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1. INTRODUCTION

Given an undirected graph G = (V, E) with edge weights c, for each edge e € E
and node capacities b, for each node v € V, the b-matching problem is to find a
maximum weight integral vector x € ]N(l)E| satisfying Ze:(v w) Te < by forallv e V.
If, in addition, equality is required to hold in these inequélities for all nodes, the
b-matching problem is called perfect.

Weighted b-matching is a cornerstone problem in combinatorial optimization. Its
theoretical importance is due to the fact that it generalizes both ordinary weighted
matching (i. e. matching with all node capacities equal to one, 1-matching) and
minimum cost flow problems. All these problems belong to a ‘well-solved class of
integer linear programs’ [Edmonds and Johnson 1970] in the sense that they all can
be solved in (strongly) polynomial time. There are excellent surveys on matching
theory by Gerards [1995], Pulleyblank [1995], and Lovész and Plummer [1986].

Applications. Important applications of weighted b-matching include the T -join
problem, the Chinese postman problem, shortest paths in undirected graphs with
negative costs (but no negative cycles), the 2-factor relaxation for the symmetric
traveling salesman problem (STSP), and capacitated vehicle routing [Miller 1995].
For numerous other examples of applications of the special cases minimum cost flow
and 1-matching we refer to the book of Ahuja, Magnanti, and Orlin [1993].

A somewhat surprising new application of weighted b-matching stems from quadri-
lateral mesh refinement in computer-aided design [M6hring et al. 1997; Mdhring and
Miiller-Hannemann 2000]. Given a surface description of some workpiece in three-
dimensional space as a collection of polygons (for example, a model of a flange with
a shaft, see Fig. 1), the task to refine the coarse input mesh into an all-quadrilateral
mesh can be modeled as a weighted perfect b-matching problem (or, equivalently, as
a bidirected flow problem). This class of problem instances is of particular interest
because unlike the previous examples, the usually occurring node capacities b, are
quite large (in principle, not even bounded in O(]V|)) and change widely between
nodes.

Both authors have been engaged in a research project together with partners
in industry where this approach to mesh refinement has been developed. To the
best of our knowledge, there is no publicly available code for weighted b-matching
problems. Therefore, we first took the obvious formulation of weighted perfect b-

Fig. 1. The model of a flange with a shaft and its refinement by our algorithm.
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matching problem as an integer linear program (ILP) and used CPLEX! and its
general purpose branch & and bound facilities to solve our instances. The corre-
sponding experiences allowed us to conclude that the modeling of the mesh refine-
ment problem as a weighted perfect b-matching problem captures the requirements
of a high-quality mesh refinement very successfully [Miiller-Hannemann 1997]. The
drawback, however, of such an ad-hoc solution was manifold: first, we encountered
instances which could not be solved with CPLEX to optimality within reasonable
time and space limits; second, we found the average running time too large for a
convenient use in an interactive CAD-system, and third, our partners in industry
prefer a software solution independent from commercial third-party products like
CPLEX. Hence, the practical need to solve the mesh refinement problems in an
efficient and robust way led us to work on our own implementation of weighted
b-matching.

Design goals and main features of our implementation. As mentioned
above, matching problems are well-understood in theory. Nevertheless the imple-
mentation of an algorithm for weighted b-matching is a real ‘challenge’.

An efficient and adaptable implementation requires a sophisticated software de-
sign. A recent systematic discussion of this design problem in the general context of
graph algorithms can be found in [Weihe 1998]. In his paper, Weihe uses Dijkstra’s
algorithm as a running example to demonstrate what flexible adaptability of an
algorithm component really means. The complications which arise in our context
are due to the fact that we have to perform quite complex graph operations, namely
shrinking and expanding of subgraphs, the famous “blossoms.”

Design patterns capture elegant solutions to specific design problems in object-
oriented software design which support reuse and flexibility. See the book of
Gamma, Helm, Johnson, and Vlissides [1995] for an excellent introduction to de-
sign patterns. Our approach uses the design patterns strategy, observer and iterator
which are well-known from [Gamma et al. 1995] as well as data accessor, loop ker-
nel, and adjacency iterator introduced by Kiihl and Weihe [1996], Kiihl and Weihe
[1997]. The present paper serves as an empirical case study in the application of
design principles.

As there are many promising variants of b-matching algorithms, but not too
much practical experience with them, we decided to develop a general framework
which captures all of these variants. This framework enabled us to do a lot of
experiments to improve the performance of our code incrementally by exchanging
subalgorithms and data structures. We thereby got an efficient code which solves
all instances from our mesh refinement application very well, but seems to be also
fast on other classes of instances. Details can be found in an accompanying com-
putational study [Miiller-Hannemann and Schwartz 1999].

Previous work. Most work on matching problems is based on the pioneering
work of Edmonds [Edmonds 1965b; Edmonds 1965a; Edmonds 1967]. “Blossom 17
by Edmonds, Johnson, and Lockhart [1969] was the first implementation for the
bidirected flow problem (which is, as mentioned above, equivalent to the b-matching

LCPLEX[tm)] is a registered trademark of ILOG S. A., http://www.ilog.com/
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problem). Pulleyblank [1973] worked out the details of a blossom-based algorithm
for a mixed version of the perfect and imperfect b-matching in his Ph. D. thesis
and gave a PL1 implementation, “Blossom II”. His algorithm has a complexity of
O(|V||E|B) with B = }_, -\ by, and is therefore only pseudo-polynomial.

Marsh III [1979] used scaling to obtain the first polynomial bounded algorithm
for b-matching. In principle, b-matching problems may be reduced to 1-matching
problems by standard transformations (see for example Gerards [Gerards 1995,
pp.179-182]). However, the enormous increase in problem size makes such an ap-
proach infeasible for practical purposes. Gabow [1983] proposes an efficient re-
duction technique which avoids increasing the problem size by orders of magni-
tude. Together with scaling this approach leads to an algorithm with a bound of
O(|E|?log |V|10g Bmaz) Where By, is the largest capacity.

Edmonds showed that a b-matching problem can be solved by solving one poly-
nomially sized general network flow problem and one polynomially sized perfect
1-matching problem (for the details, see again Gerards [Gerards 1995, pp.186-187]).
Hence, this observation leads to a strongly polynomial algorithm if both subprob-
lems are solved by strongly polynomial algorithms.

Anstee [1987] suggested a staged algorithm. In a first stage, the fractional re-
laxation of the weighted perfect b-matching is solved via a transformation to a
minimum cost flow problem on a bipartite graph, a so-called Hitchcock transporta-
tion problem. In stage two, the solution of the transportation problem is converted
into an integral, but non-perfect b-matching by rounding techniques. In the fi-
nal stage, Pulleyblank’s algorithm is invoked with the intermediate solution from
stage two. This staged approach also yields a strongly-polynomial algorithm for the
weighted perfect b-matching problem if a strongly polynomial minimum cost flow
algorithm is invoked to obtain the optimal fractional perfect matching in the first
stage. The best strongly polynomial time bound for the (uncapacitated) Hitchcock
transportation problem is O((|V|log |V |)(|E|+|V|log|V|) by Orlin’s excess scaling
algorithm [Orlin 1988], and the second and third stage of Anstee’s algorithm require
at most O(|V|?|E)).

Derigs and Metz [1986] and Applegate and Cook [1993] reported on the enormous
savings using a fractional “jump start” of the blossom algorithm for weighted 1-
matching. Miller and Pekny [1995] modified Anstee’s approach. Roughly speaking,
instead of rounding on odd disjoint half integral cycles, their code iteratively looks
for alternating paths connecting pairs of such cycles.

