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ABSTRACT
We present randomized algorithms for finding maximum
matchings in general and bipartite graphs. Both algorithms
have running time O(nω), where ω is the exponent of the
best known matrix multiplication algorithm. Since ω <
2.38, these algorithms break through the O(n2.5) barrier for
the matching problem. They both have a very simple imple-
mentation in time O(n3) and the only non-trivial element of
the O(nω) bipartite matching algorithm is the fast matrix
multiplication algorithm.

Our results resolve a long-standing open question of whether
Lovász’s randomized technique of testing graphs for perfect
matching in time O(nω) can be extended to an algorithm
that actually constructs a perfect matching.

1. INTRODUCTION
A matching in an undirected graph G = (V, E) is a sub-
set M ⊆ E, such that no two edges of M are incident. Let
n = |V |, m = |E|. A perfect matching is a matching of cardi-
nality |V |/2. The problems of finding a Maximum Matching
(i.e. a matching of maximum size) and, as a special case,
finding a Perfect Matching if one exists, are two of the most
fundamental algorithmic graph problems.

Solving these problems in time polynomial in n remained an
elusive goal for a long time until Edmonds [6] gave the first
algorithm. Several other algorithms have been found since
then, the fastest of them being the algorithm of Micali and
Vazirani [12], Blum [2] and Gabow and Tarjan [7]. The first
of these algorithms is in fact a modification of the Edmonds
algorithm, the other two use different techniques, but all of
them run in time O(m

√
n), which gives O(n2.5) for dense

graphs.

On the other hand Lovász [10] showed that it is possible to
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test whether given graph has a perfect matching in random-
ized time O(nω), where ω is the exponent of the best known
matrix multiplication algorithm. Since ω < 2.38, this algo-
rithm is faster then any of the algorithms finding the perfect
matching.

Much more information about a graph can be obtained in
time O(nω) (see Cheriyan [4]). For example, it is possible to
find its Gallai-Edmonds decomposition, canonical partition,
identify the allowed edges, etc..

In this paper, we show that it is possible to actually con-
struct a maximum matching in randomized time O(nω).
Our algorithms have very simple O(n3) implementations.
In case of bipartite graphs, the only non-trivial part of the
algorithm is the fast matrix multiplication procedure of Cop-
persmith and Winograd [5]. In fact, we show that in this
case perfect matchings can be found using the well-known
LUP factorization algorithm of Hopcroft and Bunch [3] with
minor changes. The algorithm for general graphs is more
complicated, but matrix multiplication remains the most
complex part.

Remark 1.1. In case ω = 2 additional logarithmic factor
appears, so in the remainder of this paper we assume for
simplicity, that ω > 2.

Therefore, we not only resolve a long-standing open question
of finding maximum matchings in time O(n2.5−ε), but also
provide a new and simple approach to the problem.

The rest of the paper is organized as follows. In the next sec-
tion we recall some well known results useful in the matrix
approach to maximum matchings. We also recall that the
problem of finding a maximum matching can be reduced to
the problem of finding a perfect matching. In Section 3 we
introduce the idea of finding a perfect matching via Gaussian
elimination. We next use this idea to develop an elementary
O(n3) algorithm for finding perfect matchings in general
graphs and an O(nω) algorithm for finding an inclusion-
wise maximal allowed submatching of a given matching. In
Section 4 we show that in case of bipartite graphs we can re-
duce the time complexity of the perfect matching algorithm
to O(nω) by using the classic Hopcroft-Bunch LU factoriza-
tion algorithm. We also achieve the same time complexity
for general graphs by exploiting the structural properties of
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graphs having a perfect matching. Finally, we end in Sec-
tion 5 with some concluding remarks and open problems.

2. PRELIMINARIES
2.1 Matchings, Adjacency Matrices and Their

Inverses
Let G = (V, E) be a graph and let n = |V | and V =
{v1, . . . , vn}. A skew symmetric adjacency matrix of G is

a n × n matrix Ã(G) such that

Ã(G)i,j =

8<
:

xi,j if (vi, vj) ∈ E and i < j
−xi,j if (vi, vj) ∈ E and i > j
0 otherwise

,

where the xi,j are unique variables corresponding to edges
of G.

