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One of the longest-standing open problems in computational geometry is bounding the complexity of the
lower envelope of n univariate functions, each pair of which crosses at most s times, for some fixed s. This
problem is known to be equivalent to bounding the length of an order-s Davenport-Schinzel sequence, namely,
a sequence over an n-letter alphabet that avoids alternating subsequences of the forma---6---a---b--- with
length s + 2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem
in differential equations and have since been applied to bound the running times of geometric algorithms,
data structures, and the combinatorial complexity of geometric arrangements.

Let A5(n) be the maximum length of an order-s DS sequence over n letters. What is As asymptotically? This
question has been answered satisfactorily [Hart and Sharir 1986; Agarwal et al. 1989; Klazar 1999; Nivasch
2010], when s is even or s < 3. However, since the work of Agarwal et al. in the mid-1980s, there has been a
persistent gap in our understanding of the odd orders.

In this work, we effectively close the problem by establishing sharp bounds on Davenport-Schinzel se-
quences of every order s. Our results reveal that, contrary to one’s intuition, A;(n) behaves essentially like
As—1(n) when s is odd. This refutes conjectures by Alon et al. [2008] and Nivasch [2010].
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1. INTRODUCTION

Consider the problem of bounding the complexity of the lower envelope of n continuous
univariate functions fi, ..., f,, each pair of which cross at most s times. In other words,
how many maximal connected intervals of the {f;} are contained in the graph of the
function fiin(x) = min{fi(x), ..., f»(x)}? In the absence of any constraints on {f;}, this
problem can be completely stripped of its geometry by transcribing the lower enve-
lope fumin as a Davenport-Schinzel (DS) sequence of order s, namely, a repetition-free
sequence over the alphabet {1,...,n} that does not contain any alternating subse-
quences of the form ---a---b---a---b--- with length s + 2, for any a,b € {1,...,n}.1

1If the sequence corresponding to the lower envelope contained an alternating subsequence abab - - - with
length s + 2, then the functions f, and f; must have crossed at least s + 1 times, a contradiction.
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36:2 S. Pettie

Although Davenport and Schinzel [1965a] introduced this problem nearly 50 years
ago, it was only in the early 1980s that DS sequences became well known in the
computational geometry community [Atallah 1985; Sharir et al. 1986]. Since then,
DS sequences have found a startling number of geometric applications, with a grow-
ing number that are not overtly geometric [Alstrup et al. 1997; Burkard and Dollani
2001; Klawe 1992; Lépez-de-los Mozos et al. 2013; Pettie 2008; Di Salvo and Proietti
2007].2 In each of these applications, some quantity (e.g., running time, combinatorial
complexity) is expressed in terms of As(n), the maximum length of an order-s DS se-
quence over an n-letter alphabet. To improve bounds on A, is, therefore, to improve
our understanding of numerous problems in algorithms, data structures, and discrete
geometry.

Davenport and Schinzel [1965a] established n'*°® upper bounds on 4(n) for every
order s. In order to properly survey the improvements that followed [Agarwal et al.
1989; Davenport 1971; Hart and Sharir 1986; Klazar 1999; Komjath 1988; Nivasch
2010; Sharir 1987, 1988; Szemerédi 1974], we must define some notation for forbidden
sequences and their extremal functions.

1.1. Sequence Notation and Terminology

We adopt and extend the sequence notation from the generalized Davenport-Schinzel
literature (see, e.g., Klazar 2002; Pettie 2011b). Let |o| be the length of a sequence
0 = (0(i)1<i<o; and let ||o || be the size of its alphabet ¥(c) = {o(i)}. Two equal length
sequences are isomorphic if they are the same up to a renaming of their alphabets. We
say o is a subsequence of o', written o < o/, if o can be obtained by deleting symbols
from o’. The predicate o < ¢’ asserts that o is isomorphic to a subsequence of ¢’. If
o £ o' we say o’ is o-free. If P is a set of sequences, P £ ¢’ holds if o £ ¢’ for every
o € P. The assertion that o appears in or occurs in or is contained in ¢’ means either
o < o’ or o < ¢’/, which one being clear from context. The projection of a sequence
o onto G C X(o) is obtained by deleting all non-G symbols from o. A sequence o is
k-sparse if whenever o(i) = o(j) and i # Jj, then |i — j| > k. A block is a sequence of
distinct symbols. If o is understood to be partitioned into a sequence of blocks, [o] is
the number of blocks. The predicate o] = m asserts that o can be partitioned into at
most m blocks. The extremal functions for generalized Davenport-Schinzel sequences
are defined to be

Ex(o,n,m) = max{|S| : 0 £ S, ||S|| =n, and [S] < m}
Ex(o,n) = max{|S| : ¢ £ S, |S|| =n, and S is ||o||-sparse},

2To cite a fraction of the literature, DS sequences/lower envelopes are routinely applied to problems related
to geometric arrangements [Agarwal and Sharir 2002; Aronov and de Berg 2012; Aronov and Drusvyatskiy
2011; Bern et al. 1991; de Berg 2010; Dumitrescu et al. 2009; Edelsbrunner et al. 1987; Efrat 2005; Har-Peled
2000; Huttenlocher and Kedem 1990; Huttenlocher et al. 1993; Jaromczyk and Kowaluk 1988; Koltun 2004;
Koltun and Sharir 2003; Matousek et al. 1994; Pettie 2011c; Tagansky 1996], in kinetic data structures
and dynamic geometric algorithms [Abam et al. 2010; Agarwal et al. 2008; Albers et al. 1998; Atallah 1985;
Guibas et al. 1992; Huttenlocher et al. 1992; Kaplan et al. 2011; Wahid et al. 2010], in visibility [Cole and
Sharir 1989; Moet et al. 2008; Sharir et al. 1986], motion planning [Leven and Sharir 1987; Sharir et al.
1986], and geometric containment problems [Aonuma et al. 1990; Augustine et al. 2010; Sharir et al. 1986;
Sharir and Toledo 1994], as well as variations on classical problems such as computing shortest paths [Aronov
et al. 2011; Bae and Okamoto 2012; Baltsan and Sharir 1988] and convex hulls [Aurenhammer and Jiittler
2012; Ezra and Mulzer 2012]. They have also been used in some industrial applications [Berretty et al.
2001; Tlushin et al. 2005]. Refer to Sharir and Agarwal [1995] for a survey of DS sequences and their early
applications in computational geometry and to Klazar [2002] for a survey of DS sequences and related
problems in extremal combinatorics.
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Sharp Bounds on Davenport-Schinzel Sequences of Every Order 36:3

where o may be a single sequence or a set of sequences. The conditions [S] < mand S is
|lo ||-sparse guarantee that the extremal functions are finite. For example, if |0 || = 2, the
sparsity criterion forbids immediate repetitions and such infinite degenerate sequences
as aaaaa - - -. Blocked sequences, on the other hand, have no sparsity criterion. The
extremal functions for (standard) Davenport-Schinzel sequences are defined to be

length s + 2 length s + 2
e e e e
rs(n,m) = Ex(ababa ---,n,m) and Xi;(n) =Ex(ababa---,n).

Bounds on generalized Davenport-Schinzel sequences are expressed as a function of
the inverse-Ackermann function «, yet there is no universally agreed-upon definition
of Ackermann’s function or its inverse. All definitions in the literature differ by at most
a constant, which usually obviates the need for more specificity. In this article, we use
the following definition of Ackermann’s function.

al,j=2j j21
a1 =2 1>2
a4 j=wW- 01y ,j>2

where w =a; j_1.

Note that in the table of {qg; ;} values, the first column is constant (a; 1 = 2), and the
second merely exponential (q;2 = 2), so we have to look to the third column to find
Ackermann-type growth. We define the double- and single-argument versions of the
inverse-Ackermann function to be

a(n,m) = min{i | a; ; > m, where j = max{[n/m], 3}}
a(n) = a(n, n).

We could have defined «(n, m) without direct reference to Ackermann’s function.
Note that j = log(ai ;). One may convince oneself that j = log*(az ;) — O(1),
j = log™(az ;) — O(1), and in general, that j = log" Y(a; ;) — O(1), where [i — 1]
is short for i — 1 #s.® Thus, up to O(1) differences «a(n,m) could be defined as
min{i | log[i_ll(m) < max{[n/m], 3}}. We state previous results in terms of the sin-
gle argument version of «. However, they all generalize to the two-argument version
by replacing As(n) with As(n, m) and a(n) with a(n, m).

1.2. A Brief History of A,
After introducing the problem, Davenport and Schinzel [1965a] proved that A;(n) =

n, aa(n) = 2n—1, x3(n) = O(nlogn), and for all s > 4, that A;(n) = n-2°V1°8" where the
leading constant in the exponent depends on s. Shortly thereafter, Davenport [1971]
improves the bound on A3(n) to O(nlogn/loglogn). Szemerédi [1973] dramatically im-
proves the upper bounds for all s > 3, showing that A;(n) = O(nlog*n), where the
leading constant depends on s.

From a purely numerical perspective Szemerédi’s bound settled the problem for all
values of n one might encounter in nature (the log-star function being at most 5 for n
less than 1019990) so why should any thoughtful mathematician continue to work on
the problem? In our view, the problem of quantitatively estimating A;(n) has always
been a proxy for several qualitative questions: Is A;(n) linear or nonlinear? What is the

3If £ : N\{0} — Nis a decreasing function, f*(m) is, by definition, min{¢ | f©(m) < 1}, where f©(m) = mand
f(z)(m) = f( f(efl)(m)),
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36:4 S. Pettie

structure of extremal sequences realizing A;(n)? Does it even matter what s is? Hart and
Sharir [1986] answer the first two questions for order-3 DS sequences. They gave a bi-
jection between order-3 (ababa-free) DS sequences and so-called generalized postorder
path compression schemes. Although these schemes resembled the path compressions
found in set-union data structures, Tarjan’s [1975] analysis did not imply any nontriv-
ial upper or lower bounds on their length. Hart and Sharir [1986] prove that such path
compression schemes have length ®(na(n)), thereby settling the asymptotics of A3(n).

Agarwal, Sharir, and Shor [1989] (improving on Sharir [1987, 1988]) give asymptot-
ically tight bounds on order-4 DS sequences and reasonably tight bounds on higher
order sequences.

ra(n) = O(n - 24™)

-n. 2(1+o(1))o¢‘(n)/t!
As(n) ) for evens > 6,t = L%J.
<n- 9(1+o(1)at (n)

> As—1(n)
As(n) forodds > 5,¢t = L%J.
<n- (a(n))(l-s-o(l))a’(n)

For even s, their bounds were tight up to the constant in the exponent: 1 for the
upper bound and 1/¢! for the lower bound. Moreover, their lower bound construction
gave a qualitatively satisfying answer to the question of how extremal sequences are
structured when s is even. For odd s, the gap between upper and lower bounds was
wider, the base of the exponent being 2 at the lower bound and «a(rn) at the upper bound.

Remark 1.1. Theresults of Agarwal, Sharir, and Shor [1989] force us to confront an-
other question, namely, when is it safe to declare victory and call the problem closed? As
Nivasch [2010, §8] observes, the +o(1) in the exponent necessarily hides a +Q(a?"1(n))
term if we express the bound in an Ackermann-invariant fashion, that is, in terms of
the generic a(n), without specifying the precise variant of Ackermann’s function for
which it is the inverse. Furthermore, under any of the definitions in the literature
a(n) is an integer-valued function, whereas A;(n)/n must increase fairly smoothly with
n, that is, an estimate of A;(n) that is expressed as a function of any integer-valued
a(n) must be off by at least a 2%« '™ factor. A reasonable definition of sharp bound
(when dealing with generalized Davenport-Schinzel sequences) is an expression that
cannot be improved, given + ©(1) uncertainty in the definition of «(n). For example,
r4(n) = ®(n2*™) is sharp in this sense since the constant hidden by © reflects this un-
certainty. In contrast, A3(n) = ®(na(n)) is not sharp in an Ackermann-invariant sense.
See the tighter bounds on A3(n) cited next and in Theorem 1.3.

Remark 1.1 brings up several issues that demand their own remarks.