Padberg and Rao [1982] developed a branch & cut approach for weighted b-
matching. They showed that violated odd cut constraints can be detected in poly-
nomial time by solving a minimum odd cut problem. Grétschel and Holland [1985]
reported a successful use of cutting planes for 1-matching problems. However, with
present LP-solvers the solution time required to solve only the initial LP-relaxation,
i. e. the fractional matching problem, is often observed to be in the range of the
total run time required for the integral optimal solution by a pure combinatorial
approach. Therefore, we did not follow this line of algorithms in our experiments.

With the exception of the paper by Miller and Pekny [1995] we are not aware
of a computational study on weighted b-matching. However, many ideas used for
1-matching can be reused and therefore strongly influenced our own approach. For
example, Ball and Derigs [1983] provide a framework for different implementation



Implementing Weighted b-Matching Algorithms . 5

alternatives, but focus on how to achieve various asymptotical worst case guaran-
tees. For a recent survey on computer implementations for 1-matching codes, we
refer to [Cook and Rohe 1997]. In particular, the recent “Blossom IV” code of Cook
and Rohe [1997] seems to be the fastest available code for weighted 1-matching on
very large scale instances. We believe that almost all previous approaches for 1-
matching are not extendible to b-matching. One reason is that one usually exploits
for efficiency reasons the fact that each node can have at most one incident matched
edge. Some implementations also assume that edge costs are all non-negative. The
mesh refinement application, however, uses arbitrary cost values.

It seems that, in general, implementation studies focus on performance issues
and do not address reuseability.

Overview. The rest of the paper is organized as follows. In Section 2 we give
a brief review of the blossom algorithm as described by Pulleyblank. It will only
be a simplified high-level presentation, but sufficient to discuss our design goals in
Section 3 and to outline our solution in Section 4 afterwards. A computational com-
parison of our code with that of Miller & Pekny will be given in Section 5. Finally,
in Section 6 we summarize the advantages and disadvantages of our approach.

2. AN OUTLINE OF THE BLOSSOM ALGORITHM

In this section, we give a rough outline of the primal-dual algorithm following the
description by Pulleyblank [1973]. The purpose of this sketch is only to give a basis
for the design issues to be discussed later, and to point out some differences to the
1-matching case. A self-contained treatment is given in Appendix A.

For an edge set F' C E and a vector = € W(LE‘, we will often use the implicit sum-
mation abbreviation z(F) := ) _p .. Similarly, we will use b(W) := 3" _y by
for a node set W C V.

Linear programming formulation. The blossom algorithm is based on a linear
programming formulation of the maximum weighted perfect b-matching problem.
To describe such a formulation, the blossom description, let Q :={ S CV ||S| >
3 and [b(S)| is odd } and g5 := 3(b(S) — 1) for all S € Q. Furthermore, for each
W C V let §(W) denote the set of edges that meet exactly one node in W, and (W)
the set of edges with both endpoints in W. Then, a maximum weight b-matching
solves the linear programming problem

T

maximize ¢ z

subject to
(P1) z(6(v)) = by forveV
(P2) ze > 0 forec E
(P3) z(v(S)) < gs for SeQ.

The dual of this linear programming problem is
minimize y7b + Y 7Tq
subject to

(D1) Yu + Yo + Y (Q4(€))
(D2) Ys

with Q,(e) == { S € Q| e € 7(S) }.

Ce fore = (u,v) € E
0 for S € Q

VIV
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Fig. 2. The structure of the blossom algorithm.

We define the reduced costs as Ce 1= yy + yo + Y (,(e)) —ce for all e € E. A
b-matching = and a feasible solution (y,Y") of the linear program above are optimal
if and only if the following complementary slackness conditions are satisfied:

(CS1) 2. >0 = =0 foree E
(CS2) Ys >0 = z(y(S)) =¢s for S € Q.

A primal-dual algorithm. The primal-dual approach starts with some not nec-
essarily perfect b-matching = and a feasible dual solution (y,Y) which satisfy to-
gether the complementary slackness conditions (CS1) and (CS2). Even more, the
b-matching z satisfies (P2) and (P3). Such a starting solution is easy to find, in
fact, x = 0, y, := %max{ce|e = (v,w) € E} for allv € V and Y = 0 is a feasible
choice.

The basic idea is now to keep all satisfied conditions as invariants throughout
the algorithm and to work iteratively towards primal feasibility. The latter means
that one looks for possibilities to augment the current matching.

To maintain the complementary slackness condition (CS1) the search is restricted
to the graph induced by edges of zero reduced costs with respect to the current dual
solution, the so-called equality subgraph G=. In a primal step of the algorithm, one
looks for a maximum cardinality b-matching within G=.

We grow a forest F' which consists of trees rooted at nodes with a deficit, i. e.
with z(6(v)) < b,. Within each tree T' € F' the nodes are labeled even and odd
according to the parity of the number of edges in the unique simple path to the
root r (the root r itself is even). In addition, every even edge of a path from the
root r to some node v € T must be matched, i. e. z, > 0. Candidate edges to
grow the forest are edges where one endpoint is labeled even and the other is either
unlabeled or labeled even.

Augmentations are possible if there is a path of odd length between two deficit
nodes on which we can alternatively add and subtract some ¢ from the current
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Fig. 3. A sample blossom with an odd cir- Fig. 4. Example of an augmenting forest con-
cuit of length seven. Each shaded region cor- sisting of three trees. Even (odd) nodes are
responds to a petal. filled (non-filled), root nodes equipped with

an extra circle, non-forest edges are dashed,
matched (unmatched) edges are drawn with
thick (thin) lines.

matching 2 without violating primal feasibility. Observe that we can augment if
there is an edge between two even nodes of different trees of F'. In some cases, an
augmentation is also possible if we have such an edge between even nodes of the
same tree, but not always. It is the latter case which is responsible for complications.
If no augmentation is possible and there is no further edge available to grow the
forest, the forest is called Hungarian forest.

Edmonds’ key insight was the observation that by shrinking of certain subgraphs
(the blossoms) one can ensure that the tree growing procedure detects a way to
augment the current b-matching, if the matching is not maximum. The reverse
operation to shrinking is expanding. Hence, we are always working with a so-called
surface graph which we obtain after a series of shrinking and expanding steps.

The main difference to 1-matching lies in the more complicated structure of the
blossoms which we have to shrink into pseudo-nodes. Roughly speaking, when
blossoms in the 1-matching case are merely formed by odd circuits C for which
z(v(C)) = qc, a blossom B in the b-matching case contains such an odd circuit C
but also the connected components of matched edges incident to nodes of C, the
so-called petals. The additional complication is that C' must be the only circuit of
the blossom. (See Figure 3 for a sample blossom.)

Hence, in order to detect such blossoms efficiently it is suitable to maintain
additional invariants on the structure of the current non-perfect b-matching which
are trivially fulfilled in the 1-matching case. Namely, each connected component
M of matched edges in the surface graph contains no even circuit, at most one odd
circuit and at most one deficit node. Even more, if such a component M contains
an odd circuit, then M contains no deficit node.

If the primal step finishes with a maximum cardinality matching which is perfect,
we are done and the algorithm terminates the primal-dual loop. Otherwise, we
start a dual update step. Roughly speaking, its purpose is to alter the current dual
solution such that new candidate edges are created to enter the current forest F.
Depending on the label of a node and whether it is an original node or a pseudo-
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node we add or subtract some £ (but leave unlabeled nodes unchanged to maintain
(CS1)) which is chosen as the maximum value such that the reduced cost of all edges
in the forest F' remain unchanged (i. e. they remain in GT), all other edges of the
original G have non-negative reduced costs (D1), and the dual variables associated
to pseudo-nodes remain non-negative (D2). If the dual variable associated to an odd
pseudo-node becomes zero after a dual update, the pseudo-node will be expanded.
This guarantees that no augmenting paths will be missed.

