtained by the application of (3.1) onto (I). 

Now form the following pair of functions: 

i 0 , if x c B ,  i 0 , if x c A ,  
f (x)  = if(x), if x r B; ~(x) = ig(x), if x r A. 

Lemma (4.1) gives that 

(6.2) (f ,  ~, ) is a maximal, consequently simple pair offunctions and 

3(j~ ~) = 3(.f, g) + g(A) -k U(B). 

Note that A, B, C, D belonging to (f,  g) are the same as A, B, C, D 
belonging to (f ,  g). 

Let [D1] ..... [Dr] denote the connected components of [D] again. 
Substituting the value of 8(J~ ~) from (10) we have 

(6.3) THEOREM. Let (f ,  g) ~ ~ ,  A, B, C, D defined as above and let ~" 
denote the number of  connected components of  [D]. Then 

3(f, g) = I ~ (A ,  B)! + .,- -- g(A) - - f (B ) .  

582/8/4-5 
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A characterization of the optimal subgraphs can be obtained similarly 
by reducing the problem to the case of simple pair of functions. If ~/] is any 
subgraph, then 

6:r g) ~ aa.(f, ~) ;-- &r ~) -- g(A) --,I(B). (,12) 

Let .~Y here be an optimal subgraph; then this inequality gives that f#' is 
(f,  2)-optimal too. Moreover, for fq being optimal the equality must hold 
in (12) in both places. 

&d.L g) -- 8,d J, ,0 

is equivalent to the condition that 

q~(x) ~ f ( x ) ,  if x c A, (13) 

opt(x) <~ g(x), if x ~ B, (14) 

qo~s(x) ~ f (x) ,  q~:~(x) :~ g(x), if x e C. (15) 

Similarly 
&.r g) -- 6cr ~) -- f (B)  -- g(A) 

holds if and only if 
opt(x) ~ g(x), if x c A, (16) 

~r ~ f (x) ,  if x ~  B. (17) 

Since (16) and (17) imply (13) and (14), we can formulate 

(6.4) THEOREM. Let ( f ,  g) ~ ~ ,  and let A, B, C, D defined as above. A 
subgraph U is (f, g)-optimal if  and only i f  it is (~  ~)-optimal and it satisfies 
(15), (16), and (17). The (f,  ~)-optimal subgraphs are characterized in 
Theorem (5.6). 

It is to be seen that the most "unpleasant" term is D. When does D 
vanish ? It is obvious that: 

(6.5) I f . f  + g > ~ then D = ~. 

Furthermore we prove: 

(6.6) l f  our graph is bipartite then D -= ;~. 

PROOF: We may confine ourselves to the case in which (f, g) is simple. 
Suppose indirectly D @ ~,  and let x ~ D 1 . By (5.6) there exist two simple 
subgraphs if, f#' such that 

q~fc(x) > f (x) ,  cp~,(x) < f(x) .  

By (5.7) N and fr are accessible from each other (the use of Theorem (5.7) 
is not necessary here; by Theorem (2.1) we could choose for (#' a subgraph 
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accessible f rom ~). There exists a sequence % = ~,  % ..... % = ~ '  of  
(presumably, simple) subgraphs such that 

~e ~ ~-_~ = {E~} (i --~ 1 ..... n). 

For  every 1 ~ i ~ n there exists just one point x~ e D~ such that 

Obviously 

and 

Since 

E, = (x~_~, x3  

~ , ( x 3  = f(x3 + ( -  ly .  

q~r,(x~) --  f(G~) • (--  1) '~ < f(xn), 

n is odd, and thus the Ei-s form an odd cycle. This is a contradiction. 

Suppose now, that f ,  g are constants. 

(6.7) I f f - - a , g  b , a + b  ~ q~andD = ;~ then3( f ,g)  = 0 .  

PROOF: Suppose, e.g., [ A ] ~ I B ]. Then 

] ,Y(A,B)] ~ ( a - ~ b )  lA  ~ a ] B ] + b ] A [ ;  

hence 
3 ( f , g ) =  ]~ ,~ (m ,B) ! - -b  A [ -- a ] O ] ~ 0. 

By combining (6.7) and (6.5), (6.6) we have 

(6.8) THEOREM. l f  f ( x )  = a, g(x) = b, a q- b > ~(x) for every x ~ S, 
then (1) is solvable. 

