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We define a graph as a set V of objects called vertices together with a set E of 
objects called edges, the two sets having no common element. With each edge 
there are associated just two vertices, called its ends. We say that an edge 
joins its ends. Two vertices may be joined by more than one edge. 

A subgraph Gf of a graph G is a graph whose edges and vertices are edges 
and vertices respectively of G and in which each edge has the same ends as in 
G. If S is any set of vertices of G we denote by Gs the subgraph of G whose 
vertices are the vertices of G not in S and whose edges are the edges of G not 
having an element of 5 as an end. 

A graph is finite if F and E are both finite and infinite otherwise. In this paper 
we consider only finite graphs. 

Suppose given a finite graph G. For a £ V and A £ E we write e(A, a) = 1 
if a is an end of A and e(A, a) = 0 otherwise. L e t / be a function which asso
ciates with each vertex a ol G a, unique positive integer/(a). We say that G is 
f-soluble for a given / if to each A Ç E we can assign a non-negative integer 
g (A) such that 
(1) Ze(A,a)g(A) = f(a) 

A 

for each a Ç V. If E is null but V is not null, we consider that G is not/-soluble 
for any / . We ignore the case in which V and E are both null (when G is the 
null graph). 

It may be possible to solve (1) so that g (A) = 0 or 1 for each A. Then we 
call the subgraph of G whose vertices are the vertices of G and whose edges are 
those edges A of G for which g (A ) = 1 an f-factor of G. Thus an /-factor of G 
is a subgraph of G such that each a Ç F is a vertex of the subgraph and an end 
of jus t / (a) edges of the subgraph. 

If n is any positive integer we define an n-factor of G as an/-factor such that 
f(a) = n for each a. 

Necessary and sufficient conditions are known for /-solubility, for the 
existence of an /-factor and for the existence of a 1-factor. We state these as 
Theorems A, B, and C after a few preliminary definitions. 

The degree d(a) of a vertex a of G is the number of edges of G having a as an 
end. If S C V and a 6 V — S we denote the degree of a in Gs by ds(a). 

Suppose S Ç V. We write a (S) for the number of vertices of S. The graph 
Gs is uniquely decomposable into disjoint connected parts which we call 
components. (Hassler Whitney (6) uses the term connected pieces, and Kônig 
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(2) zusammenhàngende Bestandteile.) We write hu(S) for the number of com
ponents of G s for which the number of vertices is odd. We write T(S) for the 
set of vertices of V — S which are joined only to vertices of S. 

We denote by q (S) the number of components C of Gs for which there is 
more than one vertex and 
(2) Hf(o) = l (mod 2). 

aeC 

Here we write a G C to denote that a is a vertex of C. 
Now suppose J T C V — S. If C is a component of GS{JT we denote by v(C) 

the number of edges of G having one end a vertex of C and the other an element 
of T. We denote by q (5, T) the number of components C of GSUT such that 

(3) v{C) + £ / ( a ) s 1 (mod 2). 
a e C 

THEOREM A. G is without a l-factor if and only if there is a subset S of V such 
that 
(4) hu(S) >a(S). 

THEOREM B. G is not f-soluble if and only if there is a subset S of V such that 

(5) E / ( « ) <Q(S)+ E f(c). 
aeS ceT(S) 

THEOREM C. G is without an f-factor if and only if there is a subset S of V 
and a subset T of V — S such that 

(6) T,f(a)<<l(S,T)+ J: (f(c) - ds(c)). 
aeS ceT 

A short proof of Theorem A has been given by the author (4). Maunsell (3) 
has improved it by substituting a piece of elementary graph theory for an 
appeal to the theory of determinants. Theorem B is readily deducible from 
Theorem C; details are given in (5). However, proofs of Theorem C, even in 
the special case dealing with ^-factors, have hitherto been long and complicated 
(1; 5). In this paper we present a comparatively short argument whereby 
Theorem C is deduced as a consequence of Theorem A. 

Deduction of Theorem C from Theorem A. Suppose first that G has a 
vertex a such that d{a) < f{a). Then G can have no/-factor. Moreover (6) is 
satisfied with 5 = 0 and T = {a}. Thus Theorem C is trivially true in this 
case. 

In the remaining case we have d(a) > f(a) for each aÇ F. We write 
s (a) = d(a) - f{a). 