After finishing the primal-dual loop, all remaining pseudo-nodes are expanded,
and the algorithm terminates. See Figure 2 for an overview on the structure of the
primal-dual algorithm.

3. DESIGN GOALS

Specialized to our application, the most important general requirements on the flexi-
bility of a design imply that the implementation of the blossom algorithm framework
should have the following features:

—Decoupled data structures and algorithms. As software is often (in partic-

ular in our case) implemented first as a prototype, but later refined step-by-step
to improve efficiency, the necessary modification should only affect small pieces
of the code. The latter requires that both data structures and algorithms are
exchangeable almost independently of each other.
A basic design decision concerns the interplay between the blossom algorithm
and the representation of graphs. The difficulty lies in the fact that the view
on the graph objects changes throughout the algorithm: simultaneously, we have
the original input graph, (moreover, in case of dense graphs it is useful to work
on a sparse subgraph), then we have the equality subgraph (induced by edges of
zero reduced costs), and finally the current surface graph, which is derived from
the equality subgraph by blossom shrinking operations.

—Exchangeable subalgorithms. It should be easy to replace subalgorithms for
at least two reasons:

(1) Problem variants. Suppose we apply our framework to a special case of
b-matching, for example to ordinary 1-matching, to unweighted (i. e. cardinal-
ity ) matching, or to matching with additional edge capacities, in particular
to so-called factor problems where all edge capacities are set to one. For all
such problem variants, the standard implementation of some subalgorithms
(but only few!) should be exchangeable with an adapted version which is
fine-tuned towards efficiency.

(2) Algorithmic variants. Within our framework we would like to test, for
example, different dual update strategies, or exchange a forest with a single
tree implementation, or apply heuristics to avoid the shrinking of blossoms.

—Exchangeable data structures. The candidate search for edges in the forest
growing part of the blossom algorithm is an example for which we would like to
explore different priority queue implementations.

—Exchangeable evaluation strategies. Certain mathematical functions and
terms have to be evaluated so often during the execution of an algorithm, that
different evaluation strategies may reduce the overall computational costs signif-
icantly. Well-known techniques such as “lazy evaluation” (calculate a value only
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when it is needed), “over-eager evaluation” (calculate a value before it is needed),
and “caching” (store each calculated value as long as possible) can, for example,
be applied to the evaluation of reduced costs, maintaining dual potentials or node
deficits.

—Separate initialization and preprocessing. A blossom algorithm either
starts with an empty matching, some greedy matching, or it uses a jump-start
solution. In many applications, the size of an instance can be reduced in a pre-
processing step, for example by a special handling of isolated or degree-1 nodes,
parallel edges or more complicated special structures.

—Exchangeable graph classes. The framework has to be adaptable to special
graph classes. The standard implementation does not assume anything about
special properties of the graph classes. However, if it is known in advance, that
one wants to solve matching problems on special graph classes, such as planar
graphs, Eucledian graphs or complete graphs, it should be possible to exploit the
additional structure of such a class.

—Algorithm analysis. We want to be able to get statistical information from
the execution of our code. Operation counting [Ahuja and Orlin 1996] is a useful
concept for testing algorithms, as it can help to identify asymptotic bottleneck
operations in an algorithm, to estimate the algorithm’s running time for different
problem sizes, and to compare algorithmic variants. Furthermore, such statistics
gives additional insight into the relationship of a class of instances and its level
of difficulty for a blossom algorithm, for example by counting the number of
detected blossoms or the maximum nesting level of blossoms.

—Robust, self-checking. A robust algorithm should (be able to) check all in-
variants and pre- and postconditions. It has to terminate with a deterministic
behavior in case of a violation. In particular, each violation of one of these con-
ditions that indicates an implementation bug is found immediately. This reduces
the total time spend with debugging dramatically.

4. REALIZATION WITH DESIGN PATTERNS

In this section we will outline our solution with respect to the desired goals. This
discussion does not exhaust all of our design goals, but will highlight those aspects
which might be most interesting. We formulate some features of our approach as
general principles.

4.1 Decoupling of algorithms and data structures

A major obstacle on flexibility arises if algorithms and data structures are tightly
coupled and large portions of the code depend directly on the concrete data struc-
tures.

Principle Decouple algorithms from data structures.
We first give an example why this decoupling is useful in the context of matching

algorithms and describe its realization in the following two subsections on iterators
and data accessors.
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The primal-dual blossom algorithm uses different categories of graphs, namely
the original graph, the equality subgraph and the surface graph. A closer look
into the algorithm shows that we do not need to represent the equality graph
explicitly. However, the internal representation of a graph where the node set
remains static throughout the graph’s lifetime is certainly different from a graph
which must provide shrink and expand operations on its own subgraphs. Hence,
we use two basic graph classes for the different cases (unshrinkable graph and
surface graph). Below, we will give an example where the same algorithm is once
used with with an instance of unshrinkable_graph and once with surface_graph.
As shrinking of nodes can be nested, it is useful to have a map between an original
node u and the corresponding pseudo-node or node in the surface graph, denoted
by outer(u).

4.2 lterators

For graph algorithms, an appropriate way to decouple algorithms from data struc-
tures is given by the following principle.

Principle A graph algorithm uses edge, node and adjacency iterators.

An iterator provides a way to access the elements of an aggregate object se-
quentially. The underlying representation of the aggregate object remains hidden.
Kiihl and Weihe [1996] applied this idea to graph algorithms. They introduced the
following categories of iterators:

—Node iterator. A node iterator iterates over all nodes of a graph.
—Edge iterator. An edge iterator iterates over all edges of a graph.

—Adjacency iterator. An adjacency iterator iterates over all edges and nodes
which are adjacent to a fixed node. It provides operations for requesting if there is
a current adjacent node, for requesting the current adjacent edge and the current
adjacent node as well for constructing a new adjacency iterator which iterates
over the adjacency of the current adjacent node.

In our context, we want to hide the concrete representation of our surface graph.
For example, the client of an instance of a surface_graph should not know whether
the adjacency list of a pseudo-node is built explicitly as a list or if it is only implicitly
available by an iteration through the contained nodes.

In general, our adjacency iterators are implemented as skip iterators which run
through the whole adjacency of a node, decide for each edge whether it is “present”
in the current graph or not, and show an edge only in the affirmative case but
skip it otherwise. The decision whether an edge is present or not is based on an
evaluation of the predicate (reduced costs(e) == 0) or (outer(u) # outer(v)) for
an edge e = (u,v). This means that we have different adjacency iterators for each
specific view of a node onto its adjacency.

Recall that the surface graph contains two different types of nodes, namely orig-
inal nodes and pseudo-nodes. This implies that one needs two different types of
adjacency iterators. To be more precise, we use a pair of adjacency iterators, one
for pseudo-nodes and one for original nodes. For each node of the surface graph,
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only one of them is valid. This pair of iterators is encapsulated in such a way that
the client sees only a single iterator.

4.3 Data accessors

The data accessor pattern, introduced by Kiihl and Weihe [1997], provides a so-
lution for the design problem how to encapsulate an attribute of an object or a
mathematical expression such that the real representation or computation is hid-
den from the client.

Principle Model access to attributes of objects like edges or nodes as a data
accessor.

There are several applications of this pattern in our context where it appears
to be useful to hide the underlying representation of the data. A first example is
the treatment of the deficit of a node. Possible evaluation strategies are to store
and to update the node deficit explicitly, or to calculate it when it is needed from
the current matching x and the node capacity b,. A second example concerns the
maintenance of the cost of an edge if the edge costs are induced by some metric
distance function between coordinates of its endpoints. Here, it might be useful to
calculate edge costs only on demand.