Tutte [17] observed the following

Theorem 2.1. The symbolic determinant det Ã(G) is non-
zero iff G has a perfect matching.

Lovász[10] generalized this to

Theorem 2.2. The rank of the skew symmetric adjacency
matrix Ã(G) is equal to twice the size of maximum matching
of G.

Choose a number R = nO(1) (more on the choice of R later

in this section) and substitute each variable in Ã(G) with a
random number taken from the set {1, . . . , R}. Let us call
the resulting matrix the random adjacency matrix of G and
denote A(G). Lovász showed that

Theorem 2.3. The rank of A(G) is at most twice the size
of maximum matching of G. The equality holds with proba-
bility at least 1 − (n/R).

This gives a randomized algorithm for deciding whether a
given graph G has a perfect matching: Compute the deter-
minant of A(G). With high probability, this determinant is
non-zero iff G has a perfect matching. This algorithm can be
implemented to run in time O(nω) using fast matrix multi-
plication (ω is the matrix multiplication exponent, currently
ω < 2.38, see Coppersmith and Winograd [5]).

The same applies to bipartite adjacency matrix of a bipartite
graph. Let G = (U, V, E) be a bipartite graph, where |U | =

|V | = n, U = {u1, . . . , un}, V = {v1, . . . , vn}. Let Ã(G)i,j =

xi,j if (ui, vj) ∈ E, otherwise Ã(G)i,j = 0. The symbolic

determinant of Ã(G) is non-zero iff the graph has a perfect
matching, and the rank of the matrix is equal to the size of
the maximum matching. Moreover, if we substitute random
numbers from {1, . . . , R} for the variables of Ã(G), then the
rank of the resulting matrix is at most equal to the size of the
maximum matching and the equality holds with probability
at least 1 − (n/R).

Let G be a graph having a perfect matching and let A =
A(G) be its random adjacency matrix. With high probabil-
ity detA �= 0, and so A is invertible. Rabin and Vazirani [14]
showed that

Theorem 2.4. With high probability, A−1
j,i �= 0 iff the

graph G − {vi, vj} has a perfect matching.

In particular, if (vi, vj) is an edge in G, then with high
probability A−1

j,i �= 0 iff (vi, vj) is allowed, i.e. it is contained
in some perfect matching. The same is true for the bipartite
adjacency matrix of a bipartite graph.

Both Theorem 2.3 and Theorem 2.4 follow from the follow-
ing lemma due to Zippel [18] and Schwartz [16]

Lemma 2.5. If p(x1, . . . , xm) is a non-zero polynomial of
degree d with coefficients in a field and S is a subset of the
field, then the probability that p evaluates to 0 on a random
element (s1, s2, . . . , sm) ∈ Sm is at most d/|S|.

For Theorem 2.3, it is enough to notice that the determinant
of Ã(G) is in fact a polynomial of degree n of the variables in

Ã(G). For Theorem 2.4, recall that A−1
i,j = adj(A)i,j/ det A,

where adj(A)i,j — the so called adjoint of A — is the de-
terminant of A with the j-th row and i-column removed,
multiplied by (−1)i+j .

It can be shown (see [14]), that these polynomials are non-
zero over the finite field Zp, so both theorems work in this
case as well. In fact, it follows from Lemma 2.5, that it is
enough to take p polynomial in n. This is important because
finite field aritmetic operations can then be performed in
constant time (except for the division, but in all algorithms
considered in this paper divisions are dominated by other
operations).

Using Theorem 2.4, perfect matchings can be found in a
straightforward manner: generete random adjacency matrix
A(G), compute A−1(G), find an allowed edge, remove this
edge together with its endpoints from G, generate A for
the new graph, etc.. The following theorem of Rabin and
Vazirani shows that randomization is needed only in the first
iteration.

