ON FACTORS IN RANDOM GRAPHS

BY
E. SHAMIR AND E. UPFAL

ABSTRACT
The following result is proved: Let $G_{n, p}$ be a random graph with n vertices and probability p for an edge. If p is such that the random graph has min-degree at least r with probability 1 , then any f-factor $1 \leqq f \leqq r$ exists with probability 1 , as $n \rightarrow \infty$.

1. Definitions and results

Let G be a graph with vertex set $V(G)$, edge set $E(G)$. Given a map f of $V(G)$ into the set of non-negative integers, define an f-factor of G as a spanning subgraph of G in which the degree (valency) of x is $f(x)$. When $f \equiv 1$, a one-factor is obtained, which is also called a perfect matching, i.e. a set of non-intersecting edges covering $V(G)$. One may want to study a maximal matching when a perfect matching does not exist.
We shall study the existence of f-factors in the context of random graphs, following the works of Erdös-Renyi [2,3,4]. Let $1, \cdots, n$ be a fixed labelling of the vertices. Let $\left\{e_{i j}\right\}, 1 \leqq i<j \leqq n$, be an array of independent random variables, each $e_{i j}$ assuming the value 1 with probability $p, 0$ with probability $1-p$. This array determines a random graph on $\{1, \cdots, n\}$, where ($i j$) is an edge if and only if $e_{i j}=1$. This probability space is denoted by $G_{n, p}$. We allow p to be a function of n, and study the asymptotic behavior of probabilities of events in $G_{n, p}$ as $n \rightarrow \infty$. In particular, here we study the property of having an f-factor.

The principal results about properties of $G_{n, p}$ were obtained by Erdös and Rényi $[2,3,4]$. They use a somewhat different space $G_{n, N(n)}$ of graphs with N random edges. The passage from $G_{n, N(n)}$ to $G_{n, p}$ with $p(n) \leftrightarrow 2 N(n) / n^{2}$ is usually quite simple [1].

Theorem 1 [4]. Let n be even, $p=(1 / n)(\log n+w(n))$, with $\lim _{n \rightarrow \infty} w(n)=$ ∞. Consider the event $E: G \in G_{n, p}, G$ has a 1 -factor. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Prob} E=1 \quad \text { (or } E \text { holds a.a.s.), } \tag{1.1}
\end{equation*}
$$

where a.a.s. is an abbreviation for "asymptotically almost surely".
Theorem 2 [3]. Let $p=(1 / n)(\log n+(r-1) \log \log n+w(n)), \quad r \geqq 1$, $\lim _{n \rightarrow \infty} \boldsymbol{w}(n)=\infty$. Then in $G_{n, p}, \operatorname{Min} \operatorname{deg} G \geqq r$, a.s.s.

Our main result is the following
Theorem 3. Let p be as in Theorem 2. Let $1 \leqq f\left(x_{i}\right) \leqq r, \sum_{i=1}^{n} f\left(x_{i}\right)$ even. Then G has an f-factor, a.a.s.

Remark. Our proof will hold also for the case $p=(1 / n)(\log n+c)$, where a.a.s. G consists of a huge component and some isolated points. A.a.s. there is a perfect matching [1 -factor] in the huge component [if it is even].

Notice that by Theorem 2 we may assume that $\operatorname{deg}(x) \geqq r, x \in V(G)$. Also it is easy to see that the graphic condition, assuring the existence of a graph with degree sequence $f\left(x_{i}\right)$, is satisfied for large n.

2. Alternating paths, trees and augmentation

Existence of factors can be approached by Tutte's characterization theorem [4, 8]. For one-factor, this approach was followed in [4, 7]. Here we shall follow another method, using augmentation of sub-factors by alternating paths, used extensively in the algorithmic studies of matching and flow problems [1,5]. In this respect it is closer to Posa's proof for a Hamiltonian path in random graphs [6].
A sub-f-factor of G is a subgraph M such that $E(M) \subseteq E(G)$ and $\operatorname{deg}_{M}(x) \leqq f(x)$. In case of strict inequality, the vertex x is unsaturated. Edges in $E(G) \backslash E(M)$ are free edges.