Remark 1.2. We are not forced by nature to work with a generic a(n). It is conceiv-
able that there is a “right” definition of « (for each s) and that this definition could
be succinctly defined, but this still leaves the issue of « being integer-valued. To fix
this problem, one might attempt to define a continuous o that interpolates the integer-
valued «, in the same way that the I' function interpolates the factorial function.
Defining such an « is a Herculean task, and one that would probably be appreciated by
a number of researchers countable on one hand. The most tractable problem brought
up in Remark 1.1 is to bound the smoothness of As;(n)/n. Davenport and Schinzel’s
O(nlogn) bound on A3(n) implies good bounds on the smoothness of A3(n)/n. For higher
orders, s > 3, the smoothness problem has received little attention. Nonetheless, it is
trivial to see that A;(2n)/2n = O(\s(n)/n), which is smooth enough for our argument.
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Nivasch [2010] presented a superior method for upper bounding As(n). In addition,
he provides a new construction of order-3 DS sequences that matched an earlier upper
bound of Klazar [1999] up to the leading constant.

2na(n) + O(n/a(n)) for s = 3; upper bound due to Klazar [1999].
rs(n) = { O - 20™) for s = 4.
n - 2o () /¢! for evens > 6, t = L%J.
> Ag_1(n) .
R < - (@)oo forodds>5,1=52]. (Niv)

This closed the problem for even s > 6 (the leading constant in the exponent being
precisely 1/¢!) but left the odd case open. Alon et al. [2008] conjecture that the upper
bounds (Niv) for odd orders are tight, that is, the base of the exponent is, in fact,
a(n). This conjecture was spurred by their discovery of similar functions that arose
in an apparently unrelated combinatorial problem, stabbing interval chains with j-
tuples [Alon et al. 2008].

1.3. New Results

We provide new upper and lower bounds on the length of Davenport-Schinzel sequences
and, in the process, refute conjectures by Alon et al. [2008, Section 5], Nivasch [2010,
Section 8], and Pettie [2011b, Section 7].

THEOREM 1.3. Let As(n) be the maximum length of an order-s Davenport-Schinzel
sequence. For any s > 1, A, satisfies

n s=1
2n—1 s=2
2na(n) + O(n) s=3
As(n) =1 @(n2em) s—4
O(na(n)2*™) s=5
n - 2o (/! for both even and odd s > 6, t = L%J.

Theorem 1.3 is optimal in that it provides the tightest bounds that can be expressed
in an Ackermann-invaraint fashion (see Remark 1.1), and in this sense closes the
Davenport-Schinzel problem.* However, we believe our primary contributions are not
the tight asymptotic bounds per se but the structural differences they reveal between
even and odd s. We can now give a cogent explanation for why odd orders s > 5 behave
essentially like the preceding even orders and yet why they are intrinsically more
difficult to understand.

1.4. Generalizations of Davenport-Schinzel Sequences

The (Niv) bounds are actually corollaries of a more general theorem [Nivasch 2010]
concerning the length of sequences avoiding catenated permutations®, which were in-
troduced by Klazar [1992]. Define Perm(r,s + 1) to be the set of all sequences ob-
tained by concatenating s + 1 permutations over an r-letter alphabet. For example,

4The exponent (1 + o(1))at(n)/t! is the Ackermann-invariant expression of(n)/t! + O(a*~1(n)).
5Nivasch called these formation-free sequences.
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abed cbad bade abed deba € Perm(4, 5). Define the extremal function of Perm(r, s + 1)-
free sequences to be

Ays(n) = Ex(Perm(r, s + 1), n).

The s + 1 here is chosen to highlight the parallels with order-s DS sequences. Every
o € Perm(2, s+1) contains an alternating sequence abab - - - with length s + 2,% so order-
s DS sequences are also Perm(2, s+1)-free, implying that A;(n) < Ay s(n). Nivasch [2010]
proves that A, ;(n) obeys all the upper bounds of (Niv), as well as its lower bounds when
s>4isevenors < 3.

There are other natural ways to generalize standard Davenport-Schinzel sequences.
Doubled Davenport-Schinzel sequences are studied [Adamec et al. 1992; Davenport
and Schinzel 1965b; Klazar and Valtr 1994; Pettie 2011b]. Define 1{"(n) to be the
extremal function of dbl(abab - - - )-free sequences, where the alternating sequence has
length s + 2 and dbl(o) is obtained by doubling every symbol in ¢ save the first and
last. For example, dbl(abab) = abbaab.” Davenport and Schinzel [1965b] noted that
A'(n) = O(h1(n)) = On) (see Klazar [2002]) and Adamec et al. [1992] proved that
A3 (n) = O(r2(n)) = O(n). Pettie proves that 13'(n) = O(na®(n)) and that 1%(n) obeys all
the upper bounds of (Niv) for s > 4.

If one views alternating sequences as forming a zigzagging pattern, an obvious gen-
eralization is to extend the length of each zig and zag to include a larger alphabet.
For example, the N-shaped sequences N, = 12---k(k+1)---212-..k(k + 1) generalize
abab = Np, and the M-shaped sequences My, = 12---k(k+ 1)k---212---k(k+ 1k---21
generalize ababa = M. Klazar and Valtr [1994] (see also [Pettie 2011c]) proved that
Ex(dbl(iV;), n) = O(he(n)) = O(n), and Pettie [2011c] proved that Ex({M;, ababab}, n) =
O()3(n)). Sequences avoiding N- and M-shaped sequences have proved very useful in
bounding the complexity of geometric graphs [Fox et al. 2013; Pettie 2011c; Suk 2012;
Valtr 1997].

In a companion paper [Pettie 2015], we provide new upper and lower bounds on dou-
bled DS sequences, M;-free sequences, and both Perm(r, s + 1)-free and dbl(Perm(r, s +
1))-free sequences. Let A (n) be the extremal function of dbl(Perm(r, s + 1))-free se-
quences. The strangest of these results is that A, ; is very sensitive to the alphabet size
r, but only when s is odd and at least 5. In particular, Ags(n) = O (n)) = B(A(n)),
but this is not true for general r # 2.

TuEOREM 1.4. The following bounds hold for allr > 2,s > 1, where t = L%J.

Q) forse{l,2}and all r > 2
O(na(n)) fors=3andallr > 2
O(n2v™) fors=4andallr > 2
O(na(n)2*™) fors=5andr =2

Ars(), AL(n) = n - (a(n))I+od)etm fors=5andallr > 3
n - 20toMe (/! for even s > 6andall r > 2
n- 2(1+o(1))oﬁ(n)/t! for odds>Tandr =2
n - (a(n) oM@/t for odd s > Tand all r > 3.

6The first permutation contributes two symbols and every subsequent permutation contributes at least one.
"Why not consider higher multiplicities? It is fairly easy to show that repeating symbols more than twice,
or repeating the first and last at all, affects the extremal function by at most a constant factor. See Adamec
et al. [1992].
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Theorem 1.4 is rather surprising, even given Theorem 1.3 and even in retrospect.
One consequence of Theorem 1.4 is that Cibulka and Kyn¢l’s [2012] upper bounds on
the size of sets of permutations with fixed VC-dimension are tight.

1.5. Organization

In Section 2, we present an informal discussion of the method of Agarwal, Sharir,
and Shor [1989] and Nivasch [2010], its limitations for dealing with odd-order DS se-
quences, and the key ideas behind the proof of Theorem 1.3. Section 3 reviews Nivasch’s
recurrence for A; as well as some basic upper bounds on A;. The critical structure in
our analysis is the derivation tree of a DS sequence. Its properties are analyzed in Sec-
tion 4. In Section 5, we use the derivation tree to obtain a new recurrence for odd-order
DS sequences. The recurrences for even- and odd-order DS sequences are solved in
Section 5.1. In Section 5.2, we complete the proof of the upper bounds of Theorem 1.3
for all orders, with two exceptions. Order-3 and order-5 DS sequences require special
attention. They are analyzed in Section 6. In Section 7, we establish Theorem 1.3’s
lower bound on order-5 DS sequences. We discuss several open problems in Section 8.
Some proofs appear in Appendices A and B.

2. A TOUR OF THE PROOF

The proof of Theorem 1.3 diverges sharply from previous analyses [Agarwal et al.
1989; Nivasch 2010; Sharir 1987] in that it treats even and odd orders as fundamentally
different beasts. To understand why all orders cannot be analyzed in a uniform fashion,
we must review the method of Agarwal, Sharir, and Shor [1989] and Nivasch [2010].

The basic inductive hypothesis of Nivasch [2010] is that there are values {us;},
increasing in both s and i, for which A4(n, m) < s ;(n + mpoly(log" =Y (m))), for any choice
of i.8 In other words, the multiplicity of symbols is at most u;, up to an additive term
that depends on the block count m, which may be the dominant term if i is too small.
One would, ultimately, choose i to make mpoly(log[kll(m)) = O(n) (and a(n, m)+ O(1) is
a good choice), but for the sake of simplifying the discussion, we ignore the dependence
on m. Given a sequence S with parameters s, n, m, to invoke the inductive hypothesis
with parameter i means to upper bound |S| by s ;n, with the understanding that i is
not chosen to be too small.

Suppose S is an order-s, m-block DS sequence over an n-letter alphabet. The analysis
of Agarwal et al. [1989] and Nivasch [2010] begins by partitioning S into /% intervals
of consecutive blocks, m typically being much smaller than m. Write S as Sy - - - Sp;. We
can put symbols into two categories: local symbols are those that appear exclusively
in one interval S; and global symbols are those that appear in multiple intervals. Let
S=25-- S’m be the subsequence of S consisting of local symbols and S=25--. S’m
the subsequence of S consisting of global symbols, so |S| = IS| + |S]. On each Sq (for
1 < q < m), we invoke the inductive hypothesis with parameter i and deduce that
|S| < Usi IS ]l. What remains is to bound the length of S.

The next step is to form a contracted sequence from S that has a much higher
alphabet-to-block count ratio, thereby allowing us to invoke the inductive hypothesis
with a smaller “” parameter. Let S’ be obtained from S by replacing each interval S’q
with a single block 8, containing the first occurrence of each distinct symbol in Sq.
Thu§, the alphabet of S’ is the same as S but it consists of just 1 blocks B182 - - - Bi-
On S’, we invoke the inductive hypothesis with parameter i — 1 and conclude that
18] < Msi-1 IS]l. One cannot immediately deduce any bound on S from a bound on S/,

8Recall that log? " (m) is the log* *(m) function, with i — 1 #s.
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since each interval S'q could contain numerous copies of a symbol, only one of which is
retained in S,.
Imagine reversing the contraction operation. We replace each block g, with a se-

quence S'q, thereby reconstructing S. To bound the length of S’q in terms of |8,] = ||Sq Il,
we will invoke the inductive hypothesis three more times. Put the symbols of g, into

three categories: those that make their first appearance (in §') in Bq, those that make
their last appearance in 8,, and those that make a middle (non-first, non-last) ap-

pearance in B,. Discard from S'q all symbols not classified as first in 8, and call the
resulting sequence S'q. Every symbol in S’q appears at least once after Sq (by virtue of
being categorized as first in 8;), which implies that S = S; - - - Sy, is an order-(s — 1) DS
sequence. See the following diagram.

CO [ _ab | L el |

block 8, l
S Llalvlal T Tolal Tol-[a] -

interval Sy

An occurrence of 5,1 = abab - - - (lengths + 1) in Sq, together with an a or b following S'q
(depending on whether oy, ends in b or a) gives an instance of oy,5 in S, contradicting
the fact that it has order s. The same argument applies in a symmetric fashion to the
subsequence of S'q formed by symbols making their last appearance in g, call it Sq. By
invoking the inductive hypothesis with parameter i on S; --- Sy and Sy - - - Sy, we can
conclude the contribution of first and last symbols to S is 2,1 ; 1S].

The length of the subsequence of middle symbols in S'q, call it S,, is bounded with
the same argument, except now there are, by definition of middle, occurrences of both
a, b € £(S,) both before and after S,. That is, if o, = baba - - - (length s) appeared in S,
then, together with an a preceding S’q and either an a or b following Sq (depending on
whether o5 ends in b or a), there would be an instance of 0,2 in S contradicting the fact
that it has order s. We invoke the inductive hypothesis one last time, with parameter
i,oneach Si, ..., Sy, which implies that |S'q| < Us—2.i ||S'q||.

