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ON FACTORS IN RANDOM GRAPHS 

BY 

E. SHAMIR AND E. UPFAL 

ABSTRACT 

The following result is proved: Let G,.p be a random graph with n vertices and 
probability p for an edge. If p is such that the random graph has min-degree at 
least r with probability l, then any f-factor I _-< f _- r exists with probability 1, as 
yl ----) r 

1. Definitions and results 

Let G be a graph with vertex set V(G), edge set E ( G ) .  Given a map f of 

V ( G )  into the set of non-negative integers, define an f-factor of G as a 

spanning subgraph of G in which the degree (valency) of x is f ( x ) .  When f - 1, a 

one-factor is obtained, which is also called a perfect matching, i.e. a set of 

non-intersecting edges covering V ( G ) .  One may want to study a maximal 
matching when a perfect matching does not exist. 

We shall study the existence of f-factors in the context of random graphs, 
following the works of ErdSs-Renyi [2, 3, 4]. Let 1 , . . . ,  n be a fixed labelling of 

the vertices. Let {el,}, l<=i<j<=n,  be an array of independent random 

variables, each e,, assuming the value 1 with probability p, 0 with probability 

1 - p. This array determines a random graph on {1,.. -, n}, where (ij) is an edge if 
and only if e,, = 1. This probability space is denoted by G,.p. We allow p to be a 

function of n, and study the asymptotic behavior of probabilities of events in G..p 

as n--~ oo. In particular, here we study the property of having an f-factor. 

The principal results about properties of G..p were obtained by Erd6s and 

R6nyi [2, 3, 4]. They use a somewhat different space G,,N~,~ of graphs with N 

random edges. The passage from G,.N~,~ to G,., with p ( n ) ~  2 N ( n ) / n  2 is usually 

quite simple [1]. 

THEOREM 1 [4]. Let n be even, p = (1/n)(log n + w(n)) ,  with lim,~| w ( n )  = 

oo. Consider the event E : G E G,.p, G has a 1-factor. Then 
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(1.1) lim Prob E = 1 (or E holds a.a.s.), 
n ~  

where a.a.s, is an abbreviation for "asymptotically almost surely" 

THEOREM 2 [3]. Let p = ( 1 / n ) ( l o g n + ( r - 1 ) l o g l o g n + w ( n ) ) ,  r>=l, 

l i m , ~ w ( n ) = ~ .  Then in G~.p, Mindeg G _-r, a.s.s. 

Our main result is the following 

THEOREM 3. Let p be as in Theorem 2. Let 1 <= f(x~) <-_ r, ET=~ f(xi) even. Then 

G has an f-factor, a.a.s. 

REMARK. Our proof will hold also for the case p = (1/n)(log n + c), where 

a.a.s. G consists of a huge component and some isolated points. A.a.s. there is a 

perfect matching [1-factor] in the huge component [if it is even]. 

Notice that by Theorem 2 we may assume that deg(x) >- r, x E V(G). Also it is 

easy to see that the graphic condition, assuring the existence of a graph with 

degree sequence f(x,), is satisfied for large n. 

2. Alternating paths, trees and augmentation 

Existence of factors can be approached by Tutte's characterization theorem 

[4, 8]. For one-factor, this approach was followed in [4, 7]. Here we shall follow 

another method, using augmentation of sub-factors by alternating paths, used 

extensively in the algorithmic studies of matching and flow problems [1, 5]. In 

this respect it is closer to Posa's proof for a Hamiltonian path in random graphs 

[6]. 
A sub-f-factor of G is a subgraph M such that E ( M ) C E ( G )  and 

degM (x) <= f(x). In case of strict inequality, the vertex x is unsaturated. Edges in 

E(G) \  E(M) are free edges. 

Consider a path x0, x t , ' - ' ,  xm such that 

x,_,x, is a free edge for i odd, an edge of M for i even, 0 < i =< m. 

This is an alternating path with respect to M. A vertex with an odd [even] index 

is an/-vertex [T-vertex]. If m is odd, x0 and x,, are unsaturated, such a path can 

be used to augment M:Dropxi_tx,, i even, add the free edge x~_~xi, i odd, 

0 < i <= m. The resulting M' is still a sub-f-factor, with a degree increased by 1 at 

x,,, x,, but unchanged otherwise. 