Moreover, it is a good idea to encapsulate the calculation of reduced costs. One
reason is that there are several linear programming descriptions of the b-matching
problem which can be used as alternatives in our algorithm. For simplicity, we
only presented the blossom description, but the so-called odd-cut description [Ball
and Derigs 1983; Cook and Rohe 1997] (see Appendix A) can be used with minor
changes. One concrete difference lies in the calculation of the reduced costs. Hence,
in order to evaluate which description is superior to the other, one would like to
exchange silently the internal calculation of the reduced costs. (For a replacement
of the linear description a second small change is necessary in the dual update.)

Finally, we mention that checking and debugging of alternative implementations
can be facilitated by using data accessors. The idea is to use temporarily a data
accessor which evaluates alternatives we want to check against each other and
reports all cases where differences occur.

4.4 Exchange of subalgorithms

The strategy pattern [Gamma et al. 1995] encapsulates each subalgorithm and de-
fines a consistent interface for a set of subalgorithms such that an algorithm can
vary its subalgorithms independently from the user of the algorithm. This leads to
the following principle.

Principle Use the strategy pattern for subalgorithms of the framework.
To facilitate the application of the strategy pattern, we use another principle.

Principle Each algorithm (and subalgorithm) should be implemented as a sep-
arate algorithmic class.

Thus, Fig. 2 which gives an overview on the structure of the primal-dual algorithm
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also represents our algorithmic classes. (A number of lower level classes are omitted
for brevity).

We elaborate on the use of different strategies taking the example of the candidate
search for edges in the tree growing part of the algorithm. (It should be noted that
such candidates can effectively be determined within the dual update.)

(1) The direct approach to find candidate edges for the growing of the current forest
F is to traverse all trees of F' and to examine iteratively all edges adjacent to
even nodes.

(2) Ball and Derigs [1983] proposed to keep a partition of the edge set into subsets
according to the labels of endpoints. This gives some overhead to update these
lists, but avoids to examine all those edges for which one endpoint is labeled
even and the other is labeled odd.

(3) A refinement of both previous strategies is to mark nodes as safe after the
examination of their adjacency. As long as the label of a node does not change,
the node remains safe and can be ignored for the further candidate search. An
application of the observer pattern (which we describe below) ensures that any
change in the state of a node label triggers an appropriate update, i. e. nodes
become unsafe and will be considered in the candidate search.

(4) Usually, each blossom which is detected will be shrunken immediately. As
shrinking and expanding of blossoms is computationally very expensive it is
useful to avoid shrinking operations heuristically. Each time a blossom forming
edge has been detected, we do not shrink the blossom but store the edge instead.
Only if no other candidate edges are left, we request the first blossom forming
edge and shrink the corresponding blossom.

(5) It is a fundamental strategic question whether one should perform the growing
of trees simultaneously in a forest (as we did in our description) or to grow
single trees one after another, i. e. to grow a tree of our forest until it becomes
Hungarian and to switch then to a different tree. Whereas a forest version
leads to shorter augmenting paths, a single tree version has the advantage of a
reduced overhead.

Note that some of these strategies can also be used in combination. Just to give
a rough idea, Figure 5 shows the impact of different strategies on the run-time for a
test-suite of b-matching problems on Euclidean nearest-neighbor graphs (details of
the experimental set-up are described in [Miiller-Hannemann and Schwartz 1999]).

4.5 Exchange of data structures

Apart from data accessors we also apply the “traditional” concept of abstract data
types which provide a common interface for a certain functionality but can internally
be realized in many different ways.

We have already discussed the strategic question whether one should keep a
partition of the edges according to the labels of their endpoints in the current
forest or not. Computational results strongly indicated that explicitly maintaining
such a edge partition is worth doing. But it is not at all clear which data structure
to keep these edge sets is most efficient. Should we use simply a doubly-linked list
structure which allows cheap insertion and deletion operations in O(1) per edge but
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Fig. 5. Experimental results for different strategies within the candidate search (strategy 1,

strategy 3, and strategy 2 combined with strategy 3 and 4) for a test-suite on graphs with an
Euclidean distance function.

requires linear time to find the edges with minimum reduced costs in the update
step? Or is a priority queue like a d-heap or some Fibonacci heap the better choice
because of the O(1) time to perform the minimum operation at the expense of
more expensive insert and delete operations? Note that we usually have to perform
much more insert/delete operations than minimum operations. Hence, an answer
to these questions can only be given by computational testing.

4.6 Reusability of algorithms

We give one concrete example for a reuse of the blossom framework, namely frac-
tional b-matching. Recall that fractional b-matching is the relaxation of b-matching
which drops the integrality constraints on the matching z.

The adaption of our implementation to fractional b-matching becomes extremely
easy. The only necessary modification is to exchange the data type of the matching
z from integer to double or to float. (It is easy to see that one can keep the
fractional matching half-integral throughout the algorithm.) This change suffices
because the calculation of the maximal value by which we can augment after some
forest growing step now returns a value of % in those cases where the integral
version would round down to an integer and therefore return a zero which invokes
a shrinking step afterwards.

Recall that shrinking is not necessary in a fractional algorithm. Hence, it is
suitable for reasons of efficiency to start the algorithm with an instance of the
graph class unshrinkable graph instead of using the graph class surface_graph
as the latter requires extra overhead for handling the outer information. Moreover,
as the shrinker is never called in a normal execution of the algorithm it can be
replaced by a dummy_shrinker which does nothing but throws an exception if it is
called because this indicates an implementation bug.

Recall next that fractional b-matching can be transformed into a Hitchcock trans-
portation problem and therefore, in principle, be solved by any implementation for
minimum cost flow problems, in particular by the network simplex. However, if we
want to use the solution of the fractional matching problem as an improved basis
for the integral matching algorithm, there is one pitfall. The problem is that if we
use an algorithm for fractional matching as a black box, this algorithm certainly
does not know that the input of the integral matching algorithm requires addi-
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tional structural properties of the b-matching as preconditions. As a consequence,
it is necessary to implement additional conversion algorithms which transform an
integral matching obtained from rounding an optimal fractional b-matching into
a starting matching fulfilling the requirements of Pulleyblank’s algorithm. (This
subtle detail is ignored in Anstee’s paper [Anstee 1987].) We put emphasis on this
point as the fractional algorithm obtained as an adaption of the integral one gives
us the desired structural properties of the b-matching almost for free.

4.7 Initialization

Pulleyblank’s algorithm can be decomposed into an initialization phase, the primal-
dual loop, and a final expanding phase. As there are many different possibilities for
a concrete initialization it is useful to separate these parts strictly form each other.

Principle Separate each algorithm from its initialization.

The benefit from an exchange in the initialization phase can be dramatic. The
“jump start” with a fractional matching solver is one example which we discussed
earlier. Strengthening of the initial dual solution such that for each node at least
one adjacent edge lies in the initial equality subgraph also proved to be useful.
Similar experiences have been reported by Miller and Pekny [1995].

For cardinality matching problems, the first author’s experiments with several
greedy starting heuristics showed that it is often possible to do almost all work in
the initialization phase. In fact, our heuristics have been so powerful that the loop
kernel of the algorithm often only works as a checker for optimality in non-perfect
maximum cardinality problems [Mohring and Miiller-Hannemann 1995].

4.8 Observer pattern

The observer pattern defines a dependency between an observer class and an observ-
ing class such that whenever the state of the observed object changes, the observing
class is notified about the change. We have already discussed one nice application
of the observer pattern as a prerequisite of an advanced strategy for the candidate
search.