Theorem 2.6. If A = A(G) is non-singular, then for ev-
ery vi there exists a vj such that Ai,j �= 0 and (A−1)j,i �= 0,
i.e. (vi, vj) is an allowed edge. Moreover, the matrix A with
rows i, j and columns i, j removed is also non-singular.

These considerations are enough to establish the error bounds
for our algorithms which are more efficient realizations of the
simple idea described above. Additional argument concern-
ing randomization will only be needed in Subsection 3.1 and
Subsection 4.2.3.

Throughout the rest of this paper, we use finite field arith-
metic and omit the “with high probability” phrase in most
statements.
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The probabilistic algorithms presented so far, as well as the
algorithms presented in the remainder of this paper, are all
Monte Carlo algorithms. Using techniques from [14] and [4]
all these algorithms can be made Las Vegas.

Notice that the matching algorithm for the bipartite case
uses randomization in a very limited manner, namely to find
a full-rank substitution for a skew-symmetric adjacency ma-
trix Ã(G). Other than that, the algorithm is deterministic.

2.2 Maximum vs. Perfect Matchings
The problem of finding a maximum matching is not harder
than the problem of finding a perfect matching, as the fol-
lowing theorem shows

Theorem 2.7. The problem of finding a maximum match-
ing can be reduced in randomized time O(nω) to the problem
of finding a perfect matching.

This was proved by Ibarra and Moran [9]1 in the bipartite
case and by Rabin and Vazirani [14] in the general case.

In the remainder of this paper we only consider the problem
of finding a perfect matching.

3. CONSTRUCTING MATCHINGS VIA
GAUSSIAN ELIMINATION

For any matrix A, let AR,C denote a submatrix of A cor-
responding to rows R and columns C. Consider a random
bipartite adjacency matrix A = A(G) of a bipartite graph
G = (U, V, E), where |U | = |V | = n, U = {u1, u2, . . . , un},
V = {v1, v2, . . . , vn}. If (u1, v1) ∈ E and A−1

1,1 �= 0, then
(u1, v1) is an allowed edge. We may thus choose this edge
as a matching edge and try to find a perfect matching in
G′ = G − {u1, v1}. The problem with this approach is that
edges that were allowed in G might not be allowed in G′.
Computing the matrix A(G′)−1 from scratch is out of the
question as this would lead to a O(nω+1) algorithm for per-
fect matchings. There is however another way shown in the
following well known property of the Schur complement:

Theorem 3.1 (Elimination Theorem). Let

A =

„
a1,1 vT

u B

«
A−1 =

„
â1,1 v̂T

û B̂

«
,

where â1,1 �= 0. Then B−1 = B̂ − ûv̂T /â1,1.

Proof. Since AA−1 = I , we have„
a1,1â1,1 + vT û a1,1v̂

T + vT B̂

uâ1,1 + Bû uv̂T + BB̂

«
=

„
I1 0
0 In−1

«
.

Using these equalities we get

B(B̂ − ûv̂T /â1,1) = In−1 − uv̂T − Bûv̂T /â1,1 =

In−1 − uv̂T + uâ1,1v̂
T /â1,1 = In−1 − uv̂T + uv̂T = In−1.

and so B−1 = B̂ − ûv̂T /â1,1 as claimed.

1Schrijver suggests in [15], that this paper shows how to
actually construct the matching, but this is not true.

The modification of B̂ described in this theorem is in fact
a single step of the well known Gaussian elimination pro-
cedure. In this case, we are eliminating the first variable
(column) using the first equation (row). Similarly, we can
eliminate from A−1 any other variable (column) j using any
equation (row) i, such that A−1

i,j �= 0.

As an immediate consequence of Theorem 3.1 we get simple
O(n3) algorithms for finding perfect matchings in bipartite
(Algorithm 1) and general (Algorithm 2) graphs.

Algorithm 1 Simple algorithm for perfect matchings in
bipartite graphs.