Recall that each symbol in S’ appeared u ;1 times, us ;-1 —2 times in blocks where it
is categorized as middle. Thus, the contribution of middle symbols to 1S|is s—2.i(si—1—
2). In order for every symbol, local and global alike, to appear in S with multiplicity at
most us;, we must have

Msi = 2Ms—l,i + ,us—2.i(l/vs,i—1 —2). 1)

When s = 3, we do not need to use an inductive hypothesis to determine 1 ; and ue ;.
They are just 1 and 2; the i parameter does not come into play.? This leads to a bound
of u3; = 2i + 0(1).1% Although the contribution of first and last symbols is significant
at s = 3, entertain the idea that their contribution becomes negligible at higher orders,
so we can further simplify (1) as follows:

Ms,i = Ms—2,ifs,i—1. (2)

Inequality (2) is satisfied when ug; = g(i?) for any base g; recall that ¢ = LS‘TZJ by
i+(t—1)

definition. By Pascal’s identity, g(ift) = g( D og((ifzw). The correct base depends on

91t is easy to show that A1(n,m) < 1-n+mand As(n, m) < 2 - n+ m. See Lemma 3.2.
10We have not said what to do in the base case when i = 1, which determines the O(1) term.
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where the inductively defined Inequality (2) bottoms out, at order 2 when s > 4 is
even and at order 3 when s > 5 is odd. When s is even, the correct base is 2 = ug;.
When s is odd, the calculations are less clean, since us; = 2i + O(1) is not constant but

depends on i. Nonetheless, the correct base is on the order of i, that is, us; = aG)()
satisfies (2) at the odd orders. Plugging in a(n, m) for i ultimately leads to Nivasch’s
bounds (Niv), since (*1*) = i'/¢! + OG*™1) = (1 + o(1))i’ /¢!.

To obtain a construction of order-s sequences realizing the (Niv) bounds, one should
start by attempting to reverse-engineer the preceding argument. To form an order-s
sequence S with certain alphabet and block parameters, start by generating (induc-
tively) local order-s sequences S ---S;, over disjoint alphabets, and a single global
order-s sequence S’ having 7 blocks. Take some block Bg in S’ and suppose for the sake
of simplicity that g, consists solely of middle symbols. We need to substitute for g, an

order-(s —2) DS sequence S, and then somehow merge it with S, in a way that does not
introduce into S an alternating sequence with length s + 2. This is the point at which
the even and odd orders diverge.

If s is even, the longest alternating sequence baba ---b in S, has length s — 1 and
therefore begins and ends with 5. We can only afford to introduce one alternation at
each boundary of S;, so the pattern of as and bs on either side of 8, must look like
a* b* B, b* a*, as in the following diagram. We will call @ and b nested in B, if the
sequence contains a b f,; ba or the equivalent ba g, a d.

gL a [ b ] [ ab ] b [ e ]
block f,

S (o] Jal [ b[a] lbm
interval §g ——

On the other hand, if s is odd, then the longest alternating sequence baba - - - a in
S, has length s — 1, begins with b and ends with a, so the pattern of as and bs in S
looks like a* b* B, a* b*. A pair of middle symbols that are not nested in 8, are called
interleaved in f,.

gl a ][ b ] [bma(é’kbgq[ [l e |l b ]
s ﬁ ﬁ\ (o] Tal [ [ ] lbla\~~- ﬁ

interval S

If the (Niv) bounds prove to be tight, there must be two systems for generating
sequences: one where nesting is the norm, when s is even, and one where interleaving
is the norm, when s is odd. If interleaving were somehow outlawed then to avoid
creating an alternating sequence with length s + 2, the sequence S, substituted for 5,
would have to be an order-(s —3) DS sequence rather than an order-(s —2) one. However,
it is clearly impossible to claim that interleaving simply cannot exist.

What makes the argument of Agarwal et al. [1989] and Nivasch [2010] brilliantly
simple is how little it leaves to direct calculation. The length of every sequence
(Sq, S, S'q, S, ete.) is bounded by delegation to an inductive hypothesis. However, such
useful notions as nearly all middle symbols in a block are mutually nested are difficult
to capture in a strengthened inductive hypothesis. We need to understand and charac-
terize the phenomenon of nestedness to improve on Agarwal et al. [1989] and Nivasch
[2010]. This requires a deeper understanding of the structure of Davenport-Schinzel
sequences.
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The Derivation Tree. Inductively defined objects can be apprehended inductively or,
alternatively, apprehended holistically by completely “unrolling” the induction. From
the first perspective, S is the merger of S and S, which is derived from &', all of
which are analyzed inductively. By iteratively unrolling the decomposition of S and
S', we obtain a derivation tree T whose nodes represent every block in every sequence
encountered in the recursive decomposition of S. Whereas S occupies the leaves of
T, derived sequences such as S’ occupy levels higher in 7. Whereas S (and every
sequence) is a static object, 7 can be thought of as a process for generating S whose
history can be reasoned about explicitly. But how does 7 let us deduce something about
the nestedness and non-nestedness of symbols in a common block?

Suppose we are interested in the nestedness of middle symbols a, b in block 8, which
corresponds to a leaf-node in 7. Imagine taking 7 and deleting every node whose block
does not contain b, that is, projecting 7 onto the symbol b. What remains, 7, is a tree
rooted at the location in 7 where b is “born” and represents how occurrences of b have
proliferated during the process that culminates in the construction of S. The block/node
B occupies a location in 7, and a location in 7|,, whose node sets are only guaranteed
to intersect at . Some locations in 7, and 7 are intrinsically bad—these are called
feathers in Section 4. (Whether a node is a feather in 7|, depends solely on the structure
of 74, not how it is embedded in 7 nor its relationship to a different 7j;.) We show that
if B is not a feather in 7, and not a feather in 7, then ¢ and b are nested in . In other
words, the middle symbols in 8 are partitioned into two equivalence classes, depending
on whether or not they appear at feathers in their respective derivation trees. We
could not outlaw interleavedness in general, yet we manage to outlaw it within one
equivalence class! The question is, what are the relative sizes of these two equivalence
classes, and in particular, how many feathers can a 7|, have?

Our aim is to get stronger asymptotic bounds on As; for odd s, which means the
number of feathers should be a negligible (o(1) fraction) of the size of 7. In the same
way that the multiplicities u,; are bounded inductively, as in (1), for example, we are
able to bound the number of feathers in 7, inductively, call it vs;, in terms of vg;_1
and v;_1 ;. However, now u; is bounded in terms of p;;_1 (the multiplicity of symbols
in the contracted sequence &), ts—1; (the multiplicity of symbols in S begat by first
and last occurrences in S'), s—3,; (the multiplicity of middle occurrences in S begat by
non-feathers in §'), and both vs.i—1 and ps_g;, which count the number of feathers in S
and the multiplicity of middle occurrences in S begat by feathers in §'. This leads to
a system of three interconnected recurrences: one for u,; at odd s, one for u,; at even
s, and one for the feather count v;;. An elementary (though necessarily detailed) proof
by induction gives solutions for u,; and vs; that ultimately lead to the upper bounds of
Theorem 1.3.

3. BASIC UPPER BOUNDS

In Section 3.1, we review and expand on the notation introduced informally in Section 2.
It will be used repeatedly throughout Sections 4-6.

3.1. Sequence Decomposition

Let S be a sequence over an n = ||S|| letter alphabet consisting of m = [S] blocks. Sup-
pose we partition S into 72 intervals of consecutive blocks S1.S - - - Sy, where my = [S,]
is the number of blocks in interval q. Let Ev)q be the alphabet of symbols local to S, (that
do not appear in any S,, p # q), and let T = 2(S)\ Uq Evlq be the alphabet of all other
global symbols. The cardinalities of iq and S are g and i, thus n = i+ Z;hzl 7i4. A global
symbol in S, is called first, last, or middle if it appears in no earlier interval, no later
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interval, or appears in both earlier and later intervals, respectively. Let ,, ¥,, £,, 5,
be the subset of X(S;) consisting of, respectively, first, last, middle, and all global
symbols, and let 7,, 2, iy, and 7, be their cardinalities. Let S;, S,, S;, S,. S, be the
projection of S, onto Evlq, f)q, f)q, Eq, and %,. Note that S consists solely of first occur-
rences; if the last occurrence of a symbol appeared in S; the symbol would be classified
as local to Si, not global The same argument shows that Sy, consists solely of last
occurrences. Let S, S, 8, S, and S be the subsequences of local, global, first, last, and
middle occurrences, respectively, that is, S=25; - Sm, S=25; .- Sm, S=25;-- Sm_l,
S =S, Sm, and S = Sy---S;_1, the last of which would be empty if 2 = 2. Let
= B1--- B be an m-block sequence obtained from S by replacing each S with a
smgle block B, containing its alphabet %, listed in order of first appearance in S

3.2. 2-Sparse vs. Blocked Sequences

Every analysis of Davenport-Schinzel sequences since Hart and Sharir [1986] uses
Lemma 3.1(2) to reduce the problem of bounding 2-sparse DS sequences to bounding
m-block DS sequences, that is, expressing As(n) in terms of A;(n, m), where m = O(n).

Lemma 3.1. Let ys(n) : N — N be a nondecreasing function such that rs(n) < ys(n) - n.

(1) Fors>1, As(n,m) <m— 1+ As(n).

(2) For s > 3, As(n) < ys_2(n) - As(n, 2n — 1). (This generalizes the proof of Hart and
Sharir [1986] for s = 3.)

(3) Fors > 2, As(n) < ys_1(n) - As(n, n).

(4) For s > 3, As(n) < ys—2(ys(n)) - A5(n, 3n — 1).

Parts 2 and 3 of Lemma 3.1 are due to Sharir [1987].

Part 4 of Lemma 3.1 improves on parts 2 and 3 when y;_s(n) = (1), that is, when
s > 5. Our upper bounds do not need the power of part 4. Part 2 suffices when s < 4 or
s > 6 and s = 5 is handled as a special case. Nonetheless, an analogue of part 4 can be
useful when analyzing generalized DS sequences [Pettie 2015]. We include a proof of
Lemma 3.1 in Appendix A.

3.3. Orders 1 and 2
In the interest of completeness, we shall reestablish the known bounds on order-1 and
order-2 DS sequences, in both their 2-sparse and blocked forms.

LeEmMA 3.2 (DAVENPORT AND SCHINZEL [1965a]). The extremal functions for order-1
and order-2 DS sequences are

r@) =n,
ro(n)=2n-1,
rMoom=n+m-—1,
ro(n,m) =2n+m— 2. for m > 2

Proor. Let S be a 2-sparse sequence with n = ||S||. If |S| > n, then there are two
copies of some symbol, say a. The as cannot be adjacent, due to 2-sparseness, so S must
contain a subsequence aba, for some b # a. Such an S is not an order-1 DS sequence,
hence A1(n) < n.

If S has order 2, then some symbol must appear exactly once. To see this, consider the
closest pair of occurrences of some symbol, say a. If every symbol b appearing between
this pair of as occurred twice in S then S would contain baba, abab, or abba. The first
two are precluded since S has order 2 and the third violates the fact that the two as
are the closest such pair. Thus, every symbol b between the two as occurs once. Remove
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one such b; if this causes the two a’s to become adjacent, remove one of the a’s. What
remains is a 2-sparse sequence over an (n — 1)-letter alphabet, so A2(n) < Ao(n— 1) + 2.
Since A9(1) = 1 we have Aq(n) < 2n — 1.

Lemma 3.1(1) and the bounds previously established imply A1(n,m) <n+m— 1 and
Arg(n,m) < 2n + m — 2. All these upper bounds are tight. The unique extremal order-1,
2-sparse DS sequence is 123---n, which can be converted into an extremal m-block
sequence [123---n][n]™ 1. Brackets mark block boundaries. There are exponentially
many extremal DS sequences of order 2, each corresponding to an Euler tour around a
rooted tree with vertex labels from {1, ..., n}. For example, 123 ---(n— Dn(n—1)--- 321
and 1213141---1(n — 1)1nl are extremal 2-sparse, order-2 DS sequences. The first
corresponds to an Euler tour around a path, the second an Euler tour around a star.
The first sequence can be converted into an extremal m-block, order-2 DS sequence
[12---(n—Dnlln(n—1)---21][1]™ 2, assuming that m > 2. When there is only one block
we have A4(n, 1) = n, regardless of the orders. O

3.4. Nivasch’s Recurrence

Nivasch’s [2010] upper bounds (Niv) are a consequence of a recurrence for A; that is
stronger than the one of Agarwal et al. [1989]. Here we present a streamlined version
of Nivasch’s recurrence.

RECURRENCE 3.3. Let m,n, and s > 3 be the block count, alphabet size, and order
parameters. For any m < m, any block partition {mg}i1<q<m and the corresponding
alphabet partition {A} U {fig}1<q<m where m= 3 my and n=f+ ), iy, we have

)\s(ng m) =< Z )\s(ﬁq, 7nq) + 2. )‘fsfl(ﬁy m) + )\372()\9(7’}1«1 ﬁ’L) - 2ﬁ7 m)
g=1

Proor. We adopt the notation and definitions from Section 3.1, where S is an order-s
DS sequence with ||S|| = n and [S] = m. We shall bound |S]| by considering its four

constituent subsequences S, S, S, and S.

