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ON FACTORS IN RANDOM GRAPHS

BY
E. SHAMIR AND E. UPFAL

ABSTRACT

The following result is proved: Let G,, be a random graph with n vertices and
probability p for an edge. If p is such that the random graph has min-degree at

least r with probability 1, then any f-factor 1 = f = r exists with probability 1, as
n-—>o,

1. Definitions and results

Let G be a graph with vertex set V(G), edge set E(G). Given a map f of
V(G) into the set of non-negative integers, define an f-factor of G as a
spanning subgraph of G in which the degree (valency) of x is f(x). When f=1, a
one-factor is obtained, which is also called a perfect matching, i.e. a set of
non-intersecting edges covering V(G). One may want to study a maximal
matching when a perfect matching does not exist.

We shall study the existence of f-factors in the context of random graphs,
following the works of Erdés—-Renyi [2,3,4]. Let 1, - -, n be a fixed labelling of
the vertices. Let {e;}, 1=i<j=n, be an array of independent random
variables, each e; assuming the value 1 with probability p, 0 with probability
1 — p. This array determines a random graph on {1, - - -, n}, where (ij) is an edge if
and only if e; = 1. This probability space is denoted by G.,. We allow p to be a
function of n, and study the asymptotic behavior of probabilities of events in G,,,
as n —, In particular, here we study the property of having an f-factor,

The principal results about properties of G,, were obtained by Erdos and
Rényi [2,3,4]. They use a somewhat different space G,n(., of graphs with N
random edges. The passage from G, to G., with p(n)<>2N(n)/n’ is usually
quite simple [1].

THEOREM 1 [4]. Let n be even, p = (1/n)(log n + w(n)), with lim,_.. w(n)=
. Consider the event E : G € G..,, G has a 1-factor. Then
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1y limProbE =1 (or E holds a.as.),
where a.a.s. is an abbreviation for “asymptotically almost surely”.

THEOREM 2 [3]. Let p=(1/n)(logn+(r—1)loglogn+w(n)), r=1,
lim, .. w(n)=. Then in G.,, Mindeg G Zr, as.s.

Our main result is the following

THEOREM 3. Let p be as in Theorem 2. Let 1 = f(x;)=r, ZI_, f(x;) even. Then
G has an f-factor, a.a.s.

ReEMARK. Our proof will hold also for the case p = (1/n)(log n + ¢), where
a.a.s. G consists of a huge component and some isolated points. A.a.s. there is a
perfect matching [1-factor] in the huge component [if it is even].

Notice that by Theorem 2 we may assume that deg(x) = r, x € V(G). Also it is
easy to see that the graphic condition, assuring the existence of a graph with
degree sequence f(x;), is satisfied for large n.

2. Alternating paths, trees and augmentation

Existence of factors can be approached by Tutte’s characterization theorem
[4, 8]. For one-factor, this approach was followed in [4,7]. Here we shall follow
another method, using augmentation of sub-factors by alternating paths, used
extensively in the algorithmic studies of matching and flow problems [1,5]. In
this respect it is closer to Posa’s proof for a Hamiltonian path in random graphs
[6].

A sub-f-factor of G is a subgraph M such that E(M)C E(G) and
degm (x) = f(x). In case of strict inequality, the vertex x is unsaturated. Edges in
E(G)\E(M) are free edges.

Consider a path xq, x(, " -, X.» such that

x,1x; is a free edge for i odd, anedgeof M fori even, 0<i=m.

This is an alternating path with respect to M. A vertex with an odd [even] index
is an I-vertex [ T-vertex]. If m is odd, x, and x,. are unsaturated, such a path can
be used to augment M :Drop x;_(x;, i even, add the free edge x;_,x;, i odd,
0 < i = m. The resulting M’ is still a sub-f-factor, with a degree increased by 1 at
X0, X but unchanged otherwise.
We outline the proof of Theorem 3. Consider the event
@1 N : There exists in G a sub'-f-factor. M, with an .
unsaturated vertex, which admits no augmentation.
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N implies, by a construction which is the core of the proof, the existence of two
(probably) large disjoint trees I',, I', with edges in E(G). Being disjoint implies
disconnection between two large sets of vertices. Hence the probability of
finding such trees in G is small, in fact o(1) as n —> .

Assume the event N« holds for G. Without loss of generality, there are two
unsaturated vertices x,y (if say deg(x)= f(x)—2, we add some xu and drop
some uy). The trees I',, I, are obtained by a greedy algorithm, trying to catch
many alternating paths from x and from y, while keeping a balance between I,
and T,.

3. The parallel construction of the trees I',, I', and the auxiliary set N

The construction proceeds in steps. Vertices added at even [odd] steps are T
vertices [I vertices], respectively.

Step 0. x is the root of T',, y is the root of T',.

N={w lszE(M)forz =xo0rz =y}
Step 1. A={w | wg& N, wx or wy is a free edge} = A, U A, U B (disjoint
union) where for z = x,y, A, C A is the set of w’s which are connected to I',
only, B is the set connected to both. Let A, C A, be a maximal set such that two

vertices in A, are not connected by an edge of M. Extend I, by connecting a set
A, C A, UB such that

(ENY) A.NA, =2, |A]=4,|= 1| B|] +Min(|A],|A,]).

An edge of M connecting a vertex u in B with a vertex w in B, A, or A,, or an
edge connecting a vertex u in A, to a vertex w in A, closes an alternating path
between x and y, hence an augmentation for M. Thus the construction of A, and
A, gives the maximum possible additions which are disjoint, equal and no edge
of M connects two vertices in A, UA,.