SIMPLE-BIPARTITE-MATCHING(G):
B = A−1(G)
M = ∅
for c = 1 to n do

1. find a row r, not yet eliminated, and such that Br,c �= 0
and A(G)c,r �= 0 (i.e. (uc, vr) is an allowed edge in
G − V (M));

2. eliminate the r-th row and the c-th column of B;

3. add (uc, vr) to M ;

Algorithm 2 Simple algorithm for perfect matchings in
general graphs.

SIMPLE-GENERAL-MATCHING(G):
B = A−1(G)
M = ∅
for c = 1 to n do
if column c is not yet eliminated then

1. find a row r, not yet eliminated, and such that Br,c �= 0
and A(G)c,r �= 0 (i.e. (vc, vr) is an allowed edge in
G − V (M));

2. eliminate the r-th row and the c-th column of B;

3. eliminate the c-th row and the r-th column of B;

4. add (vc, vr) to M ;

3.1 Matching Verification
We now consider a particularly simple case of Gaussian elim-
ination with no pivoting and show how to use it to find an
inclusion-wise maximal allowed submatching of any match-
ing in time O(nω).

Assume that we are performing a Gaussian elimination on
a n × n matrix X and we always have Xi,i �= 0 after elim-
inating the first i − 1 rows and columns. In this case, we
can avoid any row or column pivoting, and the algorithm
SIMPLE-ELIMINATION (Algorithm 3) performs Gaussian
elimination of X in time O(nω). By “lazy elimination” we
mean storing the expression of the form uvT /c describing
the changes required in the remaining submatrix without
actually performing them. These changes are then executed
in batches during the calls to UPDATE(R,C) which updates
the XR,C submatrix. Suppose that k changes where accumu-
lated for the submatrix XR,C and then UPDATE(R,C) was
called. Let these changes be u1v

T
1 /c1, u2v

T
2 /c2, . . ., ukvT

k /ck.
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Algorithm 3 Gaussian elimination with no pivoting

SIMPLE-ELIMINATION(X):
for i = 1 to n do

1. lazily eliminate the i-th row and i-th column of X;

2. let j be the largest integer such that 2j |i;
3. UPDATE({i + 1, ..., i + 2j}, {i + 1, ..., n});
4. UPDATE({i + 2j + 1, ..., n}, {i + 1, i + 2j});

Then the accumulated change of XR,C is

u1v
T
1 /c1 + u2v

T
2 /c2 + . . . , ukvT

k /ck = UV

where U is a |R|×k matrix with columns u1, u2, . . . , uk and
V is a k × |C| matrix with rows vT

1 /c1, v
T
2 /c2, . . . , v

T
k /ck.

The matrix UV can be computed using fast matrix multi-
plication.

This algorithm is an iterative description of the standard
recursive factorization algorithm. It has time complexity
O(nω) because of the following lemma

Lemma 3.2. The number of changes performed by Algo-
rithm 3 in step 3. and 4. is at most 2j .

Proof. In the i-th iteration rows i + 1, . . . , i + 2j and
columns i + 1, . . . , i + 2j are updated. Since 2j |i, we have
2j+1|i− 2j , so these rows and columns were also updated in
step i − 2j . Thus, the number of changes is at most 2j .

It follows from this lemma, that the cost of the update in
i-th iteration is proportional to the cost of multiplying the
2j × 2j matrix by a 2j × n matrix. By splitting the second
matrix into 2j × 2j square submatrices, this can be done
in time n/2j(2j)ω = n(2j)ω−1. Now, every j appears n/2j

times, so we get the total time complexity of

�log n�X
j=0

n/2jn(2j)ω−1 = n2

�log n�X
j=0

(2ω−2)j =

= O(n2(2ω−2)�log n�) = O(nω)

Thus, we get

Theorem 3.3. Naive iterative Gaussian elimination with-
out row or column pivoting can be implemented in time O(nω)
using a lazy updating scheme.

The SIMPLE-ELIMINATION algorithm is similar to the
classic Hopcroft-Bunch algorithm [3]. Being iterative (and
much simpler), it is better suited for proving Theorem 3.4,
where we need to skip row-column pairs if the corresponding
diagonal element is zero.