Each S is an order-s DS sequence, therefore the contribution of local symbols is
18| < ZZLI As(itg, my). We claim each S, is an order-(s — 1) DS sequence. By virtue of
being categorized as first in S’q, every symbol in S’q appears at least once after S’q.
Therefore an occurrence of an alternating sequence 05,1 = abab--- (length s + 1),
in S’q would imply an occurrence of 05,2 in S, a contradiction. By symmetry, it also
follows that S, is an order-(s — 1) DS sequence, hence |S| = Z'qh;f As—1(fg, mg) and
1S| = ZZ’:Q Ls—1(Rg, my). Since A is clearly superadditive!l, we can bound these sums
by As_1(fi, m — my) and A;_1(A,, m — my). (Note that Zq ng = i and Zq Ny = i1, as each
sum counts each global symbol exactly once.) The contribution of first and last symbols
is therefore upper bounded by 2 - A;_1(7, m).

The same argument shows that S, is an order-(s — 2) DS sequence. Symbols in S,
were categorized as middle, so an alternatlng subsequence o; = baba - - - (length s) in

Sq, together with an a preceding S and either an a or b following S (depending on
whether s is even or odd), yields an instance of 5,2 in S, a contradlctlon Thus the

1t i straightforward to show that As(n/, m/) + As(n”, m") < As(/ + 0", m/ + m’ — 1), for all n', n"", m/, m".
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contribution of middle symbols is

m—1

181 <> hsalfg, my)
q=2
-1
= As—2 Z Ng, M —my — My, {superadditivity of A;_o}
q=2
< ho-a(IS') = 2R, m — m1 — myz), @)
= )\S—Z(A's(ﬁ, ﬁ’L) - Zﬁ, m) (4)

Inequality (3) follows from the fact that Zq fiy counts the length of S, save the first

and last occurrence of each global symbol, that is, 27 occurrences in total. Since S’ is

a subsequence of S, it too is an order-s DS sequence, so |S'| < A,(A, 7). Inequality (4)
follows. 0O

Recurrence 3.3 offers us the freedom to choose the block partition {m;}1<g<s, but
it does not suggest what the optimal partition might look like. One natural start-
ing place [Agarwal et al. 1989; Hart and Sharir 1986; Nivasch 2010] is to always
choose m = 2, partitioning the sequence into two intervals each containing m/2
blocks. This choice leads to O(n + mlog® 2m) upper bounds on As(n, m), which is
O(n + m) if the alphabet/block density n/m = Q(log° 2 m). Call this Analysis (1). Given
Analysis (1), we can conduct a stronger Analysis (2) by selecting 7 = m/log* 2 m,
so each interval contains logs_Qm blocks. The A4 (7, 71) term is bounded via Anal-
ysis (1) G.e., AR, M) = OG + mlog*2m) = O + m)) and the remaining terms
bounded inductively via analysis Analysis (2). This leads to bounds of the form
rs(n,m) =0(n + mpoly(log* m)). By iterating this process, Analysis (i) gives bounds
of the form O(n + mpoly(loghfl] m)).'2 We cannot conclude that Ay(n, m) = O(n + m)
since the constant hidden by the asymptotic notation, call it us;, increases with i and s.

This is merely meant to foreshadow the analysis of Recurrence 3.3 and subsequent
Recurrences 5.1 and 5.2 (see Appendix B). We have made every attempt to segregate
recurrences and structural arguments from their quantitative analyses, which are
important but nonetheless rote. As a consequence, Ackermann’s function, its various
inverses, and quantities such as {u;} will be introduced as late as possible.

3.5. The Evolution of Recurrence 3.3

The statement of Recurrence 3.3 is simple and arguably cannot be made simpler. We
feel it is worthwhile to recount how it has been assembled over the years [Agarwal
et al. 1989; Hart and Sharir 1986; Klazar 1999; Nivasch 2010; Sharir 1987].

When s is fixed, the function A4(n) depends only on one parameter, n, a situation
that would not ordinarily lead to expressions involving «, which is most naturally
expressed as a function of two independent parameters.!® Hart and Sharir’s [1986]
insight recognizes an additional parameter m (the block count) and obtains bounds on
As(n) via bounds on A4(n, m) (see Lemma 3.1).

12The [; — 1] here being short for i — 1 #s.
13In graph algorithms, these parameters typically correspond to nodes and edges [Chazelle 2000; Lengauer
and Tarjan 1979; Tarjan 1979], in matrix problems [Klawe 1992; Klawe and Kleitman 1990] to rows and
columns, and in data structures they may correspond to elements and queries [Gabow 1985; Tarjan 1975],
query time, and preprocessing time [Pettie 2006], or input size and storage space [Alon and Schieber 1987;
Chazelle and Rosenberg 1991; Yao 1982].
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Implicit in Hart and Sharir’s analysis is a classification of symbols into local and
global, and of global occurrences into first, middle, and last.!* Agarwal et al. [1989]
make this local/global and first/middle/last classification explicit, and arrive at a re-
currence very close to Recurrence 3.3.1> However, they do not bound the contribution
of global middle occurrences in the same way. Whereas S, is an my,-block sequence, it
can be converted to a 2-sparse one by removing up to m; — 1 repeated symbols at block
boundaries. By Lemma 3.1(1,2),

1Sql < mg + hs—2(fig) < Mg+ ys_a(fiy) -y < Mg + ys—2(n) - iy

In other words, when contracting S to form S’, the shrinkage factor is at most y;_o(n).
A similar statement holds for first and last occurrences, where the shrinkage factor is
at most y;_1(n). This leads to a recurrence [Agarwal et al. 1989, p. 249] that forgets the
role of m when analyzing global occurrences.

As(n,m) < st(ﬁq,mq) + 2-ys1(0) -1 + ys_2(n) - As(R, M) + O(m).
g=1

Nivasch’s recurrence [2010, Recurrence 3.1] improves that of Agarwal et al. [1989]
by not forgetting that S is an m-block sequence. In particular, |S| < Zq rs—2(ftg, mg),
where |S’'| < Zq fg < As(t, M). Recurrence 3.3 is substantively no different than
that of Nivasch [2010], but it is more succinct, for two reasons. First, the superad-
ditivity of As lets us bound the number of middle occurrences with the single term
rs—o(As(R1, M) — 271, m).1® Second, the function equivalent to A(r, m) from Agarwal et al.
[1989] and Nivasch [2010] is the extremal function of order-s DS sequences that are
both 2-sparse and have m blocks. This small change introduces O(m) terms [NiVAasgh
2010, Recurrence 3.1; Agarwal et al. 1989, p. 249], since the derived sequences S, S’,
and {S;, S;. S;, S;}1<g<m are not necessarily 2-sparse, and must be made 2-sparse by
removing O(m) symbols at block boundaries.

Recurrence 3.3 could be made yet more succinct by removing the —27 from the esti-
mation of global middle occurrences. This would not affect the solution asymptotically,
but keeping it is essential for obtaining bounds on A3(n) tight to the leading constant.

4. DERIVATION TREES

A derivation tree T(S) for an m-block sequence S is a rooted, ordered tree whose
nodes are identified with the blocks encountered in recursively decomposing S, as in
Section 3.1 and Recurrence 3.3. Let B(u) be the block associated with node u € 7(S).
The leaf level of 7(S) coincides with S, that is, the pth leaf of 7(S) holds the pth block
of S. As we are sometimes indifferent to the order of symbols within a block, B(v) is
often treated as a set. We assume without loss of generality that no symbol appears just
once in S.!7 As usual, we adopt the sequence decomposition notation from Section 3.1.

Base Cases. Suppose S = B182 is a two-block sequence, where each block contains
the whole alphabet £(S). The tree 7(S) consists of three nodes u, u1, and ug, where u

14This part of their analysis is ostensibly about nodes and path compressions, not blocks and symbols.
15Sharir [1987] splits global occurrences into two categories—first and non-first—which leads to a near-linear
upper bound of A;(n) < n - a(n) 0’3,

160ne might think it would be dangerous to bound middle occurrences with one aggregated term, since we
“forget” that S is partitioned into 72 — 2 order-(s — 2) DS sequences. Doing this does not affect the solution of
As(n, m) asymptotically.

17This property is preserved throughout the recursive decomposition. If a symbol appears at least twice in
8, it also appears at least twice in §’ or some Sq, depending on whether it is global or local.
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Fig. 1. A derivation tree 7(S) for a 32-block sequence S. The tree is generated by always choosing m = 2
and the block partition my = my = m/2, where m > 2 is the number of blocks in the given sequence. The
frames isolate the base case derivation trees that assign the crown and heads for symbols a, b € Z(S).

is the parent of u; and us, B(uy) = B1, Blug) = Be, and B(u) does not exist. For every
a € X(8), call u its crown and u; and ug its left and right heads, respectively. These
nodes are denoted criy, lhe,, and rhe,.

When S = B; consists of a single block, 7(S) consists of two nodes, u; and u, where
B(uy) = B1, B(w) does not exist, and u is the parent of u;.

Inductive Case. If S contains m > 2 blocks, choose an /2 < m and an arbitrary block
partition {mg}1<g<s. Inductively construct derivation trees 7 = 7(8) and {7;}15,15,%,
where 7, = 7(S,), then identify the root of 7, (which has no block) with the gth leaf of
7. Finally, place the blocks of S at the leaves of 7. This last step is necessary since only
local symbols appear in the blocks of {7;}, whereas the leaves of 7 must be identified
with the blocks of S. Note that nodes at or above the leaf level of 7 carry only global
symbols in their blocks and that internal nodes in {’ZVZI} carry only local symbols in their
blocks. Local and global symbols only mingle at the leaf level of 7.

The crown and heads of each symbol @ € £(S) are inherited from 7, if a is global, or
some TV'q if a is local to S;. See Figure 1 for an illustration.

Remark 4.1. Trees defined recursively are typically built in a bottom-up or top-
down fashion. Our algorithm for constructing 7 is somewhat unusual in that the trees
defined by the two recursive invocations are joined at a level midway between the leaf
level and root of 7. However, in the base case of our analysis, we happen to choose
m =2 and my = myg = m/2, as in Figure 1. In this special case, 7 is actually built in a
top-down fashion.

4.1. Anatomy of the Tree

The projection of T onto a € £(S), denoted 7, is the tree on the node set {cr,} U {v €
T |a € B(v)} that inherits the ancestor/descendant relation from 7, that is, the parent of
vin 7,, where v ¢ {cr|q, lhe,, rhe,},is v’s nearest strict ancestor u for whicha € B(u). For
example, in Figure 1, 7, consists of cr|y, its children lhe, rhe|,, and five grandchildren
at the leaf level of 7. As one can see, even though 7 is binary, 7, is not necessarily
binary.

Definition 4.2 (Anatomy).

—The leftmost and rightmost leaves of 7}, are wingtips, denoted lwt,, and rwt,,.
—The left and right wings are those paths in 7, extending from lhey, to Iwt,, and from
rhe, to rwty,.
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cr‘a

lhe‘a

1,

feq(v)

Fig. 2. In this example, v is a hawk leaf in 7}, since it is a descendant of rhe|,. Its wing node wi|,(v), quill
quy,(v), and feather fe|,(v) are indicated.

Iwtjg

—Descendants of lhe, and rhey, in 7}, are called doves and hawks, respectively.

—A child of a wing node that is not itself on the wing is called a quill.

—A leaf is called a feather if it is the rightmost descendant of a dove quill or leftmost
descendant of a hawk quill.

—Suppose v is a node in 7},. Let wiy(v) be the nearest wing node ancestor of v, qu;,(v)
the quill ancestral to v, and fe,,(v) the feather descending from qu,(v). See Figure 2
for an illustration.

Once a € X(S) is known or specified, we will use these terms (feather, wingtip, etc.)
to refer to nodes in 7, or to the occurrences of @ within those blocks. For example, an
occurrence of @ in S would be a feather if it appears in a block B(v) in S, where v is a
feather in 7,.

Note that the nodes lhey,, rhe, wij(v), qu,,(v), and fe,,(v) are not necessarily all
distinct. It may be that wi|,(v) is equal to lhe|, or rhe,, and it may be that v = qu ,(v) =
fei,(v), if v’s parent in 7}, is wij,(v).

Lemma 4.3 identifies one property of 7 used in the proof of Lemma 4.4.