Given any sufficiently large set Q we define a graph G' whose vertices are 
elements of Q in the following way. With each c (z V we associate d(c) distinct 
elements cA of Q, one for each edge A of G such that e(A, c) = 1, and s(c) other 
distinct elements c(l), c(2), . . . , c(s(c)) of Q. We denote the sets of the d(c) 
elements cA and the s{c) elements c(i) by X(c) and Y(c) respectively. We 
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postulate that the two sets X(c) U Y(c) defined for two distinct elements c 
of V shall have no common element. The set V of vertices of G' is given by 

(7) V = U (X(c){JY(c)). 
ceV 

For any edge A of G, with ends x and y say, we postulate that G' has just 
one edge joining xA and yA. We denote this also by the symbol A. We further 
postulate that for each c Ç V each element of X(c) is joined to each member of 
Y(c) by just one edge of G', and that G' has no edges other than those required 
by these two rules. 

For each c G V, the elements of X(c) U Y(c) and the edges of G' joining 
them constitute a subgraph, St(c), of G', which we call the star-graph of c in G'. 
St(c) is connected if s(c) > 0, and in the case s(c) = 0 only if d(c) = f(c) = 1. 
The diagram shows a star-graph St(c) for the case d(c) = 4 and f(c) = 2. 
(The edges ABC and D in this diagram do not belong to St(c).) 

A 

A 
D 

6 
C 

G C C | 
LEMMA. G has anf-factor if and only if G' has a \-factor. 

Proof. If G has an /-factor let F be its set of edges and let Ff be the set of 
edges of Gf denoted by the same letters. For each c G V we adjoin to Ff exactly 
s(c) edges joining the s(c) vertices of Y(c) to the s(c) vertices of X(c) which 
are not ends of edges of Ff. By the definition of Gf we can do this without intro
ducing into F' two edges with a common end. We thus construct a 1-factor of 
G'. 

Conversely suppose G' has a 1-factor whose set of edges is H. Let Ho be the 
set of edges of H whose two ends are vertices of distinct star-graphs St(c). 
For each c G V just s(c) elements of H have an end in Y(c) and therefore just 
d(c) — s(c) = f(c) elements of H0 have an end in X(c). It follows that the 
edges of G corresponding to the members of Ho define an /-factor of G. 
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A subset W of V will be called simple if it satisfies the following conditions 
for each a G V: 

(i) If X(a) nW^O then X(a) Ç W, 
(ii) If Y (a) Pi W 9* 0 then 7(a) C IF, 

(iii) At most one of X(a) and Y (a) is a subset of W. 
Condition (iii) implies that X(a) cannot be a subset of W when Y (a) is the 

null set, i.e., when d(a) = f(a). 
Consider any simple subset W of V. We write 5 and T for the sets of vertices 

c of G such that X(c) QW and Y(c) C H^ respectively. The sets 5 and T are 
disjoint. We have 
(8) a(W) = Z (d(c) -f(c)) + £ d(a). 

ceT aeS 

Let H be any component of G'w. 
It may happen that H has just one vertex, which is of the form cA. Then 

c G T and the end of A in G other than c belongs to S. The number of such 
components H is the number of edges A of G having one end in S and the other 
in r , that is ^ 

2^ (d(c) - d s(c)) . 

Another possibility is that H has just one vertex, which is of the form c(i). 
The number of such components is 

Z(d(a)-f(a)). 
aeS 

In the remaining case, H has at least one edge. If H has no edge in common 
with one of the star-graphs St (a) it must consist of a single edge with its two 
ends. Then the number of vertices of H is even. If H has an edge in common 
with St (a) then Y (a) ^ 0 and so St (a) is connected. Moreover St (a) is then a 
subgraph of H. A component of G'w having a connected star-graph St (a) 
with at least one edge as a subgraph will be called large. 

Suppose H is large. Let M be the set of all vertices a of G such that St (a) is 
a connected subgraph of H with at least one edge. Then I Ç V — (SUT). 
H is made up of these star-graphs St (a), a set N of edges which link them to 
form a connected graph Ho and a set P of edges having one end a vertex of H0 

and one end a vertex cA such that c Ç T. Clearly M is the set of vertices of a 
component K(H) of G SUT- We may think of K(H) as derived from H0 by 
shrinking each of the star-graphs St (a), a G M, to a single vertex. Conversely 
suppose K is any component of G SUT- If c is a vertex of K then Y(c) ?* 0 since 
c $ T and therefore St(c) is connected and has at least one edge. This star-
graph is a subgraph of a large component H of GV a n d we must have 
K = K(H). 