(6.9) THEOREM. The chromatic index 5 of  a bipartite graph equals to the 
maximum valency of  its vertices. 

That  latter theorem is due to Kbnig [4, p. 171]. 

7. We deduce formulas for 3(f, g). (f ,  g) is an arbitrary pair o f :~  again. 
Put  3(f, g) = 3. 

(7.1) THEOREM. 3 = min] c51 ~ ~2'. where fY~ and f~2 run through all 
subgraphs satisfying 

~ <~ f ,  ~ce~ <~ g. 

5 In the sense of [1, p. 31]. 
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(7.2) ]'HEOREM. 

5 rain ~ �9 " -  I :6~ r~ '~, - \ , i~,( . \!  /{.v) V ,j .~.(.':) .,.'(vi 

where V~ 1 and ",f 2 rm7 independently through all subgrap/,,s. 

Let us say that the pair (cr '-~'.,) of  subgraphs is optimal il" it gi~cs the 
maximum substituting into the right-hand side of  the formula of 
Theorem (7.2). From a knowledge of Theorem (7.2) ~e shall be able to 
state that a subgraph .~ is optimal if and only if" the pair (c6', ~/7) is optimal. 

PROOF OF THEOREMS (7.1)AND (7.2): For the moment ~e denote the 
quantities on the right-hand side of Theorems (7.1) and (7.2) by 8' and 8", 
respectively. It is obvious that 

6" <i 5'. 6" =~ 6. 

Consequently is enough to prove the following two statements: 

(a) There exists an optimal pair (',6' 1 , %',_,) such that 

(b) Tlwre exists an optimal pair (~ t  , ~',,) such that 

V:,;, ~ j L  of:,;,, -:=~ g. 

PROOF OF (a): Consider an optimal pair (f6~, ~'2) for which 
~1 r~ :f2 - ~ (such an optimal pair exists since the omission of ~x n -~2 
from, say, f~l does not change their optimality). Choose this pair in such a 
way that I r m :~ ! is minimal. We have to show f~x m ~,~,, =-- v .  Suppose 
indirectly E e f8x ~ ~J7 e and let x be an end-point of E. Since 

%q(x) ~ ~.,~,(x) -~ ~(.v) ~ f(x)  + g(x), 

we may suppose, e.g., 

(~ .@'l(X) < J4~X) �9 

~ Or2) is optimal pair; that contradicts the But then obv ious ly  (~1  u ~E~, an 
minimality of ]  ~x n ~ !. 

PROOF OF (b): Now let us choose the optimal pair (~1,  f~.-,) in such a 
way that E ~ ,  I + I fr is minimal. If we had 

~ , ( x )  > f ( x )  
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for some vertex x, then there would exist an edge E ~ C# 1 incident to x and 
the pair ( ~ 1 -  {E}, N2) would be optimal. That would contradict the 
minimality of J ~ ] -f- I N2 I. Hence 

and similarly 

g0% ~ g. 

Theorems (7.1) and (7.2) give ~ as the minimum of some expression; 
hence they do not differ very much from the definition of ~. The following 
two formulas give 8 as a maximum. To prove them we shall use the results 
of the former sections. 

Let X, Y C S, X c~ Y = ~ .  We denote by r(X, Y) the number of those 
connected components [Z] of [S -- X -- Y] for which 

f ( Z )  ~- g(Z) = cp(Z), f ( Z )  + ]•(X, Z)[ --- 1 (mod 2). (18) 

Further, we put ~-(Y) = r( ~,  Y). 
To point out the symmetry in f and g we show that a component [Z] 

of [S -- X -- Y] satisfies (18) if and only if it satisfies 

f ( Z )  + g(Z) = q~(Z), g(Z) + [~'(Y, Z)', ~ 1 (mod 2). (19) 

Really, if a component [Z] of [S -- X - -  Y] satisfies, e.g., (18), then 
obviously 

f ( z )  -+- g(z) = ~(z) 

holds for every z ~ Z and thus 

g(Z) q- l Y ( Z ,  Y)l -- f ( Z )  ~- cp(Z) -- / ~ ( Z ,  Y)I 

= f ( Z )  4- l Y(Z, X)l + 2 ] ~ ( z ) j  
~ f ( Z )  + I ~ (X ,  Z)[ (mod 2). 

(7.3) THEOREM. 

= max{~-(X, Y ) +  ] .~-(X, Y ) I -  g (X) - - f (Y ) } ,  

where (X, Y) runs through all disjoint pairs of subsets of S. 