LEmMA 4.3. Suppose that on a leaf-to-root path in T, we encounter nodes u, v, x, and
y (the last two possibly identical), where u,x € T, and v,y € Tp. It must be that a € B(v)
and therefore v € Ty,

Proor. Consider the decomposition of 7 into a global derivation tree 7 and local
derivation trees {7,}. If v were an internal node in some 7, then b would be classified as
local. This implies y € ’ZVZI as well and the claim follows by induction on the construction
of 7,. If v were an internal node in 7, then let «’ be the leaf of 7 ancestral to u. The
nodes &, v, x, y € 7 also satisfy the criteria of the lemma; the claim follows by induction
on the construction of 7. Thus, we can assume v is a leaf of 7 and u is a leaf of 7. See

Figure 3. By construction, all global symbols in B(x) also appear in B(v). Since x € 7,
the symbol «a is classified as global and must appear in B(v). O

4.2. Nesting Habits

Suppose a block 8 in S contains two symbols a, b that are not wingtips, that is, they
make neither their first nor last appearance in 8. We call a and b nested in g if S
contains either ab Bba or ba Bab and call them interleaved in B otherwise, that is, if
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Fig. 3. The case where v is a leaf of 7. Both x and y are necessarily in 7, which implies that @ and & are
global, and further implies that u is a leaf of 7; since global symbols do not appear in the internal nodes of

7,. All global symbols of u also appear in v.

the occurrences of @ and b in S take the form a*b* 8 a*b* or b*a* 8 b*a*. Lemma 4.4 is
the critical structural lemma used in our analysis. It provides us with simple criteria
for nestedness.

LemMmA 4.4. Suppose that v € T(S) is a leaf and a, b are symbols in a block B(v) of
S. If the following two criteria are satisfied, then a and b are nested in B(v).

(1) v is not @ wingtip in either 1, or 1.
(2) v is not a feather in either T, or Tp.

Proor. By symmetry, we can assert two additional criteria.

(3) crp is equal to or strictly ancestral to cry,.
(4) vis adovein 7.

According to Criteria (1, 2, 4), v is distinct from Iwt,, and fe|,(v). They are all descen-
dants of wi,(v) and appear in the order lwt,, v, fe,,(v).
We partition the sequence S outside of 5(v) into the following four intervals.

—1I: everything preceding the @ in B(Iwt,).
—1I,: everything from the end of I; to B(v).
—I5: everything from B(v) to the a in B(fe,(v)).
—1I: everything following Is.

Since v is not a wingtip of 7, there must be occurrences of b in S both before and after
B(v). If, contrary to the claim, ¢ and b are not nested in B(v), all other occurrences of
b must appear exclusively in I; and I3 or exclusively in I, and I;. We show that both
possibilities lead to contradictions. Figures 4 and 5 illuminate the proof.

Case 1: b does not appear in I; or I3. Since v is not a wingtip in 7, (Criterion (1)),
the left wingtip Iwt, of 7, appears in interval I». Since lwt, and v are descendants of
wij,(v), which is a strict descendant of cry,, which, by Criterion (3), is a descendant of
crpp, it must also be that lwt, and v descend from the same child of cr, that is,

(5) vis adovein 7.
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CI"b

CI‘|a

I I I3 I

Fig. 4. Boxes represent nodes in 7(S) and their associated blocks. The blocks at the leaf-level correspond
to those in S. In Case 1, all occurrences of b outside of B(v) appear in intervals I and I;. Contrary to the
depiction, it may be that cr, and crj, are identical, that lwt|, and lwt|, are identical, that fe,,(v) and fe;(v)
are identical, and that wij(v) is not a descendant of wij,(v).

CI"‘ b

fe|a(v)

[a ]

I I I3 I

Fig. 5. In Case 2, all occurrences of b outside of 5(v) appear in intervals I; and I3.
We shall next argue the following.

(6) In T, quj(v) is a strict descendant of wi,(v) and a strict ancestor of fe,(v).
(7) fep(v) lies in interval 4.

The least common ancestor of v and lwt, in 7} is by definition wij(v). The quill qu ;(v)
is a child of wis(v) not on a wing, hence qu,(v) cannot be ancestral to Iwt, and therefore
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must be a strict descendant of wij,(v). Since v is a non-feather dove in 7, (by Criterion
(1) and Inference (5)), fe;(v) is the rightmost leaf descendant of qu(v) and distinct
from v. However, by supposition, I3 contains no occurrences of b, so fe;;(v) must lie in
interval I;. For qu ,(v) to have descendants in both I and Iy, it must be a strict ancestor
of fe,(v) in 7. As we explain, a consequence of Inference (6) is as follows.

(8) rwty, lies to the right of fe;(v).

According to Criterion (4) and Inference (6), quj(v) is a descendant of wij,(v), which
is a descendant of lhe,. Since rwty, is a descendant of rhe,, the right sibling of lhey,
rwt,, must lie to the right of fe,(v).

Let us review the situation. Scanning the leaves from left to right, we see the blocks
Iwt)q, Iwtp, v, fe,(v), fep(v), and rwt(v). It may be that Iwt, and Iwt;, are equal and
it may be that fe,,(v) and fe(v) are equal. If either of these cases hold, then the a
precedes the b in the given block. The blocks Iwt,, Iwt, v, fep(v), rwt,(v) certify that a
and b are nested in B(v).

Case 2: b does not appear in I or I. The right wingtip rwt, is distinct from v, by
Criterion (1) and must therefore lie in I3. Following the same reasoning from Case 1,
we can deduce the following.

(9) vis ahawkin 7.
(10) In T, qu,(v) is a strict descendant of wi,(v) and a strict ancestor of Iwt,.

Inference (9) follows since v and rwtj, must be descendants of the same head in 7. This
implies that fe(v) is the leftmost leaf descendant of qu;,(v). Since fe,(v) is distinct from
v and interval I, is free of bs, it must be that fe;(v) lies in I; and therefore that qu,(v)
is a strict descendant of wi,(v) and a strict ancestor of Iwt|,. Inference (10) follows. See
Figure 5.

%t follows from Criterion (3) and Inference (10) that on a leaf-to-root path, one en-
counters distinct nodes Iwt,,, quj,(v), wije(v), and crpp, in that order. Lemma 4.3 implies
that a € B(qup(v)). We have deduced that quj(v) is in 7}, is a strict descendant of
wij,(v), and is ancestral to both lwt,, and v. This contradicts the fact that wi,(v) is the
“least” common ancestor of v and lwt,, in 7. O

Note that Lemma 4.4 applies to any blocked sequence and an associated derivation
tree. It has nothing to do with Davenport-Schinzel sequences as such.

5. A RECURRENCE FOR ODD ORDERS

Lemma 4.4 may be rephrased as follows. Every blocked sequence S is the union of
four sequences: two comprising wingtips (first occurrences and last occurrences, each
of length n), one comprising all feathers, and one comprising non-wingtip non-feathers.
The last sequence is distinguished by the property that each pair of symbols in any
block is nested with respect to S, which is a “good” thing if we are intent on giving strong
upper bounds on odd-order sequences. The sequence comprising feathers is “bad” in
this senses, therefore, we must obtain better-than-trivial upper bounds on its length if
this strategy is to bear fruit.

Recall that the definition of a feather is not absolute: it is with respect to a derivation
tree 7, that is, with respect to some strategy for choosing block partitions. To obtain
good bounds on the number of feathers we only consider a specific way to choose block
partitions.

Canonical Derivation Trees. Define the canonical derivation tree 7*(S) of an m-block
sequence as follows. Choose /2 = [m/2] and m, = 2 for all ¢ < .. The derivation trees
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{YV'q} of {Sq} are necessarily two-leaf base case trees. Generate the canonical derivation

tree 7 = 7*(8') inductively and, as usual, let 7*(S) be the composition of 7 and the
local trees {Tq}, placing the blocks of S at the leaves of 7*(S).

The tree 7*(S) can also be defined non-inductively as the unique tree satisfying the
following three criteria. Structurally, it must be a fragment of a full binary tree with
height [log[S]1. The crown cr|, is the least common ancestor of all leaves whose blocks
contain a. If a € B(v) and v is a leaf, a also appears in the blocks of every ancestor
strictly between v and cr|,. With this definition 7 is binary: all nodes have one or two
children. The branching nodes on the wings of 7; are associated with exactly one quill

and one feather. Bounding the number of feathers is therefore tantamount to bounding
the number of branching wing nodes.

RECURRENCE 5.1. Let S be an m-block, order-s DS sequence over an n-letter alphabet.
Define ®4(n, m) to be the maximum number of feathers of one type (dove or hawk) in
such a sequence, where feather is with respect to T*(S). When m = 2 or s = 2, we have

®,(n,2)=0
®so(n, m) < m.

Let {mg}1<¢<m be any block partition in which mi = --- = my,_1 are equal powers of two
and my, may be smaller. Let {ii} U {fig}1<g<m be the corresponding alphabet partition.
Then,

"
Dy(n, m) < Y Bylitg. mg) + By(R, 1) + Dy (R, M) + .
q=1

Proor. Suppose we only wish to bound the number of dove feathers with respect
to 7* = T7*(S). If there are only two blocks, then all occurrences are wingtips and
feathers are not wingtips. This gives the first equality. In the most extreme case, every
non-wingtip is a dove feather, so ®;(n,m) < As(n, m) — 2n. In particular, ®9(n, m) <
ra(n, m) — 2n < m. Decompose S into S, S, Sq, Sq, Sq in the usual way with respect to
the given block partition. Define 7 = 7*(8') to be the canonical derivation tree of the
contracted global sequence S’ and define 7, = 7*(S,) to be the canonical derivation tree
of the global first occurrences in S;. Since we forced my, ..., mys_1 to be equal powers of
two, S’ occupies a level in 7*. Thus, both 7, and (7;),, (where a € £(S,)) are contained
as subtrees in 7.
where a € (S,), consist of (i) the
branching nodes on the left wing of ’ZATa, (i1) the branching nodes on the left wing of
(1))a> and (iii) the crown cr|, of ()4, which is on the left wing of 7, but not (1))a- See
Figure 6. Each branching node is identified with one feather in 7;. The total number

The branching nodes on the left wing of 7

la?

of branching nodes/feathers covered by (i), summed over all ¢ € »(8), is at most
®,(#1, ). The total number covered by (ii), summed over all ¢ < mand all a € E(Sq), is
Zq O;_1(fg, my) < s_1(7, m). (Remember that Sq is an order-(s — 1) DS sequence.) The
number covered by (iii) is clearly 7, which gives the last inequality. O

We now have all the elements in place to provide a recurrence for odd-order
Davenport-Schinzel sequences.

RECURRENCE 5.2. Let m,n, and s be the block count, alphabet size, and order pa-
rameters, where s > 5 is odd. For any block partition {mg}1<q<s and the corresponding
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S: (I Tal

lwt,

Fig. 6. Counting dove feathers in 7, is tantamount to counting branching nodes on the left wing of T‘;
Branching nodes are shaded.

alphabet partition {fi} U {fig}1<q<m we have

)Vs(ng m) = Z)\s(ﬁq, an) + 2. )\sfl(ﬁ» m) + )¥372(2 : q)s(ﬁy m), m) + )"373()\3(754 ﬁ’L), m)
g=1

Proor. Define 7 as in the proof of Recurrence 5.1. In Recurrence 3.3, we partitioned
S into local and global symbols and partitioned the occurrences of global symbols into
first, middle, and last. We now partition the middle occurrences one step further. Define
S" and 8’ to be the subsequences of S’ consisting of feathers (according to 7) and non-
feather, non-wingtips, respectively. That is, |S'| = S| + |8'| + 2A. In an analogous
fashion, define S and S to be the subsequences of S begat by occurrences in 8’ and §'.
The sequences Svand S" consist of occurrences begat by dove and hawk wingtips in 7.
Thus, S| =3>_, [Sgl + IS+ S|+ S| + IS

The local sequences {Sq} are order-s DS sequences. According to the standard argu-
ment, S and S are order-(s — 1) DS sequences and S = S; - - - Sy, is obtained from S’ by
substituting for its gth block an order-(s — 2) DS sequence S’q. From the superadditivity
of As_o, it follows that |S| < As_o(|S'|, m) < As_o(2 - D4(#, ), m). (Recall that &,(#, ) is
the number of feathers of one type, so 2 - ®4(#, /) bounds the total number of feathers.)