For a large component H ol G'w having just n vertices 

n= Z {d(a) + ( d ( a ) - / ( a ) ) } + » ( Z ( J Î ) ) 

= £ / ( < * ) + » ( * ( # ) ) (mod 2). 
aeK(H) 
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Hence the number of large components of G'w for which the number of vertices 
is odd is q (5, T). 

Using (8) we obtain the formulae 

(9) hu(W) = q(S, T)+Z (d(a) - f{a)) + £ (d(c) - ds(c)), 
aeS ceT 

(10) hu{W) - a(W) 

= q(S, T) - Z / (G) + Z (f(c) - ds(c)). 
aeS ceT 

The quantities on the left in these equations are defined in terms of G', 
those on the right in terms of G. 

Suppose there are disjoint subsets S and T of V satisfying (6). Select two 
such subsets so that a(S) has the least possible value. Assume that/(6) = d(b) 
for some b G 5. If we replace 5 by 5 — {b} and T by I U {b} inequality (6) 
will remain valid, for with at most d(b) exceptions the numbers v(C) associated 
with the components of GSuT are unaltered. This contradicts the definition of 
S. Hence fib) < d(b) for each & £ 5. Let W be the union of the sets X(a) 
such that a £ S and the sets Y(c) such that c Ç T. Then W is simple since 
Y(c) is non-null when X(c) Q W. It follows from (10) that hu(W) > a{W) 
in Gf. Hence G' has no 1-factor, by Theorem A. Hence G has no/-factor, by 
the Lemma. 

Conversely suppose G has no /-factor. Then by Theorem A and the Lemma 
there is a set W of vertices of Gr such that hu(W) > a(W). Choose such a W 
so that a(W) has the least possible value. 

Suppose there exists a Ç F such that Y (a) Pi W ^ 0 and Y (a) H {V - W) 
^ 0. Write Z = W - ( Y (a) H W). Then G'w and G'z differ in one component 
only, provided that X(a) is not a subset of W, since the members of Y (a) are 
all joined to the same vertices of G'. If X{a) Q W then each component of G'w 

is a component of G'z. In either case we have hu(Z) > hu(W) — 1 and 
a(Z) < a(W) - 1. Hence hu(Z) - a{Z) > hu(W) - a(W), contrary to the 
definition of W. We deduce that Y{a) <^W\î Y (a) C\W ^ 0. 

Suppose next that X(a) r\ W ^ 0. Choose b Ç X(a) Pi W. Write Z = W 
— {b}. There is at most one component of G'w which has a vertex not a mem
ber of Y(a) joined to b in G'. Hence if Y(a) is contained in W the numbers 
hu(Z) and hu(W) can differ by at most one. Then hu{Z) > hu{W) — 1, 
a(Z) = a(W) - 1 and therefore hu(Z) - a(Z) > hu(W) - a{W). This con
tradicts the definition of W. We deduce that, for the case X{a) C\W 9^ 0, 
Y {a) is not a subset of W and therefore Y(a) P W = 0 by the result of the 
preceding paragraph. This proves that X(a) and Y (a) cannot both be subsets 
of W, since X(a) is never null. (d(a) > /(a) > 0.) 

Suppose both X(a) P PF and X(a) P (F7 — W7) are non-null. We choose 
be X(a) nW and write Z = IF - {b} as before. Since F(a) P IF = 0 all 
the vertices of Y(a) belong to one component of G'w, for each is joined in G' 
to each vertex of X(a) P {V — W). But there is at most one component of 
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G1V which has a vertex not a member of Y (a) joined to b in G;. Hence with at 
most two exceptions the components of G'w are components of G''z. Accord
ingly 

hu(Z) > ku{W) - 2, 
hu(Z) - a{Z) > hu(W) - a(W) - 1. 

But hu(Z) is by definition the number of components of G'z having an odd 
number of vertices. Hence 

hu(Z) +a(Z) =a(V) (mod 2) 
and similarly 

hu(W) + a(W) s a(Vf) (mod 2). 

We may write these results as 

hu(Z) - a{Z) s a{Vf) - hu(W) - a{W) (mod 2). 

Hence hu(Z) — a(Z) > hu{W) — a(W) and so the definition of W is contra
dicted. We deduce that X(a) <^ W ii X(a) C\W ^ 0. 

We have now proved that W is simple. We define 5 and T in terms of W as 
before. Using (10) we find that S and T satisfy (6). 

This completes the proof of Theorem C. 
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