Consider a path $x_{0}, x_{t}, \cdots, x_{m}$ such that
$x_{i-1} x_{i}$ is a free edge for i odd, an edge of M for i even, $\quad 0<i \leqq m$.
This is an alternating path with respect to M. A vertex with an odd [even] index is an I-vertex [T-vertex]. If m is odd, x_{0} and x_{m} are unsaturated, such a path can be used to augment $M:$ Drop $x_{i-1} x_{i}, i$ even, add the free edge $x_{i-1} x_{i}, i$ odd, $0<i \leqq m$. The resulting M^{\prime} is still a sub- f-factor, with a degree increased by 1 at x_{0}, x_{m} but unchanged otherwise.

We outline the proof of Theorem 3. Consider the event $\mathcal{N} \mathscr{A}:$ There exists in G a sub-f-factor M, with an unsaturated vertex, which admits no augmentation.
$\mathcal{N} \mathscr{A}$ implies, by a construction which is the core of the proof, the existence of two (probably) large disjoint trees Γ_{x}, Γ_{y} with edges in $E(G)$. Being disjoint implies disconnection between two large sets of vertices. Hence the probability of finding such trees in G is small, in fact $o(1)$ as $n \rightarrow \infty$.

Assume the event $\mathcal{N} \mathscr{A}$ holds for G. Without loss of generality, there are two unsaturated vertices x, y (if say $\operatorname{deg}(x) \leqq f(x)-2$, we add some $x u$ and drop some $u y$). The trees Γ_{x}, Γ_{y} are obtained by a greedy algorithm, trying to catch many alternating paths from x and from y, while keeping a balance between I_{x} and Γ_{y}.

3. The parallel construction of the trees Γ_{x}, Γ_{y} and the auxiliary set N

The construction proceeds in steps. Vertices added at even [odd] steps are T vertices [I vertices], respectively.

Step 0. x is the root of Γ_{x}, y is the root of Γ_{y}.

$$
N=\{w \mid z w \in E(M) \text { for } z=x \text { or } z=y\}
$$

Step 1. $A=\{w \mid w \notin N, w x$ or $w y$ is a free edge $\}=A_{x} \cup A_{y} \cup B$ (disjoint union) where for $z=x, y, A_{z} \subseteq A$ is the set of w 's which are connected to Γ_{z} only, B is the set connected to both. Let $\bar{A}_{z} \subseteq A_{z}$ be a maximal set such that two vertices in \bar{A}_{z} are not connected by an edge of M. Extend Γ_{x} by connecting a set $\Delta_{z} \subset \bar{A}_{z} \cup B$ such that

$$
\begin{equation*}
\Delta_{x} \cap \Delta_{y}=\varnothing, \quad\left|\Delta_{x}\right|=\left|\Delta_{y}\right|=\left\lfloor\frac{1}{2}|B|\right\rfloor+\operatorname{Min}\left(\left|\bar{A}_{x}\right|,\left|\bar{A}_{y}\right|\right) . \tag{3.1}
\end{equation*}
$$

An edge of M connecting a vertex u in B with a vertex w in B, A_{x} or A_{y}, or an edge connecting a vertex u in A_{x} to a vertex w in A_{y} closes an alternating path between x and y, hence an augmentation for M. Thus the construction of Δ_{x} and Δ_{y} gives the maximum possible additions which are disjoint, equal and no edge of M connects two vertices in $\Delta_{x} \cup \Delta_{y}$.

Step j, j even. Connect to Γ_{z} any \boldsymbol{w} such that
($\exists u$) (u an I-vertex of $\Gamma_{z}, u w \in E(M)$),
under the provision that the set of w 's connected to both trees is split evenly between them (if a single one remains, it is connected to the smaller tree; if they are equal, it is connected to Γ_{x}).

Note: the vertex w is new (outside $\Gamma_{x} \cup \Gamma_{y}$). Indeed, w was not added in the $(j-1)$ step since $v w$ is an edge of M.

If w had been added in a previous odd [even] step in $\Gamma_{x} \cup \Gamma_{y}$ as an I-vertex [T-vertex], then u would be a T-vertex [I-vertex with $u \in N$], which is impossible.
Add to N all vertices connected to the (newly introduced) T-vertices by edges of \boldsymbol{M}.

Step j, j odd. $\quad A=\{w \mid w \notin N, w$ is new and connected to a T-vertex in $\Gamma_{x} \cup \Gamma_{y}$ by a free edge $\}=A_{x} \cup A_{y} \cup B$ (disjoint union).