In addition, observers allow us to get additional insights into the course of the
algorithm by collecting data on function calls. Profilers such as gprof or quantify?,
could be used to count the number of function calls as well as to measure the time
spent inside the functions. However, this gives only the overall sum of calls to a
certain function and requires that the data we are interested in can be expressed
in the number of function calls.

Beyond mere operation counting observers can deliver much more detailed infor-
mation. For example, we can determine the maximum nesting level of blossoms.
This parameter is no operation and therefore not available to profilers, but is a
valuable indicator for the hardness to solve some problem instance. For example,
the nesting level is observed to be much lower in randomly generated instances than
in structured instances.

Moreover, we may want to know how certain quantities change over time, in

2Rational Software Corporation, http://www.rational.com/
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particular, we want to sample data from every iteration of the primal-dual loop
(here we use also another pattern, the loop kernel pattern [Kiihl et al. 1997]). For
example, we collect a series of data from each dual update to find out which updates
are most expensive.

This can even be used to control the selected strategy on-line. It has been
observed [Cook and Rohe 1997] that the final ten augmentations usually require
most of the overall computation time. Hence, if we can recognize with the help
of an observer that the algorithm slows down it might be advisable to change the
strategy. Cook & Rohe propose to switch from a single tree growing strategy to a
forest growing strategy.

5. COMPARISON WITH MILLER & PEKNY’S IMPLEMENTATION

The mechanisms which allow the flexibility of the design and the exchange of sub-
algorithms and data structures certainly require some overhead in comparison with
a more “traditional” design. Therefore, we want to demonstrate in this section
that our approach is even without fine-tuning very competitive with the only code
available for a comparison.

Miller and Pekny kindly provided us with an executable of their b-matching
code (called M&P in the following) which is specialized to solve geometric problem
instances.

Euclidean nearest neighbor graphs. The M&P code comes with a built-in
instance generator. It provides instances by taking either point sets as nodes
from TSPLIB[Reinelt 1991] or by placing n nodes uniformly at random on a two-
dimensional grid. Edge weights are chosen as Euclidean distance between nodes.
Sparse graphs are formed by taking for each node, the k nearest neighbors in each
of the four quadrants of a coordinate system centered on the node.

Experiments on synthetic data. We performed experiments with & chosen as 3
and 5 and node capacities in the interval {1,...,10}. The number of nodes varied
from n = 1024 to n = 8192, and are increased in steps of 512. See Fig. 6 for the
results of this test-suite. In the experiments with synthetic data, each data point
represents an average over ten different instances. Of course, comparisons across
codes or algorithmic variants are performed on the same ten inputs. Times reported
are user times in seconds obtained by getrusage(). The time measured is only
the amount of time taken to compute the optimal b-matching (excluding the time
for file input and output operations). All experiments are performed on a SUN
UltraSPARC2 with 200 MHz running under Solaris 2.6.

Experiments on TSPLIB instances. In Tables 1 and 2 of Appendix B, we
present results of experiments on the largest TSPLIB instances we could solve with
the M&P code on our machine. We report results for experiments with &k chosen
as 2, 4, and 8, and (identical) b-values chosen as 3,5, and 7, respectively.

It turns out, that our best code variant (referred to as MH&S) is consistently
faster than the M&P code, with improvement factors ranging between 15 and 466.

6. SUMMARY AND DISCUSSION

We presented a case study oriented to weighted b-matching with emphasis on design
problems. Our approach followed proposals of Weihe and co-workers to apply design
patterns like graph iterators and data accessors in order to achieve a flexible design.
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Fig. 6. A comparison of the code from Miller & Pekny (M&P) with our b-matcher (MH&S) on
a test-suite of graphs with an Eucledian distance function, the number of nearest neighbors for
each node in each quadrant chosen as k = 3 (left) and k£ = 5 (right), and b, varying between 1
and 10. Each data point is the average over ten instances.

The examples given in the previous section proved that we successfully realized
flexibility with respect to several modifications.

Design for flexibility requires first of all to work out an appropriate level of ab-
straction for the framework you want to implement (textbook versions of matching
algorithms do generally not appear in the desired level of abstraction). That is,
before building the first prototype one needs to figure out which elements of the
framework are possibly subject to change. The more complex a framework is (and
weighted b-matching is fairly complex) the more challenging becomes this task. In
retrospective, we can say that the major part of our work was spent in the first
phase of our project, namely, to build up a working prototype (including checkers
for all invariants which abstract data structures and subalgorithms must fulfill as
well as checkers for its overall correctness). Compared with that all later modifica-
tions turned out to be relatively inexpensive.

Of course, flexibility has its price. Therefore, we briefly discuss two issues of
potential drawbacks, namely ease of use and efficiency. We decided to take C++
as the programming language for our implementation. We heavily used templates
(static polymorphism) and several new features of the recently finished ANSI/ISO
standard for C++ [American National Standards Institute 1998], in particular the
so-called traits mechanism (roughly speaking, in our context a traits class encap-
sulates a set of type definitions or constants which are template parameters of an
algorithmic class.) Applying all the desired design patterns requires excellent ex-
pertise in advanced programming techniques, at least to a much higher degree than
traditional concepts. Hence, ease of use may be a critical issue.

One cannot expect that a flexible framework as discussed in this paper is as effi-
cient as a specialized hand-coded implementation. However, it is hard to estimate
by which factor two such implementations may differ from each other. Today, the
main disadvantage of templates is that this feature is not fully supported by most
compilers. In principle, compilers should be able to handle templated code as well
as code without templates, and to optimize away the additional overhead imposed
by encapsulation and abstraction. However, the current compiler technology of



Implementing Weighted b-Matching Algorithms . 17

gee/g++2, version 2.8.1, as well as its offshoot egcs*, version 1.1.1, does not seem
to achieve this satisfactorily.

Therefore, it is quite remarkable, that the current version of our code is already
significantly faster than the code of Miller and Pekny [1995]. This was definitely
not true for the first prototype of our framework. However, through experiments
we have been able to identify the bottlenecks of our implementation, and by ex-
changing subalgorithms and data structures the speed-up was made possible by
the flexibility of our framework. And we believe that there is still potential for
further improvements of efficiency. Our currently fastest variant uses the fractional
jump start with a pairing heap priority queue implementation, and a combination
of strategies 2 to 4 for the edge candidate search. For an in-depth discussion of our
computational results we refer to [Miiller-Hannemann and Schwartz 1999].

The fact that our code is already superior to the only b-matching executable
available for a comparison (of Miller & Pekny) encourages hopes that the design
concepts are suitable for high performance computations. At least, we got an
implementation which is mature enough to solve even the hardest instances of the
mesh refinement application in less than 3 seconds for a sparse graph with more than
21000 nodes on a SUN UltraSPARC2 with 200 MHz running under Solaris 2.6. The
solution for the associated b-matching problem to the example shown in Figure 1
took only .68 seconds.

Future work will show whether the flexibility also pays off for further specializa-
tions or extensions of the b-matching problem, and algorithmic variants which have
not been implemented so far.

To stimulate additional computational experiments on perfect b-matching prob-
lems and its variants, the authors make several b-matching resources publicly avail-
able. In particular, a collection of real-world instances stemming from mesh refine-
ment problems, the TSPLIB instances used in our comparison, and the source code
of a generator BMATCH_GEN for Eucledian nearest neighbor graphs are down-
loadable from

http://www.math.tu-berlin.de/bmatching/ .
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APPENDIX
A. THE BLOSSOM ALGORITHM FOR b-MATCHING

For simplicity, we present the blossom algorithm only for the case of maximum
weight perfect b-matching. Recall the definitions from Section 2.