Theorem 3.4. Let G be a graph having a perfect match-
ing. For any matching M of G, an inclusion-wise maximal
allowed (i.e. extendable to a perfect matching) submatching
M ′ of M can be found in time O(nω).

Proof. Let M = {(v1, v2), (v3, v4), . . . , (vk−1, vk)} and
let vk+1, vk+2, . . . , vn be the unmatched vertices. Compute
the inverse A(G)−1 of random adjacency matrix of G and
permute its rows and columns so that the row order is v1,v2,v3,
v4, . . . , vn and the column order is v2,v1,v4,v3, . . . , vn,vn−1.
Now, perform Gaussian elimination of the first k rows and k
columns using the SIMPLE-ELIMINATION algorithm, but
if the eliminated element is zero just skip to the next it-
eration. The eliminated row-column pairs correspond to a
maximal submatching M ′ of M .

This verification algorithm is interesting in itself but it is
also a key ingredient in our matching algorithm for general
graphs.

Remark 3.5. Theorem 2.6 does not guarantee that A(G)−1

correctly encodes the allowed edges. Fortunately, we can still
use Theorem 2.4. For sufficiently large (but polynomial) p,
we get the correct non-zero structure throughout the algo-
rithm.

4. ALGORITHMS FOR FINDING A PER-
FECT MATCHING

4.1 Bipartite Graphs
We start with the simple case, that is with bipartite graphs.
Let G = (U, V, E), |U | = |V | = n, be a bipartite graph
having a perfect matching and let A = A(G) be its bipartite
adjacency matrix.

Assume that we fix the column order and eliminate the
columns from left to right. When eliminating the i-th col-
umn we have to find a row j, not already eliminated, such
that (ui, vj) ∈ E and the updated value of A−1(j, i) is non-
zero. We cannot use the SIMPLE-ELIMINATION algo-
rithm, because we do not know the elimination order of the
rows in advance. There is, however, a bit more complicated
algorithm that allows row pivoting and still works in time
O(nω) — the classic LU factorization algorithm of Hopcroft
and Bunch (see [3] and [1]). This algorithm looks for a non-
zero element in the currently eliminated column and it is
possible to modify it so that it only chooses elements corre-
sponding to edges of G.

For completeness we present a simplified version of the Hopcroft-
Bunch algorithm in Appendix A.

4.2 General Graphs
4.2.1 Basic Idea
In case of general graphs, the removal of vertices u, v ∈ V ,
(u, v) ∈ E corresponds to first eliminating the u-th row and
the v-th column and then eliminating the v-th row and the
u-th column. The lazy computation mechanism of Hopcroft-
Bunch algorithm does not work any more.

The idea of our algorithm (Algorithm 4) is that, if |M ′| ≥
n/8, then GENERAL-MATCHING is called for a graph
smaller by a constant factor, and if |M ′| ≤ n/8 then it is
possible to use some structural properties to partition G into
smaller pieces, and find a perfect matching in each of them
separately.

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04) 

0272-5428/04 $20.00 © 2004 IEEE 



Algorithm 4 O(nω) algorithm for perfect matchings in gen-
eral graphs.

GENERAL-MATCHING(G):

1. Find a matching M of size ≥ n/4 using the greedy
algorithm.

2. Verify M using the algorithm from Theorem 3.4. Let
M ′ be the maximal allowed subset of M .

3. Match the vertices of M ′ and remove them from G.

4. If |M ′| ≥ n/8, call GENERAL-MATCHING(G −
V (M ′)), where V (M ′) is the set of vertices matched
by M ′.

5. Otherwise, call PARTITION(G− V (M ′)).

4.2.2 Canonical Partition
We now describe the details of the PARTITION(G) proce-
dure. Let us start with a few definitions. A graph G is
called elementary if G has a perfect matching and allowed
edges of G form a connected spanning subgraph of G. Let
us define a relation ∼G on the set V as follows: u ∼G v iff
either u = v or G−{u, v} does not have a perfect matching.
The following theorem is due to Lovász (see [11])

Theorem 4.1. If G is elementary, then ∼G is an equiv-
alence relation.