The decomposition of A and how to extend Γ_{z} by new I-vertices is done precisely as described in Step 1 above.

The construction terminates when it is impossible to extend the trees and preserve equality in the number of I-vertices in Γ_{x}, Γ_{y}. Upon termination all T-vertices of one of the trees are connected only to vertices in $\Gamma_{x} \cup \Gamma_{y} \cup N$ (and perhaps one more vertex in case (3.1) was 0 at the terminating odd step, since $\left|\bar{A}_{z}\right|=0$ if and only if $\left|A_{z}\right|=0$).

4. The probable size of the trees

Claim 1. $\mathcal{N} \mathscr{A}$ implies that the trees $\Gamma_{z}, z=x, y$, each have at least two T-vertices, a.a.s.

Proof. The root z itself is one T-vertex. Being unsaturated, z has one free edge which is not $x y$ (else M can be augmented). Each Γ_{z} has an I-vertex u_{z}. Otherwise x and y each has a single free edge, which is connected to the same vertex u (and each has $<r$ edges of M). The probability of this event is estimated by

$$
\begin{aligned}
& \binom{n}{3}\binom{n}{2 r-2}\left(\frac{\log n+w(n)}{n}\right)^{2 r}\left(1-\frac{\log n+w(n)}{n}\right)^{2(n-2 r-1)} \\
& \quad \leqq n\left(\log n+w(n)^{2 r} e^{-2 \log n+w(n))}=O\left(n^{-1}\right) .\right.
\end{aligned}
$$

Now if Γ_{z} does not contain another T-vertex (connected to u_{z}), then all the I-vertices of $\Gamma_{x} \cup \Gamma_{y}$ are connected by M to one and the same vertex w. Only up to r vertices may be connected to w by M, hence $\left|\Delta_{x} \cup \Delta_{y}\right| \leqq r$ in the first step and $2 \leqq\left|A_{x} \cup A_{y} \cup B\right| \leqq r^{2}$ (since $\left.r\left|\bar{A}_{z}\right| \geqq\left|A_{2}\right|\right)$. Thus x and y are connected to at most $r^{2}+2 r$ vertices and at least two of these vertices have a common neighbour. We can express the existence of such a configuration in a graph $G \in G_{n, p}$ and estimate its probability by

$$
\begin{gathered}
\sum_{k=2}^{\sum^{2}+2 r}\binom{n}{2}\binom{n}{k}\binom{n}{1}\left(\frac{\log n+w(n)}{n}\right)^{k+2}\left(1-\frac{\log n+w(n)}{n}\right)^{2(n-k-1)} \\
\leqq \sum_{k} n(\log n+w(n))^{k+2} e^{-2 \log n}
\end{gathered}
$$

Let K be the number of I-vertices in Γ_{z}.
Claim 2. Each tree has at least $K / 2 r$ and at most $r K+1 T$-vertices.
Proof. Each I-vertex is connected in M to at least one T-vertex. Each T-vertex is connected in M to at most r vertices. Thus after the splitting between trees, each tree has at least $K / 2 r T$-vertices (including its root).

Each T-vertex (except for the root) is connected in M to at least one I-vertex. Each I-vertex is connected in M to at most r vertices. Hence there are at most $r K+1 T$-vertices.

Claim 3. Each tree has at most 3 rK vertices.

Proof. There are $K I$-vertices, at most $r K+1 T$-vertices.
CLAim 4. $|N| \leqq 4 r^{2} K$.
Proof. Multiply the estimate for T-vertices in $\Gamma_{x} \cup \Gamma_{y}$ by r.
Claim 5. Each tree has at least $n / 80 r^{5} T$-vertices, a.a.s.
Proof. Let Γ_{x} be the tree which caused the construction to terminate. All its T-vertices are connected to $\Gamma_{x} \cup \Gamma_{y} \cup N$ and perhaps one more vertex s. Consider $\Gamma \subset\left(\Gamma_{x} \cup \Gamma_{y} \cup N \cup\{s\}\right)$ which is the tree obtained from Γ_{x} by (i) reconnecting all vertices which are connected to a T-vertex of Γ_{x}, but went to Γ_{y} upon the splitting of B, (ii) connecting a $w \in N$ which is connected to a T-vertex by an edge of M, (iii) connecting s. Note that Γ is indeed a tree, we added vertices to the leaves of Γ_{x} with one connection each (as we did throughout).