A.1 Basic concepts and terminology

We use the convention that the minimum over an empty set is +oo. Let G = (V, E)
be an undirected graph with node set V, edge set E, and b € IN!V! a vector of node
capacities. We do not require that a graph is simple, but will generally use for
simplicity the notation (u,v) to denote an edge with endpoints v and v although
this is ambiguous in case of parallel edges. If we explicitly want to point out that
parallel edges may occur, we use the notation (u,v);.

A vector z € ZN[‘)El is called a b-matching if z(6(v)) < b, for v € V. We call a
b-matching z a perfect b-matching if z(6(v)) = b, for v € V. A b-matching z is
called near-perfect b-matching if there is a unique node t € V' with

z(0(v)) = by forve V\{t} and
z(d(t)) = by — 1.
An edge is matched if xz. > 1. Each node v € V with z(6(v)) < b, is called

a deficit node. We define the node deficit Ag z(v) = by, — 2(dg(v)) or simply
A(v) := by — 2(6(v)).

A second linear programming description. An alternative to the blossom
description which we used for the outline in Section 2 is the following odd cut
description:

T

maximize ¢’ x

subject to
(P1) z(0(v)) = b, forveV
(P2) ze >0 forec E
(P3-0) z(0(S)) > 1 for S € QL.

Its dual linear program can be written as

minimize )7 v by¥y — D geq Ys

subject to
(D1-0) Yu + Yo — Y (Qs(e)) > ce fore = (u,v) € E
(D2) Ys >0 for § € 0,

where Qs(e) := { S € Q| e€d(S)}. The reduced costs are defined as
Ce :=Yu + Yo — Y (Qs(e)) —c. for alle € E.
The corresponding complementary slackness conditions have the following form:
(CS1) T, >0 — . =0 foree E
(CS2-0) Ys >0 = 2(6(5)) =1 for S € Q.

Augmenting paths, trees, and forests. A path ©m = (vg,€q,v1,-..,Vk) is an
alternating, ordered sequence of nodes and edges with e; = {v;,v;41},4=0,... ,k—
1. We do not require that a path is simple. The length of a path 7 is the number



Implementing Weighted b-Matching Algorithms . 21

of edges in 7, denoted by length(w) := |E(w)|. Let head(w) and tail(m) denote the
first and last node of 7. Nodes and edges are even or odd according to the parity of
the index in the given sequence. A path 7 in a graph G is called alternating with
respect to a b-matching x if each even edge is matched (the other edges may be
matched or un-matched). Denote by k. the number of times that e appears as an
even minus the number that e appears as an odd edge on 7. (For a simple path,
k. = 1if e is even, and k. = —1, otherwise.)

An alternating path 7 of odd length is called o-augmenting path or just augment-
ing path with respect to a b-matching z if head(n) and tail(w) are deficit nodes and
Ze > ke - o for each edge e € m. Replacing the b-matching x by a new matching '
defined as

, Te—ke-o ife€ E(m)
T, = ]
Te otherwise

is called a o-augmentation.

Let T be a tree contained in G rooted at node r. Denote by w(v) the unique
simple path in T from the the root r to v € V(T'). We call v an even node of T'
if w(v) has even length, and odd otherwise. In particular, the root node is an even
node of T. An edge e = (v,u) € E(T) is even if it is the last edge of an even length
simple path 7(u) or 7w (v).

A tree T with root node r is called augmenting tree with respect to x if

(T1) A(r) >0,
(T2) A(v) =0 for all nodes v € V(T) with v # r,
(T

3) each even edge in E(T) is matched, and
(T4) each matched edge adjacent to a node in T' belongs to E(T).

A node-disjoint union of augmenting trees is called augmenting forest. A node v
in a forest F' is even (odd) if v is even (odd) with respect to the tree in which v is
contained. We denote the set of even (odd) nodes in F by even(F) (odd(F)). An
augmenting forest F' with respect to a b-matching x is called Hungarian if no node
u € even(F) is adjacent to a node v & odd(F).

Blossoms and shrinking. Let B be a subgraph of G and ¢t € V(B). The subgraph
B is called a blossom with respect to a b-matching z in G if

(B1) B is connected,

(B2) B contains no even circuit,

(B3) B contains exactly one odd circuit C,

(B4) =z, is a near-perfect b-matching in B with deficit node ¢,

(B5) z, >1 foralle e E(B)\ E(C), and

(B6) for each node v € V(C') \ {t} there is an even length path =, from
t to v with z, > 1 for all even edges in .

We call the node ¢t € V(B) the tip node of B. A node v € V(B) is called terminal
if |6p(v)| = 1. Removing the edges of the circuit C' disconnects B into |C| trees,
the so-called petals. Note that a petal can be a single node.

A node set S is called shrinkable if it is the node set of a blossom with respect
to a b-matching z. Observe that b(V(B)) is odd, if B is a blossom.
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By shrinking a node set S C V(@) into a pseudo-node s we obtain a new (possibly
non-simple) graph G' := G x S with edge costs ¢’ and node capacities b’ in the
following manner:

GxS§:= (V,E

V' = V\SuU{s}
E' == 4V \S)U{ (u,5)i | (u,v); €8(S),ve S}
o ewm mierv\s)
(wv)i -~ Cluw); V=8 and (u,w)i c 6(5),/“] €8S,

<

b 1 v=s
by, veV\S.
The reverse operation is called erpanding a pseudo-node. The matching obtained

from shrinking S in G into a pseudo-node s is defined as a vector x X S € IV(‘)E(GXS) |
with
(o % 5), i= {x if e € E(G)NE(G x S)

T(uw); if €= (u,s); and there is v € V(G) with (u,v); € E(G).

The blossom algorithm performs iteratively several shrinking and expanding steps
which all replace the current graph G_; with a new graph G. The obtained graph
G, can be represented as

Gr=GxR:=Gx8:=(Gx81)x8)...x 8

with the family of shrinkable sets & = {S1,...,S¢} and the set of pseudo-nodes
R ={s1,-..,8¢}. Nodes contained in the node set V of the original graph are
called real nodes. We distinguish between shrunken nodes, called interior nodes,
and non-shrunken nodes, called ezterior nodes. For a node v € V(G), we use the
notation outery(v) (or simply outer(v) for the current graph) to denote the exterior
node in G which contains v as an interior node or is identical to v.

A.2 Maximum cardinality b—matching

Let us first consider the case of unweighted, not necessarily perfect b-matchings in
a graph G.

Surface graph. The framework for the b-matching algorithm has to shrink and
to expand blossoms. Therefore, it works on a current graph, the so-called surface
graph G which can be represented as

G=GxR=((Gx58)x8)...x S

where § = {S1,...,S¢} is a family of shrinkable sets and R = {s1,... ,s¢} the
corresponding set of pseudo-nodes. Initially we set G := G.

Matching subgraph. The matching subgraph of the surface graph G is defined as
Gt(z) = (V(G), E*(x))

E*(z) = {e€ EG)|ze >0}
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Throughout the algorithm, each connected component M C G¥(x) satisfies the
following invariants:

M1) M contains no even polygon,

M2) M contains at most one odd polygon,

M3) there is at most one deficit node in M, and

M4) if M contains an odd polygon then M contains no deficit nodes.

We maintain an augmenting forest F' which holds the invariant

(F1) For each v € V(G) with Az (v) > 0 there is a tree T € F with v = root(T).

Trivial Initialization. One can start with an empty matching and R = (. Each
node v € V with b, # 0 becomes the root of a trivial augmenting tree. Thus (F1),
(M1) — (M4), and (T1) — (T4) are satisfied.