By P (G) we denote the set of equivalence classes of ∼G, the
so-called canonical partition of G. Recall that G−{u, v} has
a perfect matching iff A(G)−1 �= 0, so the matrix A(G)−1

encodes the canonical partition. P (G) has very nice struc-
tural properties as the following theorem shows (see [11] for
details)

Theorem 4.2. Let G be elementary, let S ∈ P (G) with
|S| ≥ 2 and let C be any component of G − S. Then:

1. the bipartite graph G′
S obtained from G by contracting

each component of G−S to a single vertex and deleting
edges in S is elementary;

2. the graph C is factor-critical, i.e. for any vertex v ∈
V (C), C − v has a perfect matching;

3. the graph C′ obtained from G[V (C)∪S] by contracting
the set S to a single vertex uC is elementary;

4. P (C′) = {{uC}} ∪ {T ∩ V (C)|T ∈ P (G)}.

In particular, this means that the number of connected com-
ponents in G − S is equal to |S| and that every perfect
matching of G matches vertices of S with vertices in differ-
ent components of G − S. Moreover, any such matching of
vertices of S can be extended to a perfect matching of G.

The PARTITION algorithm (Algorithm 5) breaks G down
into bipartite and non-bipartite pieces and reduces the prob-
lem of finding a perfect matching in G to problem of finding
perfect matching in all pieces using Algorithm 7 and Algo-
rithm 4. We now show, that the total size of the pieces is

Algorithm 5 The partitioning algorithm.

PARTITION(G):

1. If G is not elementary, compute the elementary com-
pononents of G and perform partition of each compo-
nent;

2. Let S ∈ P (G) with |S| = k ≥ 2 and let C1, . . . , Ck

be connected components of G − S. Assume that C1

is the largest component. Any perfect matching of G
is a sum of k + 1 perfect matchings. One of them is
a perfect bipartite matching between S and a set C
containing a single vertex ci from each of the Ci. The
other k matchings are perfect matchings in Ci − ci.

3. Let C′
1 be the graph G[S∪V (C1)] with S contracted to

a single artificial vertex s. We have P (C′
1) = {{s}} ∪

{Si ∩ V (C1)|Si ∈ P (G)}, so we can infer P (C′
1) from

P (G).

4. If P (C′
1) contains a non-trivial class, call

PARTITION(C′
1). Otherwise call GENERAL-

MATCHING(C′
1).

5. Let M ′
1 be the matching found.

6. M ′
1 matches the contracted vertex s with some vertex

c. Let v ∈ S be any neighbour of c. Remove s from
C′

1 and match c with v.

7. Extend {(c, v)} to a perfect bipartite matching be-
tween S and some set C containing a single vertex
from each of the Ci. This is possible since {(c, v)} is
an allowed edge (if it would not be allowed, we would
have c ∼G v, and so c ∈ S).

8. Remove the matched vertex from each of the Ci and
find perfect matchings in each of the resulting graphs.

equal to n, and that the non-bipartite pieces are by a con-
stant factor smaller than G. It follows that the complexity
of both Algorithm 4 and Algorithm 5 is O(nω).

Lemma 4.3. The total number of vertices of graphs in
which PARTITION finds perfect matchings by calling the
BIPARTITE-MATCHING algorithm or the GENERAL-MA-
TCHING algorithm is equal to n.

Proof. The only problem here is the creation of artificial
vertices in step 3. But notice that the matching of every such
vertex is then used in step 6. to match some other vertex “for
free”. While going up the partition tree, all these artificial
vertices are eventually exchanged with real ones and so the
total number of vertices matched is equal to the number n
of real vertices.

Lemma 4.4. The PARTITION algorithm calls the GENE-
RAL-MATCHING algorithm for graphs with ≤ 7/9n ver-
tices.

Proof. The components that are not the largest compo-
nents at their stage of partition can have at most n/2 vertices
since otherwise they would be the largest components.