We claim that § = S;--- Sy, is obtained from S’ by substituting for its gth block
an order-(s — 3) DS sequence S’q, which, if true, would imply that IS| < As_3(18'|, m) <
Ars_3(As(f2, 1), m). Suppose for the purpose of obtaining a contradiction that the gth block
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B in 8 contains a,b € 3, and that Sq is not an order-(s — 3) DS sequence, that is, it
contains an alternating subsequence ab - - - ab of length s — 1. Note that s — 1 is even. By
definition B is a non-feather, non-wingtip in both ’f]a and ﬁb. According to Lemma 4.4,
a and b must be nested in 8, which implies that S contains a subsequence of the form

s—1
—
a b .a---b---a---b- b a
s—1
—_——
or b.-..aa---|---a---b---a---b---|---a---b

where the portion between bars is in S, . In either case, S contains an alternating sub-
sequence with length s + 2, contradicting the fact that S is an order-s DS sequence. O

5.1. Analysis of the Recurrences

The dependencies between A and & established by Recurrences 3.3, 5.1, and 5.2 are
rather intricate. For even s, A is a function of A, A;_1 and As_o, and for odd s, A, is a
function of ®g, Ag, As_1, As_2, and A;_3, while ®; is a function of ®; and ®&,_;.

The proof of Lemma 5.3 is by induction over parameters: s, n,c, i, and j, where s is
the order, n the alphabet size, ¢ > s — 2 a constant that determines how /# and the
block partition is chosen, i > 1is an integer, and j is minimal such that the block count
m<af e Some level of complexity is therefore unavoidable. Furthermore, when s > 5
is odd, X is so sensitive to approximations of A;_s that we must treat s € {1, 2, 3, 4, 5}
as distinct base cases and treat even and odd s > 6 as separate inductive cases. Given
these constraints, we feel our analysis is reasonably simple.

LEmMA 5.3. Let s > 1 be the order parameter, ¢ > s — 2 be a constant, and i > 1 be
an arbitrary integer. Define j to be maximum such that m < o ;. The following upper
bounds on As and ®s hold for all s > 1.

rmnm=n+m-1 s=1
rMn,m=2n+m-—2 s=2
rs(n,m) < (2t + 2)n+ (3i — 2)cjim— 1) s=3
rs(n,m) < pe;(n+ (¢ 2(m—1)) alls >4
®5(n, m) < vs;(n+ (cj) 2(m— 1)) all s > 5.
The values {us;, vsi} are defined as follows, where t = LS’T2J and C is an absolute
constant.
2("7) _ 6@ +2) even s > 4
Ms’i - i+t+C
3 - 2(70) odds>5
vsi=<l+s_2)—1 all s > 5.
' s—2

One may want to keep in mind that we will eventually substitute a(n, m) + O(1) for
the parameter ¢, and that (l+tt+c) = it/t! + O@G*"1). Lemma 5.3 will, therefore, imply

Journal of the ACM, Vol. 62, No. 5, Article 36, Publication date: October 2015.



Sharp Bounds on Davenport-Schinzel Sequences of Every Order 36:23

bounds on As(n, m) analogous to those claimed for A4(n) in Theorem 1.3. The proof of
Lemma 5.3 appears in Appendix B.

5.2. The Upper Bounds of Theorem 1.3

Fixs > 3,n,mand let ¢c = s — 2. For i > 1, let j; be minimum such that m < al‘{ji.
Lemma 5.3 implies that an order-s DS sequence has length at most u,;(n + (cj;)*2m).
Choose ¢ to be minimum such that'® (¢j)*"% < max{Z, (c - 3)°"?}. One can show that
. = a(n, m) + O(1). By choice of ¢, it follows that (cj,)’ 2m = O(m + n), so rs(n,m) =
O(us, (n+ m)). According to Lemma 5.3’s definition of u,,, we have

r3(n, m) = O((n + m)a(n, m))
ra(n,m) = O((n+ m)2°™)
rs(n, m) = O((n + ma(n, m)2a(n,m))

As(n, m) = (n+ my) - 22 wm/t+ 0@ m)  poth even and odd s > 6, where ¢ = [4521.

The bound on As(n, m) follows since us, = O(2'). When s > 6 and ¢ > 2, us, =
O(Lz(‘“fc)) — 9¢/t+ 0.

Theorem 1.3 stated bounds on As(n) rather than A (n, m). If it were known that
extremal order-s DS sequences consisted of m = O(n) blocks, we could simply substitute
a(n) for a(n, m) in the preceding bounds, but this is not known to be true. According to
Lemma 3.1(2,4), if y; is such that A;(n) < y;(n) - n, then A;(n) < y;_o(n) - As(n, 2n — 1) and
As(n) < vs_o(ys(n)) - As(n, 3n — 1). Applying Lemma 3.1 when s € {3, 4} has no asymptotic
affect, since y; = 1 and y = 2. It has no perceptible effect when s > 6, since y;_s(n) or
vs—2(¥s(n)) is dwarfed by the lower order terms in the exponent. However, for s € {3, 5},
these reductions only show that A3(n) = O(na(n)) and that A5(n) = O(na(a(n))a(n)24™),
which are weaker than the bounds claimed in Theorem 1.3.

In Section 6, we prove the remaining upper bounds of Theorem 1.3: A3(n) = 2na(n) +
O(n) and 15(n) = O(na(n)2*™). The bound on A3 is a tiny improvement over Klazar’s
bound [1999], though it is within O(n) of the construction of Nivasch [2010] and is
therefore optimal in the Ackermann-invariant sense. See Remark 1.1. Section 7 gives
a matching lower bound on order-5 DS sequences.

6. SHARP BOUNDS AT ORDERS 3 AND 5

6.1. Order-3 DS Sequences

Let S be an order-3 DS sequence over an n-letter alphabet. According to Lemma 3.1,
S| < A3(n) < As(n, m), where m = 2n — 1. Letting ( be minimum such that m < q, 3,
Lemma 5.3 implies that As(n,m) < (2t + 2)n + (8t — 2)m < (8¢ — 2)n. It is straightfor-
ward to show that ¢ < a(n) + O(1). The problem is clearly that there are too many
blocks. Were there fewer than (2n — 1)/t blocks, Lemma 5.3 would give a bound of
(2t + 2)n + Oum/t) = 2na(n) + O(n). We can invoke Recurrence 3.3 to divide S into a
global S and local S = S-Sy, where i = m/t < (2n — 1)/, that is, each S, is an
t-block sequence. Using Lemma 5.3, we will bound S with i = ¢ and each of the {S'q }q

18We want (cj,)* 2m not to be the dominant term, so (cj,)*"2 should be less than [n/m]. On the other hand,
the first and second columns of Ackermann’s function (¢; ;1 and @; 2) do not exhibit sufficient growth, so j,
must also be at least 3.
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withi = 1.

S| < A3(n) < A3(n, m) {where m = 2n — 1}
< Z;hzl A3(fg, 1) + 2-ro(@, m) + A (A3(fr, ) — 272, m) {Recurrence 3.3}
<Y [, + min{i[loge], (— 1)+ (27, — Dflog(Zig — 1)1)] ()

+ [4Aa+2m] + [2h + (Bt — 2 + m] {Lemmas 3.2, 5.3}
< ) 47ty + ¢ + 20y [log 1] + [47 + 2m] + (207 + 4ml. ()
=1

The bound on local symbols in Line (*) follows from Lemma 5.3 and Hart and
Sharir’s [1986] observation that A3(n) < As(n,2n — 1). When i = 1 and j = [log],
Lemma 5.3 gives us a bound of A3(7i,, 1) < 471, + ([log(]. Alternatively, we could make
S’q 2-sparse by removing up to ¢ — 1 duplicated symbols at block boundaries, then par-
tition the remaining sequence into 27, — 1 blocks, hence 13(72;, 1) <t — 1 + A3(7, 2725 —
1) <t—1+ 41, + (213, — D[log(2n, — 1)]. If « < 271, we apply the first method, oth-
erwise we apply the second method. The minimum of the two is therefore less than
4ng + « + 2714 [log 1, which justifies Line (**). Continuing with the inequalities,

< [m+ (n— )4+ 2[log D] + (2t + 47+ 6m {2 0=m},
< @2u+4)n+Tm {maximized when 7/ = n},
< 2na(n) + O(n) {t = aln) + O(1)}.

This matches the lower bound of Nivasch [2010] on A3(n) to within O(n).

6.2. Order-5 DS Sequences

Lemma 5.3 states that for any i, A5(n,m) < us;(n + (3j;)>m), where j; is minimum
such that m < @ 2 .- Choose ¢ > 1 to be minimum such that (3,)® < max{Z, (3 3)?}.
One can show that = a(n,m) + O(1), implying that As(n,m) = O((n + m),l,L5,t) =
O((n + m)a(n, m)24™™) matching the construction from Section 7. According to
Lemma 3.1(2,4), A5(n) = O(a(a(n))) - A5(n, 3n — 1). In this section, we present a more
efficient reduction from 2-sparse, order-5 DS sequences to blocked order-5 sequences,
thereby removing the extra a(a(n)) factor.

THEOREM 6.1. As5(n) = O(na(n)2°™) and rs(n, m) = m+ O(na(n, m)2*m),

Proor. The second bound is asymptotically the same as O((n + m)a(n, m)2*™) if
m = O(n). If not, we remove up to m — 1 repeated symbols at block boundaries, yielding
a 2-sparse, order-5 DS sequence. Our remaining task is therefore to prove that A5(n) =
O(na(n)24™).

Let S be a 2-sparse, order-5 DS sequence with ||S|| = n. Greedily partition S into
maximal order-3 DS sequences S1Sz---S,,. According to Sharir’s [1987] argument,
m < 2n. See the proof of Lemma 3.1(2) in Appendix A. As usual, let S, 8 < S be the
subsequences of local and global symbols, and let S’ be derived by contracting each
interval to a single block. The number of global symbols is 72 = IS]l. In contrast to
the situations we considered earlier, S and S are neither 2-sparse nor partitioned into
blocks.

Define 7 = 7*(8’) to be the canonical derivation tree for S". Let §', §’ < S/ be the sub-
sequences of feathers and non-feather, non-wingtips, respectively. Let S$,8,8,8<S8

be the subsequences of S begat symbols in S’ categorized as dove wingtips, hawk
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wingtips, feathers, and non-feather, non-wingtips. Define §*, S*, §*, and S*, to be their
maximal length 2-sparse subsequences, that is, what remains after replacing runs
aaa ---a with a single a. Define S* to be the maximal length 2-sparse subsequence
of S.

As we argue next, Lemma 3.1(2) and the arguments from Recurrence 5.1 imply that

1S%] 4 18%] < 2 14(R) < 4 2y(R, 20)
1S%] < A3(@) < As(p, 2¢) where ¢ = 2 - ®5(71, 2n)
1S*| < A2(hs5(R, 2n)) < 2 - A5(R, 2n)

18 < As(n— ) < As(n — A, 2n — A)).

The sequences S* and S* are 2-sparse, order-4 DS sequences; hence their contribution

is 2 A4(71), which is less than 4 - 14(7, 271), by Lemma 3.1(2). The sequence S* is obtained

by substituting for each block in S’ a 2-sparse, order-3 DS sequence. Since |S*| < ¢ o

2-®5(#, 2n), by the superadditivity of A3, we have |S*| < A3(¢), which is at most A5(¢, 2¢),
by Lemma 3.1(2). Finally, S* is obtained by substituting for each block in S’ a 2-sparse,
order-2 DS sequence. Since 18] < A5(R, 2n), we have |S*| < ra(rs5(R, 2n)) < 2 - A5(R, 2n).
We can also conclude that |S’*| < Ai3(n—n) < rs(n — A, 2(n — n)).

In bounding these various sequences, the second argument of A; and ®; is never
more than ¢. Choose ¢ to be minimal such that ¢ < afs, so j = 3 will be constant

whenever we invoke Lemmas 5.3 with s < 5 and ¢ = 3. It is straightforward to show
that « = a(n) + O(1).

Observe that S can be constructed by shuffling its five non-2-sparse constituent
subsequences S, S, 8, S, S in some fashion that restores 2-sparseness. In other words,
there is a 1-1 map between positions in S and positions in its five constituents, and a
surjective map ¥ from positions in S to positions in its 2-sparse constituents S+, S*, §*,
S*, §*. Partition S into intervals T1Ts - - - Tjs)/1, each with length i = (%1 = 0(1).
The image of i on two consecutive intervals T),_; and T, (where p < [|S|//]) cannot
be identical, for otherwise T, 1T, would be a 2-sparse, order-5 DS sequence with
length 2h > A5(5) over a 5-letter alphabet, a contradiction. In other words, T}, must
introduce a symbol from one of the five constituents subsequences that was not seen
in T),_1. It follows that

IS| =18+ 18I+ 181+ 18| + 18|
<h-(8* +18* +18* + 1S* + 18*)
=h-n-O0(us, +2u4, +2us,vs, +2us,)
= 0O(nu2") {Since uz, = O(), g, = 02", vs, = O(?), and us, = 0(2").}
= O(na(n)2*™). O

7. LOWER BOUNDS ON ORDER-5 DS SEQUENCES

We have established every bound claimed in Theorem 1.3 except for the lower bound
on order-5 DS sequences. In this section, we give a construction that yields bounds of
r5(n, m) = Qna(n, m)2*@m) and r5(n) = Qna(n)2%™). This is the first construction that
is asymptotically longer than the order-4 DS sequences of Agarwal et al. [1989] having

length ©(n2*™). Our construction is based on generalized forms of sequence composi-
tion and shuffling used by Agarwal et al. [1989], Nivasch [2010], and Pettie [2011b].
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Recall from Section 1.1 that ||S|| = |X(S)| is the alphabet size of S and, if S is
partitioned into blocks, [S] is its block count.