Algorithm outline. The basic idea of the blossom algorithm is to grow an aug-
menting forest F' until we determine that the forest is Hungarian or find an aug-
menting path. In the latter case we augment along this path, and continue after-
wards with forest growing steps. There is one pitfall. If the forest is Hungarian,
but contains odd pseudo-nodes, we may miss augmenting paths. Therefore, when
F becomes Hungarian, we expand all odd pseudo-nodes, adjust the forest, and try
again to grow F', until F' is Hungarian and does not contain odd pseudo-nodes.

Search for an Hungarian forest. Let us define the set of candidate edges as
CANDIDATES(F, G) := { (u,v) € E(G | u € even(F) A v ¢ odd(F) }.

If this set is non-empty, the forest F' is not Hungarian. Hence we examine if there
is a candidate edge e € CANDIDATES(F,G). If we have a candidate e = (u,v), we
modify the augmenting forest in the following way: If v ¢ V(F) then v belongs to
a matched component M € GT(z) which can be attached to the tree containing u,
by calling subalgorithm GROW_FOREST. If v € even(F) we have either v and v in
different trees or in the same one. In the former case we are able to augment with
AUGMENT_TWO_TREES, whereas in the latter case, we try to augment with AUG-
MENT_ONE_TREE, but may be forced to shrink a blossom to maintain (M1) - (M4).

Grow forest. GROW_FOREST is invoked with a candidate edge e = (u,v) where
u € V(F) and v ¢ V(F). Let M € G*(z) be the matched component which
contains v (and exists as v has no deficit). If M itself is a tree, then it can be
attached to the tree T, € F containing u in the obvious way, and the nodes of M
become labeled even or odd according to the parity of the path to the root of T,.

If M contains a circuit, attaching a component M € G (x) to the forest F in-
volves a complication. Assume M contains a circuit C. Then C has odd length,
because of (M1) and (M2). We can attach to the tree T, one after another all edges
of M with the exception of one edge f € E(C) which would close a circuit in T,.
The edge f is matched, and so violates (T1). Calling AUGMENT_ONE_TREE with
edge f reensures invariant (T1).
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Augmenting (two trees). Suppose that the selected candidate edge e = (v, v2)
has its endpoints in two different trees 17,75 € F. AUGMENT_TWO_TREES deter-
mines the the augmenting path 7 built by the unique path m; € T from the root of
T to vy, the edge v1v, and unique path from vs to the root of T5. It also calculates
the maximal change value ¢ on n. By (T1) and (T3), 0 > 1 which implies that
augmenting on 7 is possible. It is clear from the choice of o that there is at least one
violation of (T1), (T3) or (T4) after the augmentation. Therefore, we remove trees
without deficit from the forest to keep (T1). If an even edge becomes unmatched,
we cut off the corresponding subtree above such an edge. Finally, if either v1 or vy
is still in the forest (note that only one can be in F'), we call GROW_FOREST with
edge e. After this modification (T1), (T3) and (T4) will be satisfied again. As we
do not create a matched polygon, (M1) — (M4) remain fulfilled.

Augmenting (one tree). Suppose that the selected candidate edge e = (v, v2)
has both endpoints in the same tree T' € F. Let m,,,m,, the path from the root
r of T to vy or ve, respectively and mg the common portion of w,, and m,,. We
determine first a value o as follows:

og:=min{ z. | e is an even edge of g },
o; :=min{ z, | e is an even edge of m; } fori=1,2,
o :=min{|%0s],01,02, |3 A(r)]}.

If 0 = 0 there is no augmenting path and the circuit in 7"U e belongs to a blossom
which will be shrunken. Otherwise AUGMENT_ONE_TREE augments on the o-
augmenting path m,, , the edge v1v2 and the reverse path m,, .

It is clear from the choice of o that there is at least one violation of (T1), (T3)
or (T4) after the augmentation. Therefore, we repair the forest in a similar way as
in AUGMENT_TwO_TREES such that (T1), (T3) and (T4) will be satisfied again.

Expansion of a blossom. Suppose that s is the pseudo-node which corresponds
to the blossom B which we want to expand. There are several cases.

Case 1: s ¢ V(F).

By (F1), this implies that s has no deficit. As bs; = 1, there must exist an edge
e = (u,v) € E with u € V(B) and v ¢ V(B) for which the corresponding edge
(outer(u),v) = (s,v) € E(G) is matched. After expanding the blossom, its tip node
t has deficit one if ¢t # u. By (B6), however, we can correct the matching within
the blossom on an even length alternating path from the tip node of B to u, such
that each node of B is perfectly matched. The forest F' remains unchanged.

Case 2: s € V(F) and s is root of some tree T € F.

As s is root of some tree, it has a deficit of 1. Therefore, s is not incident to any
matched edge by (T4). We remove T from F, and expand the blossom. We choose
the tip node ¢ of the blossom as the root of a new tree 7" and call GROW_FOREST
for all adjacent edges to ¢ which are matched.

Case 3: s € V(F), belongs to a tree T € F, but is not its root.
Because of (F1), s has no deficit. Hence, there is a matched edge e adjacent to s,
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and we can apply the same matching correction after expansion of B as in Case
1. Let f € E(T) be the edge incident to s on the unique simple path to the root
of T. We cut off from T the whole subtree above f. If f is matched, we call
GROW_FOREST with f to reensure (T4).

We note that one should try for reasons of efficiency to reuse subtrees which are
cut off first, but have to be reattached afterwards to keep invariant (T4). However,
we skip the technical details.

A.3 The primal-dual blossom algorithm

We maintain

—a dual feasible solution y with satisfies (D1), (D2), and
—a primal solution z with satisfies (P2), (P3) and
(P1) z(0(v)) < b, forv e V.

The equality subgraph G= with respect to the original graph G and reduced costs
¢ is defined as follows.

G= = (V,E7)
E=:={e€E|c=0}

Initialization (trivial version). A feasible dual solution y is given with y, :=
tmax{ c. | e = (v,w) € E } forallv € V, and Y = 0. All other values are
initialized as in the cardinality case. Thus (F1), (T1) — (T4), (M1) — (M4), (D1),
(D2), (P1’), (P2), (P3), (CS1) and (CS2) are satisfied.

Primal-dual loop. The algorithm consists of a loop which alternates between
primal and dual steps. In the primal part, we reuse the maximum cardinality
b-matching algorithm SEARCH_HUNGARIAN_FOREST from the previous subsection
with the equality subgraph G=. This algorithm terminates with an Hungarian
forest F.

If F is empty, the primal-dual algorithm also terminates after expanding all re-
maining pseudo-nodes with a perfect b-matching z. Otherwise Dual_Update tries to
change the dual variables and if it succeeds, we first expand all odd pseudo-nodes for
which the associated dual variables became zero, and continue with SEARCH_HUN-
GARIAN_FOREST. If Dual Update fails to change the dual variables, the algorithm
terminates. In this case, the problem is infeasible, that means, there is no perfect
b-matching.

Dual update. DUAL_UPDATE tries to change the dual solution such that we can
keep all matched edges in the current surface graph G, but get new candidate edges
or reduce the potential of some odd pseudo-node to zero such that it is possible to
expand it. Using the abbreviations

EN(F,G) = { (u,v); € B(G) | u € even(F) A v ¢ V(F) },

EE(F, é) = { (u,v); € E(é) | u,v € even(F) },
OP(F,R) := {s€R|s€odd(F)}
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we calculate first 1,¢€2,e3 according to
g1 == min{ & | e € EN(F,G) },

g2 = min{ ¢ | e € EE(F,G) },
€3 = min{ Y; | s € OP(F,R) }.

If we use the blossom description, we determine € as
€9 €3
77 E }7
whereas for the odd cut description we define

€ := min{ey,

€
€ := min{ey, 52,63}.