The maximum is arrived for X = A, Y--~ B. On the other hand, if 
(X, Y) gives the maximum then it can be seen rather easily that A _C X, 
B _C y. The total characterization of the "optimal" pairs (X, Y) does not 
seem to be easy. 

PROOF: We use the notations of Section 6. By (5.2), 

~-(A, B) -~> f ~  "F 
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and thus by Theorem (6.4) 

"4 r(A, B) i ,;;(A, B)I g(A) -- f(B).  

Thus we have only to prove that (rather trivial) part of the theorem that 
for any subgraph ~r and for any X, Y C S, X c~ Y = =~ 

~,.;(J; g) ;~= r(X, Y)+is~- (X,  Y)i - g(X)- -U(Y) .  (20) 

To show (20), let us count the number kl of edges of L~ which have at 
least one end-point in Y plus the number ko of edges of  ~ which have an 
end-point in X. The edges of ~ ( Y ,  Y) are certainly to be counted. Further 

put 

a 1 - -  aN(jc~ g; X), a 2 = 8~(J; g; Y), 8a = 8~(f, g; S -- X -- r). 

Consider those components [Z] of [S - X --  u for which 

f ( Z )  + g(Z) = ~(Z), f ( Z )  + ge-(X, Z)] - 1 (mod 2). 

At most 8a of these components have 

G,(f, g; z)  > 0. 

Hence there are at least r(X, Y) --  8a such components for which 

S~,(f, g; Z) -- 0. 

Such a Z is joined either to X by an edge of 2g or to Y by an edge of ~, 
since otherwise we would have 

f ( Z )  + ] .~(X, Z)I -- q~.(Z) -5 [ ~ ( X ,  Z)I ~ 0 (mod 2). 

Hence 

kx - ,  k2 ;.> i ~v(X, Y)[ + ~-(X, Y) --  8a. (21) 

On the other hand, obviously 

k~ + I,2 ~ f ( Y )  + 8.,_ + g(X) q- 8~. (22) 

By combining (21) and (22) we obtain (20). 

(7.4) THEOREM. 

S = max{~-(X, (S --  X)) q- ~-(X~, (S - -  X)) q- I ~ ( X ~ ,  (S --  X)?)/ 

- -  g ( X ~ )  - - U ( ( S  - -  X ) } )  - -  i J ( X  - -  X ~ ,  S - -  X - -  ( S  - -  X)~)I}, 
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where X runs through all subsets of S; but it is enough to consider those 
subsets for which 

~ ( x  - x ~ ,  s - x - ( s  - x ) ~ )  = ~. 

Note that this formula is much more difficult then (7.3) but to state the 
maximum only one subset must run through the subsets of S. 

PROOF: We shall use the notations of Section 6 again. Let fr be an 
optimal subgraph. By Theorems (6.4) and (5.6) the integers of the interval 
[1, r] can be divided into two classes J , ,  ~ such that 

~ ( D ~ , A ) C f ~ ,  if i~oCx, 

~176 B)_C ~, if i E J~. 

Put D a = Uiear x Di,  DB = Ui~a, 2 D i ,  P = A U C u Da, Q = B u Ds.  
We show 

DA _C p -- p~, A _C Pe.  (23) 

Really, if x ~ DA then (5.5) shows that 

~0[DI(X) > f ( x )  -- [ ,~'(A, x)[, 

i.e., 
9[el(X) > f ( x )  > ~,(x). 

On the other hand, if x e A, then by Theorem (6.4) 

~tP~(X) <~ ~(x )  ~ g(x). 

From (23) it follows that 

P~ = A u C~, P -- P~ = DA kJ C2, (24) 

where C1 L) C2 = C. Similarly 

Q? = B, Q - Qi = DB. (25) 

Calculate now the value of 

v = r(Pe, Q) + r(P, Or) + I ~ ' (P / ,  Q?)[ - g(Pe) - f ( Q i )  

- -  1 ~ - (  e - -  e e ,  Q - Oi)I 

= r(ea, Q) + r(e,  Qt ) + [ ~,~(A, a)[ + I ~ (C~ ,  B)[ 

- -  g ( A )  - -  g ( C 1 )  - - f ( B ) .  