7.1. Composition and Shuffling

In its generic form, a sequence S is assumed to be over the alphabet {1, ..., ||S||}, that
is, any totally ordered set with size ||S|. To substitute S for ablock 8 = [a; . ..q)s] means
to replace g with a copy S(8) under the alphabet mapping & — a;, where |B] < ||S].
If |B]| is strictly smaller than || S||, any occurrences of the ||S| — || unused symbols of
2(S) do not appear in S(8). We always assume that S is in canonical form: the symbols
are ordered according to the position of their first appearance in S.

Composition. If Spiq is a sequence in canonical form with ||Spiqll = j and Siep a
sequence partitioned into blocks with length at most j, Ssub = Stop © Smida is obtained
by substituting for each block B in Si,, a copy Smia(B). Clearly, [Ssub] = [Stop] - [Smial-
If Smia and Siep contain p and u' occurrences of each symbol, respectively, then Sgyp
contains uu' occurrences of each symbol. Composition preserves canonical form, that
is, if Smia and Siep are in canonical form, so is Seyp.

Shuffling. If Syet is a j’-block sequence and Sgy, is partitioned into blocks of length at
most j', we can form the shuffle S, = Ssup © Spot as follows. First create a sequence Sy,
consisting of the concatenation of [Squp] copies of Spot, each copy being over an alphabet
disjoint from the other copies and disjoint from that of Sgy,. By design the length of
Ssup is at most the number of blocks in S}, and precisely the same if all blocks in Sgup
have their maximum length j'. The sequence Sgyp, ¢ Spot is obtained by shuffling the at
most j symbols of the /th block of Sy, into the j” blocks of the /th copy of Spet in S} ;.
Specifically, the kth symbol of the /th block is inserted at the end of the kth block of the
[th copy of Sy,t. If there is no kth symbol, then nothing is inserted into the kth block.

Three-Fold Composition. Our construction of order-5 DS sequences uses a general-
ized form of composition that treats symbols in g8 differently based on context. Suppose
Stop 1s partitioned into blocks with length at most j and anid, Shiq» and S:nid are se-
quences with alphabet size ||St || = [S™, ] = |ISL4/l = j. The three-fold composition
Stop o(anid, Sh.a Sllnid) is formed as follows. For each block g in Sy, categorize its sym-
bols as first if they occur in no earlier block, last if they occur in no later block, and
middle otherwise. Let 8f, ™, and B! be the subsequences of 8 consisting of first, mid-
dle, and last symbols. These three sequences do not necessarily occur contiguously in
B, but each is nonetheless a subsequence of 8. Substitute for 8 the concatenation of
anid(ﬁf), SH.4(B™), and Sinid( BY). This substitution preserves canonical form. Note that if

1
and Sinid contain u > 2, uf, u™, and ! occurrences of each symbol then

top>
Sl ) contains uf + ,u,1 + (u—2)u™ occurrences of each symbol. Figure 7

mifd’ mid’
m
Stop ©(Spia: Smias Smia
gives a schematic of the generation of the sequence (Sop o(anid, SH. 4 Srlnid)) & Shot-

7.2. Sequences of Orders 4 and 5

The sequences S4(i, j) and S5(i, j) are defined inductively. As we will prove, S4(i, j)
is an order-4 DS sequence partitioned into blocks of length precisely j in which each
symbol appears 2' times, whereas S5(7, j) is an order-5 DS sequence partitioned into
blocks of length at most j in which each symbol appears (2i — 3)2' + 4 times. Let
B;(, j) = [Ss@, j)] and NG, j) = [ISs(, j)I| be, respectively, the number of blocks in
S,(i, j) and the alphabet size of S,(i, j). By definition, |S4(, j)| = 2" - N4(i, j) = j - B4(i, j)
and |S5(, j)| = (21 — 3)2" +4) - N5(i, j) < j - Bs(1, j). The construction of Sy is the same
as Nivasch’s [2010] and similar to that of Agarwal et al. [1989].
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p
Siop " | “ \\ | ...
- mld(ﬁf) mld(ﬁm> mid (51)
Ssub s l \ \”‘(Ll, flz, .. (LJ‘ ‘ ]
Shot e al]’ azl" [ T T ] ;i;/\ .

Sbot

Fig. 7. Three-fold composition followed by shuffling. Each block 8 in Sy, is replaced with the concatenation
of Slfmd(ﬂf) Sy (B™), and Sllmd(ﬂl) and each block of that sequence is shuffled with a single copy of Sy, in
S} i+ In general, blocks in Sfmd(ﬂf) Shia(B™), and S! ld(ﬁ ) will not attain their maximum length j'.

The base cases for our sequences are given here, where square brackets indicate
blocks:
So(j)=1M12---(j—1Jjl [[(j —1)---21]  two blocks with length j,
S4(1, j) = S5(1, j) = S2(j)

S,G, 1) = [117 2/ identical blocks,
S5(i, 1) = [1]@ -2 +4 (2i — 3)2! + 4 identical blocks.

Observe that these base cases satisfy the property that symbols appear precisely 2
times in S4(i, -) and (2i — 3)2' + 4 times in S5(i, -). Define S4(, j) as

S4(, j) = (S4G — 1, y) 0 Sa(y)) 0S4z, j — 1), where y = By(i, j — 1),
and S5(, j) as

S5, J) = (Stop 0 (St 14, S™4. SLia)) © Shot
where Spot = S5@, j — 1), z=DBs5G,j—1)
St =58 =840, 2),
Spq = Sa(Ny(i, 2)),
and Sip = S50 — 1, Ny(i, 2)).

By definition, Sf . i and Sl 'ia are partitioned into blocks with length z. In the three-fold
composition operatlon we also interpret So(IN4(i, z)) as a sequence of blocks of length
precisely z.1° We argue by induction that symbols appear with the correct multiplicity
in Sy and Ss. In the case of Sy, each symbol appears 2_“1 times in S4G — 1, y) (by
the inductive hypothesis), twice in Sa(y), and therefore 2’ times in Sy(i — 1, y) o Sa(y).
Symbols in copies of S4(i, j — 1) already appear 2' times by the inductive hypothesis. In
S5 — 1, Ny(i, 2)), each symbol appears (2i —5)2:~1 +4 times. The three-fold composition
operation increases the multiplicity of such symbols to 2((2i — 5)2i-1 1 2) + 2(2)) =
(21 — 3)2 + 4, where the first term accounts for the blowup in middle occurrences and
the second term for the blowup in first and last occurrences. It follows that B and N

19This requires that Ny(i, z) is a multiple of z. By induction, B4(i, 2) is a multiple of 2. Since 2¢ - Ny(i, z) =
z - B4(i, 2), N4(i, z) must be a multiple of z.
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are defined inductively as follows.

By(1,j) = Bs(1,j) = B(j) =2

By, 1) = 2!
Bs(i,1)=(2i —3)2 + 4
By(i,j)=Bsi—1,y)-2-y where y = B4(i, j — 1)

Bs(i, j) = Bs(i — 1, N4(i,2)) - (2 +27"1) . By(i, 2) - 2 where z = Bs(i, j — 1)

Ny(1, j) = N5(1, j) = No(j) =

NG, 1)=N5G, 1) =1

NyG, j)=NsG—-1,y) + By —1,9)-2-Ny@i,j— 1)

NsG, j) = N5 — 1, N4(i, 2)) + Bs(i — 1, Nu(i, 2)) - (2 4+ 2711) . B4(i, 2z) - N5(G, j — 1).
The 2 + 27%*1 factor in the definition of Bs(i, j) and N5(i, j) comes from the fact that

in the shuffling step, So(IN4(i, 2)) is interpreted as having |Sa(Vy(, 2))|/z blocks of length
z, where

|S2(N4(i, 2))] _ 2 - Nu(i, 2) _ 2.z By, 2)

3 =271 B,(, 2).
z z z-2

LeEmma 7.1. For s € {4, 5}, Ss(i, j) is an order-s Davenport-Schinzel sequence.

Proor. We use brackets to indicate block boundaries in forbidden patterns, for ex-
ample, [balba is a pattern where the first ba appears in one block and the last ba
appears outside that block. One can easily show by induction that bal[bal £ S;(i, j) and
[balab £ Si(i, j) for all s € {4,5},i > 1,j > 1. The base cases are trivial. When a is
shuffled into the indicated block in a copy of S;(i, j — 1), all &’s appear in that copy and
all other a’s are shuffled into different copies, hence [ba] cannot be preceded by ba or
followed by ab. This also implies that two symbols cannot both appear in two blocks of
Ss(i, j), for all i > 1. It follows that the patterns ababab (and abababa) cannot be intro-
duced into S4 (and S5) by the shuffling operation but must come from the composition
(and three-fold composition) operation. Suppose ba < 8 for some block 8 in Sy — 1, y).
It follows that composing B8 with Sa(y) (a baba-free sequence) does not introduce an
ababab pattern. (Substituting bab for ba < B and projecting onto {a, b} yields sequences
of the form a*b*babb*a*.)

Turning to Ss, suppose ab < B for some block 8 in Siop. If @ and b are both middle
symbols in g then, by the same argument, composing g with ST, = Sa(IV4(7, 2)) does
not introduce an ababab pattern much less an abababa pattern. If both a, b are first
then composing B with an order-4 DS sequence anid = S4(i, 2) and projecting onto {a, b}
yields patterns of the form a*b*a*b*a*a*b*, where the underlined portion originated
from B. The case when a and b are last is symmetric. The cases when a and b are of
different types (first-middle, first-last, last-middle) are handled similarly. O

We have shown that 14(N4(, j), B4G, j)) > 2 Ny(i, j) and A5(Ns(, j), Bs(i, j)) > (20 —
3)2" +4)Ns(i, j). Since any blocked sequence can be turned into a 2-sparse sequence by
removing duplicates at block boundaries this also implies that A4(IN4(i, j)) > 2" N4, j)—
B4, j) > (1 — 1/j)2° N4(i, j). Remember that all blocks in S4(z, j) have length exactly
J. There is no such guarantee for S5, however. It is conceivable that it consists largely
of long runs of identical symbols (each in a block of length 1), nearly all of which
would be removed when converting it to a 2-sparse sequence. That is, statements of
the form A5(N5(, j)) > ((2i — 3)2" + 4)N5(i, j) — Bs(i, j) become trivial if the Bs(i, j)
term dominates. Lemma 7.2 shows that for j sufficiently large, this does not occur and
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therefore removing duplicates at block boundaries does not affect the length of S5(i, j)
asymptotically.

i+1)

LemMa 7.2. NG, j) > j - Bs(i, j)/£(), where £G) = 8i2(%

Proor. When i = 1 we have N5(1,j) = j > j - Bs(1, J)/g(l) = 2j/6. When j = 1,
we have N;5(i, 1) = 1 > Bs(i, 1)/6(G) = ((20 — 3)2° + 4) /312('2). Now assume inductively

that the claim holds for all (i’, ;') < (i, j) lexicographically. By the definition of N5, we
have

Ns(i, j) = N5 — 1, N4, 2)) + Bs(i — 1, Ny(i, 2)) - (24 271) . B4, 2) - Ns(i, j — 1).

Applying the inductive hypothesis to the last factor and using the definition of z =
Bs(i, j — 1), the previous line is bounded as

> N5 — 1, Nu(i, 2)) + %Bﬂi —1,N(G,2) - (24277 . By(G,2)- (j — 1) - 2,

which, by the definition of Bs, is exactly

= N5@ — 1, N4(i, 2)) 4! E( ) B5(L J).

Applying the inductive hypothesis once more, the previous line is bounded by

1
B 1, B
> E( — 1)N4(l ,2) - Bs(i — 1, N4(i, 2)) + g( ) 532, J),

and since Ny(i,2) = 5 By4(i,2) and 2 + 2-i+1 < 3, the previous line is

1 i—1
> oy 2 Bl Beli - 1L Ni2) + Jg(.) Bs(i. j)

1 —i+1 _
TR (2+2777) 2 By(i,2) - Bs(i — 1, N4, z))+ S() B5(l J).