$$
|\Gamma| \leqq\left|\Gamma_{x} \cup \Gamma_{y} \cup N \cup\{s\}\right| \leqq 10 r^{2} K .
$$

Let t be the number of T-vertices in Γ_{x}. Since by Claim $1, t \geqq 2$ and by Claim $2, t \geqq k / 2 r$,

$$
t \geqq \operatorname{Max}\left(2,\left\lceil|\Gamma| / 20 r^{3}\right\rceil\right)
$$

Consider the event
E : There is a tree Γ with $2 \leqq l \leqq n / 2$ vertices in which t vertices, $t=\operatorname{Max}\left(2,\left[l / 20 r^{3}\right\rceil\right)$, are not connected in G to a vertex outside Γ.

$$
\begin{aligned}
& \frac{1}{20 r^{3}} \cdot \operatorname{Prob} E \leqq \sum_{2 \leq \leq \leq n / 40 r^{3}}\binom{n}{l} l^{l}\left(\frac{\log n+w(n)}{n}\right)^{t-1} 2^{\prime}\left(1-\frac{\log n+w(n)}{n}\right)^{\prime(n-l)} \\
& \leqq \sum_{i} n(2 e \log n+w(n))^{\prime} \exp \left(-\frac{t(n-l)}{n}(\log n+w(n))\right) \\
& \leqq \sum_{2 \leq i \leq \log n n}+\sum_{\log n \leq \leq \leq n n / 403^{3}}=\sum^{\prime}+\sum^{\prime \prime} ; \\
& \sum^{\prime} \leqq n(2 e \log n+w(n))^{40 r^{3}} e^{-2 \log n}, \quad \sum^{\prime \prime} \leqq n^{2}(\log n)^{\log n} e^{-\log 2^{2} n / 2} .
\end{aligned}
$$

Thus Γ_{x} has at least $n / 40 r^{3} T$-vertices a.a.s. Hence, by Claim $2, K \geqq n / 40 r^{4}$, and so Γ_{y} also has at least $n / 80 r^{5} T$-vertices.

5. Conclusion of the proof

Claim 6. $\quad \lim _{n \rightarrow \infty} \operatorname{Prob}(\mathcal{N} \mathscr{A})=0$.
Proof. Let $q=n / \sqrt{\log n}$. Take a set A of T-vertices in $\Gamma_{x},|A|=q$. It is connected by M to at most $r q$ vertices. Thus Γ_{y} contains another set D of q vertices which (since $\mathcal{N} \mathscr{A}$ holds) has no connection in G to A. Indeed a free edge connecting a T-vertex b in Γ_{x} to a T-vertex c in Γ_{y} closes an alternating path between Γ_{x} and Γ_{y}, hence an augmentation for M. The probability that such A and D exist is bounded by

$$
\begin{aligned}
\binom{n}{q}\binom{n-q}{q}\left(1-\frac{\log n+w(n)}{n}\right)^{q^{2}} & \leqq\left(\frac{n e}{q}\right)^{2 q} \exp \left[-\frac{q^{2}}{n}(\log n+w(n))\right] \\
& \leqq\left(\sqrt{\log n} e^{-\sqrt{\log n}}\right)^{n / \sqrt{\log n}}
\end{aligned}
$$

which has a sub-exponential decrease, as $n \rightarrow \infty$.

References

[^0]5. E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, 1976.
6. L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), 359-364.
7. E. Shamir and E. Upfal, One factor in random graphs based on vertex choice, submitted, 1980.
8. W. T. Tutte, The subgraph problem, Ann. Discrete Math. 3 (1978), 289-295.

Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel
Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot, Israel

[^0]: 1. D. Angluin and L. Valiant, Fast probabilistic algorithm for Hamiltonian circuits and matchings, J. Comput. Syst. Sci. 18 (1979), 155-193.
 2. P. Erdös and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5A (1960), 17-61.
 3. P. Erdös and A. Rényi, On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar. 12 (1961), 261-267.
 4. P. Erdös and A. Rényi, On the existence of a factor of degree one of a connected random graph, Acta Math. Acad. Sci. Hungar. 17 (1966), 359-368.