By (24), (25), and (4.2) 

r(Pi ,  Q) ~ [ ~ I, r(P, Q~) ~> ] 4 [ .  (26) 



414 LO~ XSZ 

Now. only n l e n l b e r s  depending on C s a r e  u l l k n o \ ~ l l .  For . \ ' :  C l , 

? ~e]0v).!,;ix). 
Oil the other hand. 

q:[•](x) : {/:~(.vt <:,;/.v); 

hence here the equality must hold. Thus 

g ( C 1 )  : (19(C1) {~7[p](C1) ,Y(C~, B) (27) 

(we have used (4.2) again). (26) and (27) imply 

v > r --  { , ~ ( a ,  n )  - -  g ( a )  - - , l ( n )  = 8(J; g). 

Thus we have only to prove that, for any X f S  and subgraph ~, 
putting Y = S - -  X ,  

a~,4f, g) ;,~ r(X,  Yi)  + r (X~,  Y)  + .  , ~ ( X  e , D)~ 

--  f ( Y i )  - -  g(X~) --  ] , ~ ( Y - -  X~ ,  Y - -  Y i )"  

The proof of this fact is just the same as the second part of the proof of 
Theorem (7.3); we omit it. 

8. We investigate the case f : 1 in greater detail. Suppose that our 
graph has no isolated vertices. Remark (1.2) shows that in this case a 
minimal optimal subgraph is an independent edge-system. We may confine 
ourselves to the case in which g ~- % i.e., g(x)  = q~(x) or g(x)  --  ~(x)  - -  1 

for any vertex x. 

Consider the sets A, B, C, D. 

(8.1) Y ( A ,  C) --  ,T (A ,  D) --  .T(C,  D) --  ,~(A) --  ;:~. (We have al- 
ready seen that oT(C, D) =- p is true for an arbitrary pair of functions.) 

P~OOF: Suppose indirectly that there is an edge E joining x e A u D 
to y c A v0 C. By the characterization (II) 6 of A and D there exists an 
optimal subgraph ~ such that 

consequently 
~ ( x ) -  ~(x); 

f ) and thus E r U,. By (2.1) 5Y' :Y u ~Ej is also optimal, and obviously 

~ , ' O ' )  - 2 .  

But this contradicts the characterization (I1) of A and C. 

6 See Section 6. 



SUBGRAPHS WITH PRESCRIBED VALENCIES 415 

Put  K - -  B w C ,  L = A w D .  Obviously g(x) ~ ~ ( x ) - -  1 if x ~ L .  
(8.1) implies that  the connected components  of  [L] are the components  of  
[D] and the vertices of  A. By (5.2) these components  have an odd number  
of  vertices; by (5.5) they even have the proper ty  that  omitt ing any vertex 
of  them the remaining graph contains a 1-factor. Fur thermore  the number  
of  componen t s  of  [L] is 

~-(K) ~ I A I q- ~-(A, B), 

and thus 

~(f, g) = I ~ ( A ,  B)[ + "r(A, B) -- g(A) -- f ( B )  

= q~(A) + (r(K)  --  ]A ]) - -  (q~(A) - -  I A i) - -  ] B ] = ~-(K) - -  I B [. 

Let us note that  ~-(K) can be interpreted as the number  of  those odd 
componen t s  of  [S - -  B] on which g = ~v - -  1. It  is easy to see that  these 
considerat ions give the following equivalent o f  the theorem ment ioned in 
the introduction:  

(8.2) THEOREM. Let  T C S. There exists an independent edge-system 
covering T i f  and only i f  f o r  any T'  C_ T the number o f  the odd components o f  
[T']  does not exceed the number o f  those vertices o f  S -- T '  which are joined 
to T'. 

Finally let us consider the case g ~ 9~ - -  I. By (1.2) and (1.3), a minimal  
opt imal  subgraph is a maximal  independent  edge-system and a maximal  
opt imal  subgraph is a minimal  edge-system covering all vertices. Denote  
their cardinali ty by ei and ec , respectively. Since they are opt imal  sub- 
graphs,  

~ ( f , g ) = 2 e c - - ] S I  = I S I - - 2 e ~ : ,  

and this gives the well-known formula  (see [2]): 

ei q- ec = ]S] .  (28) 

(Note  that  to show (28) we needed only (1.2) and (1.3).) 
The characterizat ion (II) gives that  L is the set of  those vertices which 

are covered (saturated) by every maximal  independent  edge-system. Thus 
the a rgument  before (8.2) gives the results of  [3] and [11] too. 
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