The largest component, on the other hand, is subject to fur-
ther partition, so we only have to prove that when the parti-
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tion stops in step 4., C′
1 has at most 7/9n vertices. Observe

that whenever PARTITION(G) is called from GENERAL-

MATCHING, graph G has a matching M̂ consisting of only
unallowed edges and spanning at least n/3 vertices. Let V̂

be the set of these vertices. The edges of M̂ can never go
across the partition, so when the decomposition stops in step
4., C′

1 does not contain any vertices of V̂ . Now, notice that
with each step of the partition, the largest component loses
at least three vertices (at least two vertices in S and at least
one vertex in some smaller component) and gains exactly one
artificial vertex. Thus, the number of vertices in C′

1 when
partition stops is at most n−2/3|V̂ | ≤ n−2/9n = 7/9n.

We have thus reduced the problem of finding a perfect match-
ing in a graph of size n to the problem of finding perfect
matchings or bipartite perfect matching in its pieces. The
size of each non-bipartite piece is at most 7

9
n. Since we can

find the perfect matchings in these pieces in time O(sω),
where s is the size of the piece, the complexity of the PAR-
TITION algorithm is O(nω).

Note that the size of a bipartite piece may be Θ(n), but this
is not a problem since we already know how to find bipartite
perfect matchings in time O(nω).

Theorem 2.6 does not guarantee that A(G)−1 correctly en-
codes the canonical partition, compare Remark 3.5.

4.2.3 Implementation Details
So far we have ignored the problem of performing the canon-
ical partition and concentrated on the complexity of finding
perfect matchings in its parts. The algorithm performing
the whole partition in time Õ(n2) is implicit in the work
of Cheriyan [4], but for completeness we present the main
ideas here.2

First of all, we use the dynamic connectivity algorithm of
Holm, de Lichtenberg and Thorup [8]. Their algorithm sup-
ports the following operations on a dynamic graph:

• INSERT(e) — inserts edge e into G;

• DELETE(e) — deletes edge e from G;

• SIZE(v) — returns the size the connected component
of v;

• CONNECTED(u, v) — tests if u and v are connected
by a path in G;

All these operations require only polylogarithmic time.

Single stage of PARTITION is presented as Algorithm 6.
Steps 3., 4. and 6. take time Õ(n). Since partition has at
most O(n) stages, the total time required to perform these

steps is Õ(n2).

The complexity of step 1. is O(n2) for the whole partition.
To see this, notice that we only have to test if v is an element

2Õ denotes the so-called “soft O” notation, i.e. f(n) =

Õ(g(n)) iff f(n) = O(g(n) logk n) for some constant k.

Algorithm 6 Implementation details of the PARTITION
algorithm

PARTITION(G): /* implementation details */

1. choose a non-trivial set S ∈ P (G), if one exists;

2. call DELETE(e) for all edges between G[S] and G−S;
let T be the set of all the G − S endpoints of these
edges;

3. call SIZE(v) for all v ∈ T and let u be a vertex for
which the returned value is the largest;

4. call CONNECTED(u, v) for all v ∈ T and let D be the
set of vertices in T disconnected from u; these vertices
represent the smaller components and u represents the
largest component;

5. call DFS starting from vertices in D thus identifying
all the components except the largest one; the largest
component is identified without performing a DFS as
a complement of S and the smaller components; let C
be the largest component;

6. create additional vertex s and call INSERT(s, v) for
all v ∈ T − D;

of a non-trivial set S ∈ P (G) once. If v is an element of such
S, then we can use S as a basis for partition and C will not
contain v. If, on the other hand, v is not an element of a
non-trivial set S ∈ P (G), that it will never be, because of
the property 4. in Theorem 4.2.

Steps 2. and 5. require time proportional to the number
of edges between G[S] and G − S and edges inside smaller
components. These sets of edges are disjoint for different
phases so the total complexity of steps 2. and 5. is Õ(m) =

Õ(n2).