If € = oo the forest F' is Hungarian and the primal-dual loops stops. Otherwise
we perform the following dual update. Let us start with the blossom description
case. For all real nodes v € V we set

_Jyy—¢ if outer(v) € even(F)
b= Yy + & if outer(v) € odd(F).

For all pseudo-nodes s € R we set
V- Ys + 2 if s € even(F)
T \Y, =2 if s € odd(F).

In the odd cut description case, the dual update looks as follows: For all exterior

real nodes of the surface graph v € V(G) we set
_Jys—e if v € even(F)
o= Yy + € if v € odd(F).

For all exterior pseudo-nodes s € R we set

{YS +e if s € even(F)

Y, :=
Y, —e if s € odd(F).
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Tables 1 and 2 display the results of an comparison of the implementation by Miller

and Pekny and our code.

Problem &b k 2m/n m  opt. val. M&P MH&S Impr. factor
fnl4461 3 2 14 31497 247916 410.19 2.69 152.49
fnl4461 3 4 23 50657 247916 646.93 4.16 155.51
fnl4461 3 8 40 88615 247916  1113.54 7.25 153.59
fnl4461 5 2 14 31497 412140 408.64 2.74 149.14
fnl4461 5 4 23 50657 412140 648.10 4.30 150.72
fnl4461 5 8 40 88615 412140 1102.59 7.21 152.93
fnl4461 7 2 14 31497 576364 410.44 2.65 154.88
fnl4461 7 4 23 50657 576364 645.40 4.16 155.14
fnl4461 7 8 40 88615 576364  1109.86 7.79 142.47

rl5915 3 2 15 44274 722825 349.36 15.86 22.03
rl5915 3 4 24 71726 722802 509.22 23.34 21.82
rl5915 3 8 42 125367 722802 784.37 42.39 18.50
rl5915 5 2 15 44274 1193045 352.60 16.27 21.67
rl5915 5 4 24 71726 1193022 508.12 24.76 20.52
rl5915 5 8 42 125367 1193022 789.77 45.28 17.44
rl5915 7 2 15 44274 1663265 357.86 15.84 22.59
rl5915 7 4 24 71726 1663242 507.98 23.39 21.72
rl5915 7 8 42 125367 1663242 789.33 44.73 17.65
rl5934 3 2 15 44959 699126 580.44 20.58 28.20
rl5934 3 4 25 72973 699116 879.81 31.94 27.55
rl5934 3 8 43 127151 699116  1330.82 57.53 23.13
rl5934 5 2 15 44959 1152432 584.60 21.50 27.19
rl5934 5 4 25 72973 1152415 903.37 33.17 27.23
rl5934 5 8 43 127151 1152415  1354.18 61.51 22.02
rl5934 7 2 15 44959 1605738 599.09 21.22 28.23
rl5934 7 4 25 72973 1605714 934.68 32.19 29.04
rl5934 7 8 43 127151 1605714  1352.76 60.39 22.40
pla7397 3 2 14 52914 30585942  1506.29 39.90 37.75
pla7397 3 4 24 89312 30585942  1949.86 65.02 29.99
pla7397 3 8 44 162319 30585942 2198.21  127.45 17.25
pla7397 5 2 14 52914 50696324  1355.21 39.97 33.91
pla7397 5 4 24 89312 50696324  1827.81 67.72 26.99
pla7397 5 8 44 162319 50696324 2036.32  126.93 16.04
pla7397 7 2 14 52914 70806706  1259.25 40.17 31.35
pla7397 7 4 24 89312 70806706 1692.25 64.88 26.08
pla7397 7 8 44 162319 70806706 2034.09  132.70 15.33
Table 1. Results of an comparison on TSPLIB instances. The columns display the following: the

TSPLIB problem name, the chosen uniform node potentials b, the number & of nearest neighbors
chosen from each quadrant, the average number of neighbors 2m/n, the number of edges m, the
optimal b-matching value, the CPU times in seconds for the Miller & Pekny code (M&P) and for
our implementation (MH&S), and finally, the improvement factor.
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Problem b &k 2m/n m opt. val. M&P MH&S Impr. factor
rl11849 3 2 15 88014 1208887 4796.89 51.40 93.32
rl11849 3 4 24 142406 1208871 6937.98 85.20 81.43
rl11849 3 8 42 249597 1208871 10702.10 159.32 67.17
rl11849 5 2 15 88014 2000234 4763.48 54.68 87.12
rl11849 5 4 24 142406 2000204 6975.84 86.82 80.35
rl11849 5 8 42 249597 2000204 52140.00 171.71 303.65
rl11849 7 2 15 88014 2791581 4896.32 52.77 92.79
rl11849 7 4 24 142406 2791537 6947.80 85.27 81.48
rl11849 7 8 42 249597 2791537 10789.90 169.89 63.51
usal3d3b09 3 2 15 101836 25647687 15953.80 158.25 100.81
usal3b509 3 4 24 164858 25647564 20860.60 233.65 89.28
usal3509 3 8 43 289719 25647564 29931.80 414.34 72.24
usal3ds09 5 2 15 101836 42466166 16110.80 167.83 95.99
usal3b09 5 4 24 164858 42466043 20941.90 249.61 83.90
usal3b09 5 8 43 289719 42466043 30149.80 415.10 72.63
usal3b09 7 2 15 101836 59284651 26418.50 157.37 167.88
usal3b09 7 4 24 164858 59284528 20892.40 237.89 87.82
usal3’09 7 8 43 289719 59284528  209730.00 449.74 466.34
brd14051 3 2 14 101053 629774 9639.66 206.32 46.72
brd14051 3 4 23 163598 629774 11613.20 322.16 36.05
brd14051 3 8 41 287353 629774 15892.70 600.06 26.49
brd14051 5 2 14 101053 1045693 9461.09 202.04 46.83
brd14051 5 4 23 163598 1045693 11629.30 333.74 34.85
brd14051 5 8 41 287353 1045693 156200.00 603.04 259.02
brd14051 7 2 14 101053 1461613 9372.87 195.23 48.01
brd14051 7 4 23 163598 1461613 11603.40 324.64 35.74
brd14051 7 8 41 287353 1461613 16105.30 626.83 25.69
d18512 3 2 14 132467 871221 7768.01 20.31 382.47
di18512 3 4 23 214079 871221 8050.23 31.93 252.12
di8s512 3 8 41 375545 871221 8666.64 57.07 151.86
di18512 5 2 14 132467 1448084 8748.43 20.53 426.13
d18512 5 4 23 214079 1448084 9082.29 33.87 268.15
di8512 5 8 41 375545 1448084 9806.88 57.97 169.17
di18512 7 2 14 132467 2024949 8722.18 20.54 424.64
di8s512 7 4 23 214079 2024949 9036.80 32.24 280.30
di8512 7 8 41 375545 2024949 9781.10 61.66 158.63
pla33810 3 2 14 244823 93780742 4667.67 118.33 39.45
pla33810 3 4 24 406714 93779853 7221.79 192.16 37.58
pla33810 3 8 43 721224 93779853 6047.12 376.54 16.06
pla33810 5 2 14 244823 156198883 4943.98 119.20 41.48
pla33810 5 4 24 406714 156197994 4667.50 191.55 24.37
pla33810 5 8 43 721224 156197994 6047.81 379.89 15.92
pla33810 7 2 14 244823 218617476 4679.74 118.30 39.56
pla33810 7 4 24 406714 218616587 4658.55 191.26 24.36
pla33810 7 8 43 721224 218616587 6057.86 381.38 15.88

Table 2. Results of an comparison on TSPLIB instances — continued.