We outline the proof of Theorem 3. Consider the event 

NM : There exists in G a sub-f-factor M, with an 
(2.1) unsaturated vertex, which admits no augmentation. 
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./r by a construction which is the core of the proof, the existence of two 

(probably) large disjoint trees F~, F, with edges in E(G).  Being disjoint implies 

disconnection between two large sets of vertices. Hence the probability of 

finding such trees in G is small, in fact o(1) as n--,co. 

Assume the event .N~ holds for G. Without loss of generality, there are two 

unsaturated vertices x, y (if say d e g ( x ) < f ( x ) - 2 ,  we add some xu and drop 

some uy). The trees F~, Fy are obtained by a greedy algorithm, trying to catch 

many alternating paths from x and from y, while keeping a balance between I x 

and Fy. 

3. The parallel construction of the trees Fx, Vy and the auxiliary set N 

The construction proceeds in steps. Vertices added at even [odd] steps are T 

vertices [1 vertices], respectively. 

Step O. x is the root ofUx, y is the root of Vy. 

N ={w [zw E E ( M )  for z = x or z = y}. 

Step I. A = {w [ w ~  N, wx or wy i s a f r e e e d g e } = A x U A ,  U B  (disjoint 

union) where for z = x, y, Az C_ A is the set of w's which are connected to Fz 

only, B is the set connected to both. Let Az C_ At be a maximal set such that two 

vertices in ,4~ are not connected by an edge of M. Extend F~ by connecting a set 
A~ C , ~  U B such that 

(3.1) Ax h A ,  = O ,  lAx I -- IA, I = [ IBIJ +Mintl,   I,l 4, I). 

An edge of M connecting a vertex u in B with a vertex w in B, Ax or A ,  or an 

edge connecting a vertex u in Ax to a vertex w in A, closes an alternating path 

between x and y, hence an augmentation for M. Thus the construction of A, and 

A, gives the maximum possible additions which are disjoint, equal and no edge 

of M connects two vertices in Ax U Ay. 

Step A J even. Connect to F~ any w such that 

(: lu) (u an/-vertex of F~, uw E E(M)), 

under the provision that the set of w's connected to both trees is split evenly 

between them (if a single one remains, it is connected to the smaller tree; if they 

are equal, it is connected to Fx). 

Note: the vertex w is new (outside Fx U Fy). Indeed, w was not added in the 

( j -  1) step since vw is an edge of M. 
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If w had been added in a previous odd [even] step in F, U Fy as an/-ver tex 

[T-vertex], then u would be a T-vertex [/-vertex with u E N], which is 
impossible. 

Add to N all vertices connected to the (newly introduced) T-vertices by edges 
of M. 

Step ], j odd. A = {w I w ~  N, w is new and connected to a T-vertex in 
Fx U F, by a free edge} = A, U A, U B (disjoint union). 

The decomposition of A and how to extend F~ by new /-vertices is done 
precisely as described in Step 1 above. 

The construction terminates when it is impossible to extend the trees and 

preserve equality in the number of /-vertices in F~, Fr  Upon termination all 

T-vertices of one of the trees are connected only to vertices in F, U Fy U N (and 

perhaps one more vertex in case (3.1) was 0 at the terminating odd step, since 
[5,z [= 0 if and only if [Az [= 0). 

4. The probable size of the trees 

CLAIM 1. J~..~ implies that the trees F,, z = x, y, each have at least two 
T- t, ertices, a.a.s. 

PROOF. The root z itself is one T-vertex. Being unsaturated, z has one free 

edge which is not xy (else M can be augmented). Each Fz has an/-ver tex uz. 

Otherwise x and y each has a single free edge, which is connected to the same 

vertex u (and each has < r edges of M). The probability of this event is 
estimated by 

< n(log n + w(n)2"e -2~'§ O(n-').  