Step j, j even. Connect to I', any w such that

(Ju) (u an I-vertex of T',, uw € E(M)),

under the provision that the set of w’s connected to both trees is split evenly
between them (if a single one remains, it is connected to the smaller tree; if they
are equal, it is connected to I',).

Note: the vertex w is new (outside I', UT, ). Indeed, w was not added in the
(j — 1) step since vw is an edge of M.



Vol. 39, 1981 RANDOM GRAPHS 299

If w had been added in a previous odd [even] step in I, UT, as an I-vertex
[T-vertex], then u would be a T-vertex [I-vertex with u € N}, which is
impossible.

Add to N all vertices connected to the (newly introduced) T-vertices by edges
of M.

Step j, j odd. A ={w l wgZ N, w is new and connected to a T-vertex in
I, UT, by a free edge} = A, U A, U B (disjoint union).

The decomposition of A and how to extend I, by new I-vertices is done
precisely as described in Step 1 above.

The construction terminates when it is impossible to extend the trees and
preserve equality in the number of I-vertices in I',, I',. Upon termination all
T-vertices of one of the trees are connected only to verticesinI', UT, UN (and
perhaps one more vertex in case (3.1) was 0 at the terminating odd step, since
|A.| =0 if and only if |A.|=0).

4. The probable size of the trees

CLaM 1. N implies that the trees T, z =Xx,y, each have at least two
T-vertices, a.a.s.

Proor. The root z itself is one T-vertex. Being unsaturated, z has one free
edge which is not xy (else M can be augmented). Each I', has an I-vertex u,.
Otherwise x and y each has a single free edge, which is connected to the same
vertex u (and each has <r edges of M). The probability of this event is
estimated by

(n)( n )(M)z'(l _M)zu—:' "

3/\2r-2 n n

=n(logn+ w(n)e "= O(n").

Now if I'. does not contain another T-vertex (connected to u.), then all the
I-vertices of I', UT', are connected by M to one and the same vertex w. Only up
to r vertices may be connected to w by M, hence |A, UA, | =r in the first step
and2=|A, UA, UB|=r’(since r|A,|Z|A.]). Thus x and y are connected to
at most r’+2r vertices and at least two of these vertices have a common
neighbour. We can express the existence of such a configuration in a graph
G € G,, and estimate its probability by
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'2*22' <n)(n)(n) (log n+w(n !)"”(1 _logn+w(n !)2‘""‘“’

k=2 2 k 1 n n

é 2 n(log n + w(n))k+2e—2logn
k

Let K be the number of I-vertices in I..
CLAaM 2. Each tree has at least K/2r and at most rK +1 T-vertices.

Proor. Each I-vertex is connected in M to at least one T-vertex. Each
T-vertex is connected in M to at most r vertices. Thus after the splitting between
trees, each tree has at least K/2r T-vertices (including its root).

Each T-vertex (except for the root) is connected in M to at least one I-vertex.
Each I-vertex is connected in M to at most r vertices. Hence there are at most
rK +1 T-vertices.

CLamM 3. Each tree has at most 3rK vertices.

Proor. There are K I-vertices, at most rK +1 T-vertices.
Camm 4. |[N|[=4r’K.

PrOOF. Multiply the estimate for T-vertices in I', UT', by r.
CLaiM 5. Each tree has at least n/80r° T-vertices, a.a.s.

Proor. Let T, be the tree which caused the construction to terminate. All its
T-vertices are connected to I'x UI'y UN and perhaps one more vertex s.
Consider I'C(I', UT, UN U{s}) which is the tree obtained from I, by (i)
reconnecting all vertices which are connected to a T-vertex of I',, but went to I',
upon the splitting of B, (ii) connecting a w € N which is connected to a T-vertex
by an edge of M, (iii) connecting s. Note that I is indeed a tree, we added vertices
to the leaves of I', with one connection each (as we did throughout).

IT|={r, U, UNU{s}|=10r'K.
Let ¢ be the number of T-vertices in I'. Since by Claim 1, ¢ = 2 and by Claim
2, t=k/2r,
t =Max (2, [|T]/20r]).
Consider the event
E: There is a tree I with 2= 1 = n/2 vertices in which t vertices,

t =Max(2, [1/20r']), are not connected in G to a vertex outside
I.
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-1 t(n—1)
%P-ProbEé s (?)l,(logn:wgn!) 2,(1_logn:wgng)

251Sn/40r3

=Y nQelogn+w(n)y exp<—ﬂlnzﬂ (logn + w(n)))

= >+ 3 =3+3h

2s(slogn  lognst=n/40r’

Z’.S_ nQ2elogn + w(n))*’e ", zné n’*(log n)<e"e ' E ",

Thus I, has at least n/40r® T-vertices a.a.s. Hence, by Claim 2, K = n/40r*, and
so I', also has at least n/80r> T-vertices.

5. Conclusion of the proof
CLamM. 6. lim,_..Prob(¥sf) =0.

PrOOF. Let g = n/Viogn. Take a set A of T-vertices in I',, |A|=gq. It is
connected by M to at most rq vertices. Thus I'y contains another set D of g
vertices which (since ¢/ holds) has no connection in G to A. Indeed a free edge
connecting a T-vertex b in I', to a T-vertex ¢ in I'y closes an alternating path
between I', and I',, hence an augmentation for M. The probability that such A
and D exist is bounded by

() ) ) (o  unio|

q q n q

= (Vlog neveenyVieer

which has a sub-exponential decrease, as n — .
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