The partition algorithm can be thus implemented to run in
time Õ(n2). This does not increase the time complexity of
the matching algorithm.

5. CONCLUDING REMARKS AND OPEN
PROBLEMS

We have presented O(nω) randomized algorithms for the
maximum matching problem, therefore breaking the long-
standing O(n2.5) barrier. Using similar techniques together
with separator decomposition and fast nested dissection,
maximum matchings in planar graphs can be found in time
O(nω/2). These results will be published elsewhere [13].

In the bipartite case, the only non-trivial part of the algo-
rithm is the fast matrix multiplication procedure. The gen-
eral case is more complex because of performing the canon-
ical partition. Is this structural approach really neccessary?
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APPENDIX
A. THE HOPCROFT-BUNCH ALGORITHM
We now present a slight modification of the Hopcroft-Bunch
algorithm that can be used to find perfect matchings in bi-
partite graphs (see Subsection 4.1). Hopcroft and Bunch
present their algorithm in a recursive manner. We have de-
cided to use iterative approach to emphasize the fact that
this algorithm is an extension of the SIMPLE-BIPARTITE-
MATCHING algorithm.

The basic idea is that since columns are eliminated from left
to right, we do not need to update the whole rows, only the
parts that will be needed soon. Notice that in this case the

Algorithm 7 O(nω) algorithm for perfect matchings in bi-
partite graphs.

BIPARTITE-MATCHING(G):
B = A−1(G)
M = ∅
for c = 1 to n do

1. find row r such, that A(c, r) �= 0 and B(r, c) �= 0, i.e.
(uc, vr) is an allowed edge G − V (M);

2. lazily eliminate the r-th row and c-th column of B;
3. let j be the largest integer such that 2j |c;
4. update columns c + 1, c + 2, . . . , c + 2j ;

update operation is a bit more complicated than in Algo-
rithm 3. Suppose we update columns c+1, c+2, . . . , c+2j .
These columns were updated in the (c − 2j)-th iteration, so
we have to perform updates resulting from elimination of
columns c − 2j + 1, c − 2j + 2, . . . , c. Let us assume with-
out loss of generality that the corresponding rows have the
same numbers. The first update comes from elimination of
the (c − 2j + 1)-th column and (c − 2j + 1)-th row. The
second update comes from elimination of the (c− 2j +2)-th
column and (c−2j+2)-th row, but we do not know the values
B(c−2j+2, c+1), B(c−2j+2, c+2), . . . , B(c−2j+2, c+2j) in
this row without performing the first update. Fortunately,
we can use the lazy computation trick once again! We lazily
perform the postponed updates one after another and after
performing the i-th update, we only compute the actual val-
ues for the rows used in the next 2l updates, where l is the
largest number, such that 2l|i.

What is the time complexity of updating columns c + 1, c +
2, . . . , c+2j? We have to perform 2j updates and performing
the i-th update requires multiplication of a 2l × 2l matrix
by a 2l × 2j matrix, where l is as before. This is the same
situation as in the analysis of Algorithm 3, but now we have
2j instead of n. The complexity is thus O(2jω). We also
have to count the time required to update the rows c +
1, c + 2, . . . , c + 2j and this requires multiplication of a (n−
c)×2j matrix by a 2j ×2j matrix. This can be done in time
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Figure 1: Update in the bipartite perfect match-
ing algorithm. The shaded region is being updated.
Changes in the square labelled “?” depend on each
other, while the changes to the entries below the
“?” can be computed using straight matrix mul-
tiplication. The rest of the matrix can be divided
into three parts: the part marked A has been fully
updated and further elimination will not affect the
entries in A, the part marked B has already been
updated but further elimination will affect the en-
tries in B and additional updates will be required,
the part marked C has not been updated yet. The
region outlined with dashed lines corresponds to the
columns used in the update being performed.

O(n/2j2jω) = O(n(2j)ω−1). We now have to sum it up over
all j, but again, this is the same sum as before and we get
O(nω).

Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS’04) 

0272-5428/04 $20.00 © 2004 IEEE 