Now if Fz does not contain another T-vertex (connected to u,), then all the 

/-vertices of F~ U Fy are connected by M to one and the same vertex w. Only up 

to r vertices may be connected to w by M, hence lAx U A I =< r in the first step 

and 2 _-< I Ax U A, U B I =< r~ (since r 1,4z I => I A, I). Thus x and y are connected to 
at most r2+2r vertices and at least two of these vertices have a common 
neighbour. We can express the existence of such a configuration in a graph 
G E G,.p and estimate its probability by 
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,2+2, n n log  n ~ :  ( 2 ) ( k ) ( 1 ) (  + w ( n ) ) k § 1 7 6  z'"-k-', 

-_< ~ n(log n + w(n))k§ -2'~ 
k 

Let K be the number of / -ver t ices  in Ft. 

CLAIM 2. Each tree has at least K /2r  and at most rK + 1 T-vertices. 

PROOF. Each /-vertex is connected in M to at least one T-vertex. Each 

T-vertex is connected in M to at most r vertices. Thus after the splitting between 

trees, each tree has at least K/2r  T-vertices (including its root). 

Each T-vertex (except for the root) is connected in M to at least one/ -ver tex .  

Each / -ver tex  is connected in M to at most r vertices. Hence there are at most 

rK + 1 T-vertices. 

CLAIM 3. Each tree has at most 3rK vertices. 

PROOF. There are K/-ver t ices ,  at most rK + 1 T-vertices. 

CLAIM 4. I N[<-_4r2K. 

PROOF. Multiply the estimate for T-vertices in Fx U Fr by r. 

CLAIM 5. Each tree has at least n/80r 5 T-vertices, a.a.s. 

PROOF. Let Fx be the tree which caused the construction to terminate. All its 

T-vertices are connected to Fx t_J Fy U N and perhaps one more vertex s. 

Consider FC(Fx t_JFy UNU{s} )  which is the tree obtained from Fx by (i) 

reconnecting all vertices which are connected to a T-vertex of Fx, but went to F, 

upon the splitting of B, (ii) connecting a w E N which is connected to a T-vertex 

by an edge of M, (iii) connecting s. Note that F is indeed a tree, we added vertices 

to the leaves of Fx with one connection each (as we did throughout). 

]F]=<IFx U F ,  U N  U{s}[---_ 10r~K. 

Let t be the number of T-vertices in Fx. Since by Claim 1, t -> 2 and by Claim 

2, t >= k/2r, 

t => Max(2, Flrl/20rq).  

Consider the event 

E:  There is a tree F with 2 <= ! <= n/2 vertices in which t vertices, 

t = Max(2, [l/20r ~]), are not connected in G to a vertex outside 

F. 
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20r3 .Prob  E _<-- ~ i z log n + w 2 ~ + w ( n )  '~"-~) 
2 ~ t  ~ n l 4 ~ r  3 n r [  

<= ~ n(2e logn  + w(n))'exp ( - t (n  n l)(logn + w(n))) 
f 

--- + E --E'+Y;'; 
2_~u<log n logn~t<=n/40r 3 

~'<-- n(2e log n + w(n))4~ e -2'~ ~"--< n2(log n)'Og"e -t~ 

Thus Fx has at least n/40r 3 T-vertices a.a.s. Hence, by Claim 2, K >-_ n/40r 4, and 

so Fr also has at least n/80r 5 T-vertices. 

5. Conclusion of the proof 

CLAIM. 6. limo_~ Prob (NM) = 0. 

PROOF. Let q = n/N/log n. Take a set A of T-vertices in F ,  I A I = q. It is 

connected by M to at most rq vertices. Thus Fy contains another  set D of q 

vertices which (since NM holds) has no connection in G to A. Indeed a free edge 

connecting a T-vertex b in Fx to a T-vertex c in Fr closes an alternating path 

between Fx and F ,  hence an augmentation for M. The probability that such A 

and D exist is bounded by 

n n - q  1 - 1 ~  q~<__ qexp - ( l o g n + w ( n ) )  
q q n 

<_- (N/log n e -V,og,),/V~og ,, 

which has a sub-exponential decrease, as n--~ oo. 
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