Finally, by the definition of Bs and &, the previous line is equal to

= —B( )-I— B( ) = —B ),
BB ) Ty Bl ) = g Betid
which concludes the induction. O
THEOREM 7.3. For any n and m, is(n,m) = Qnaln, m2°™™) and rs(n) =
Q(na(n)24m).

Proor. Consider the sequence S5 = S5(i, j), where j > £(i), and let S; be obtained
by removing duplicates at block boundaries. It follows that S, is 2-sparse and, from
Lemma 7.2, that |S;| > ((2i — 3)2 4+ 3)N5(i, j). It is straightforward to prove that
i = a(N5G, j), Bs@, j)) + O(1) and that i = a(N5(Z, j)) + O(1) when j = £(G). O

8. DISCUSSION AND OPEN PROBLEMS

Davenport-Schinzel sequences have been applied almost exclusively to problems in
combinatorial and computational geometry, with only a smattering of applications in
other areas (e.g., see [Alstrup et al. 1997; Pettie 2008, 2010; Di Salvo and Proietti
2007]). One explanation for this, which is undoubtedly true, is that there is a natural
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fit between geometric objects and their characterizations in terms of forbidden sub-
structures.?’ An equally compelling explanation, in our opinion, is that DS sequences
are simply underpublicized and that the broader algorithms community is not used
to analyzing algorithms and data structures with forbidden substructure arguments.
We are optimistic that with increased awareness of DS sequences and their general-
izations (e.g., forbidden 0-1 matrices) the forbidden substructure method [Pettie 2010]
will become a standard tool in every algorithms researcher’s toolbox.

Our bounds on Davenport-Schinzel sequences are sharp for every order s, leaving
little room for improvement.?! However, there are many open problems on the geometric
realizability of DS sequences and on various generalizations of DS sequences. The most
significant realizability result is due to Wiernik and Sharir [1988], who prove that the
lower envelope of n line segments (i.e., n linear functions, each defined over a different
interval) has complexity ®(13(n)) = O(na(n)). It is an open question whether this result
can be generalized to degree-s polynomials or polynomial segments. In particular, it
may be that the lower envelope of any set of n degree-s polynomials has complexity
O(n), where s only influences the leading constant.

There are several challenging open problems in the realm of generalized Davenport-
Schinzel sequences, the foremost being that of characterizing the set of all linear forbid-
den subsequences: those o for which Ex(o, n) = O(n) [Klazar 2002; Pettie 2011b]. Linear
forbidden subsequences and minimally nonlinear ones were exhibited by Adamec et al.
[1992], Klazar and Valtr [1994], and Pettie [2011a, 2011b, 2011c, 2011d]. It is also an
open problem to characterize minimally nonlinear forbidden 0-1 matrices [Fiiredi and
Hajnal 1992]. Though far from being solved, there has been significant progress on this
problem in the last decade [Fulek 2009; Geneson 2009; Marcus and Tardos 2004; Pettie
2011a, 2011b, Tardos 2005].

APPENDIXES
A. PROOF OF LEMMA 3.1

Recall the four parts of Lemma 3.1.
Restatement of Lemma 3.1. Let ys(n) : N — N be a nondecreasing function such that
As(n) < ys(n) - n.

(1) Fors>1, Aj(n,m) <m— 1+ Ag(n).

(2) For s > 3, As(n) < ys_o(n) - As(n, 2n — 1). (This generalizes the proof of Hart and
Sharir [1986] for s = 3.)

(3) For s > 2, Ag(n) < ys_1(n) - As(n, n).

(4) For s > 3, As(n) < ys—2(ys(n)) - A5(n, 3n — 1).

Proor. Removing at most m — 1 repeated symbols at block boundaries makes any
sequence 2-sparse, which implies part (1).

For parts (2) and (3), consider the following method for greedily partitioning a 2-
sparse, order-s DS sequence S with ||S| = n. Write S as S1S; - --S,,, where S; is the
longest order-(s — 2) prefix of S, Ss is the longest order-(s — 2) prefix of the remainder of
the sequence, and so on. Each S, contains the first or last occurrence of some symbol,
which implies m < 2n — 1, since S; must contain the first occurrence of at least two
symbols. To see this, consider the symbol b which caused the termination of S;, that
is, S; has order s — 2 but S,;b contains an alternating subsequence o; = aba - --ab or
ba - - - ab with length s; whether it starts with a depends on the parity of s. If S, contains

20For example, in general, two lines do not share two points, three spheres do not share three points, degree-d
polynomials do not have d + 1 zeros, and so on.

21That is, they cannot be expressed more tightly using a generic inverse-Ackermann function «(n). See
Remark 1.1.
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neither the first nor last occurrence of both a and b, S would contain an alternating
subsequence 0,2 of length s + 2, a contradiction. Obtain S’ from S replacing each S,
with a block containing exactly one occurrence of each symbol in 2(S,). Thus,

1S =Y " 1Sg1 = > veallSglD) - 1Sq {S, has order s — 2, defn. of y,_5}
g=1 q=1
< vs—2(n)- Z IS4 {ys—2 is nondecreasing}
q=1
= ys2(n) - |8 < ys—2(n) - As(n, M) {S’ < S has order s},

which proves part (2). Part (3) is proved in the same way except that we partition S
into order-(s — 1) DS sequences. In this case, each S; must contain the last occurrence
of some symbol, so m < n. We turn now to part (4).

Partition S into order-(s —2) sequences S1.Sz - - - Sy, as follows. After Sy, ..., S;—1 have
been selected, let S; be the longest prefix of the remaining sequence that (i) has order
s—2 and (ii) has length at most y;(n). The number of such sequences that are terminated
due to (i) is at most 2n— 1, by the same argument from part (2). The number terminated
due to (ii) is at most n, since |S| < y5(n) - n, so m < 3n — 1. Obtain an m-block sequence
S’ in the usual way, by replacing each S, with a block containing its alphabet. Thus,

|S| = Z ISq| < Z Ys—2([1Sg1D) - 11Sq |l {S; has order s — 2, defn. of y,_o}
q=1 q=1

< ys—a(ys(n)) - Z IS¢l {ys is nondecreasing, ||S;| < IS;| < ys(n)}
q=1

= ¥s-2(ys(0) - |8’ < ys—2(ys(0) - As(n,m) {8’ < Shasorders}. O

Note that while part (4) is stronger than part (2), it requires an upper bound on y,(n)
to be applied, which is obtained by invoking part (2). In the end, it does not matter
precisely what y,(n) is. Once y;(n) is known to be some primitive recursive function of
a(n), it follows that y;_o(ys(n)) = ys_o(a(n)) + O(1).

B. PROOF OF LEMMA 5.3

Recall our definition of Ackermann’s function: a; ; = 2/, a;1 =2, and a;, =W Gi—1w,
where w = ¢; j_1. Our task in this section is to prove the omnibus Lemma 5.3 in several
stages.

Restatement of Lemma 5.3. Let s > 1 be the order parameter, ¢ > s — 2 be a constant,
and i > 1 be an arbitrary integer. Define j to be maximum such that m < o ;. The
following upper bounds on A; and @ hold for all s > 1.

rMom=n+m-—1 s=1
An,m =2n+m-—2 s=2
Asn,m) < (2t + 2)n+ (38i — 2)cjim— 1) s=3
As(n,m) < pgi(n+ (cj)s’Z(m— 1)) alls >4
®s(n, m) < vs;(n+ (cj)* 2(m— 1)) all s > 5.
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The values {us,;,vsi} are defined as follows, where t = LS_TZJ and C is an absolute
constant.
2("7) _ 6@ +2) evens > 4
Ms’i = i+t+C
3; . 2("%) odds>5
vsi=<l+s_2)—1 all s > 5.
' s—2

Overview. The proof is by induction on (s, i, j) with respect to any fixed ¢ > s —
2. In Section B.1, we confirm that Lemma 5.3 holds when i = 1. In Section B.2,
we discuss the role that Ackermann’s function plays in selecting block partitions for
Recurrences 3.3, 5.1, and 5.2. In Section B.3, we confirm Lemma 5.3’s bounds on A; ats =
3. In Section B.4, we identify sufficient lower bounds on the elements of {us;, vsi}s>2.i>1,
then, in Section B.5, prove that the particular ensemble {us;, vs;}s>2i>1 proposed in
Lemma 5.3 does, in fact, satisfy these lower bounds.

B.1. Base Cases

Call a block partition {mg}1<q<s uniform with width wifm; = --- = mz_1 = w and my,
may be smaller.

LEmMa B.1. Let n,m, and s > 2 be the alphabet size, block count, and order param-
eters. Given i > 1, let j' be minimum such that m < a; j. Whether i = 1 and j' > 1 or
J =1landi > 1, we have

r(mom) < 27 In+ 5 2(m—1)
®n,m) <(s—2)n+ j'(m—1).

Proor. The two claims are true when s = 2, by Lemma 3.2 and Recurrence 5.1. At
s > 3, j' = 1, the claim is trivial, since there are only a; 1 = 2 blocks: As;(n, 2) = 2n and
®(n,2)=0.

In the general case, we have s > 3 and j’ > 1. Let S be an order-s, m-block sequence
over an n-letter alphabet, where m < a;; = 2/. Let S = S1Sz be the partition of

S using a uniform block partition with width a; ;1 = 2/7%, so [S1] = a1,7-1 and
[Se] =m—ai j—1 <ay j—1. Note that S’ = B1 B2 consists of two blocks, where each By is
some permutation of the global alphabet 3.

Consider the first claim. Since there are no middle occurrences in S’ or S, we can
apply a simplified version of Recurrence 3.3.

As(n, m)
< Z rs(ig, [SgD) + As—1@, [S1]) + As—1 (A, [S2]) {local, first, and last}
qg=1,2

<2 M n—A)+ G -1 2m-2) + 222+ (j —1F 3(m—2) {ind. hyp.}
<25 n 4 5 2(m—1).

The last inequality follows from the fact that whens > 3, (j/ — 15 24+ (j' —1)*3 < j*2,
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For the second, claim we invoke Recurrence 5.1.

Dy(n, m)
< Y D00, [Sy]) + Ps(R, 2) + By 1 (B m) + 12
q=1,2

<G6E-2m—-+G -1 2m -2+ -3+ -1 3m-1)+n
<(s—2n+j*2m-1).

This concludes the induction. O

If we introduce the ¢ parameter and define j to be minimum such that m < a; ;,

Lemma B.1 implies that A;(n, m) < 257 'n + (¢j)* %(m — 1), since j' < c¢j. Note that by
definition of Ackermann’s function, af = (27) = aij and aﬁ 1=2°=ay..

Lemma B.1 implies the claims of Lemma 5.3 when i = 1, for a sufficiently large
constant C. For any s, vs; = (52 _1=35—2. When s = 3, Uz =20 +2=4=2"1,

s—2
i+t+C

and 3i — 2 =1. When s > 4 is even, us; = 2(77) — 6(; + 2) > 22+1 = 25-1. When s > 5

is odd, ps; =3 - 2("7°) > 92t+2 — 95-1 These bounds also imply that Lemma 5.3 holds
at j=1andi > 1, since af’l =aj, and both u,; and vs; are increasing in i.

B.2. Block Partitions and Inductive Hypotheses

When analyzing order-s DS sequences, we express the block count m and partition
size 1 in terms of constant powers of Ackermann’s function {af b where the constant
¢ > s — 2 is fixed. Recall that once i is selected, j is minimal such that m < af i The
base cases i = 1 and j = 1 have been handled so we can assume both are at least 2.
Letw =0a; 1.

We always choose a uniform block partition {my}1<¢<s with width w°, that is, m; = w°
for all ¢ < m = [m/w], and the leftover my;, may be smaller. When invoking the
inductive hypothesis on the /-block sequence S’, we use parameter i — 1. In all other
invocations of the inductive hypothesis, we use parameter ;. When applied to any

my-block sequences, the “j” parameter is decremented, since m;, < w® = af i1 When
“©»

applied to an ri-block sequence, the “;” parameter is w, since

m o j\¢
e[ 2] (&) =t
w w ’

Furthermore, in such an invocation, the dependence on /2 will always be at most linear
in m, since (cw)*2(h — 1) < (cw)* 2([2] — 1) < ¢*2(m — 1). This is the reason we
require the lower bound ¢ > s — 2.

If one is more familiar with the slowly growing row-inverses of Ackermann’s function,
it may be helpful to remember that ¢j = logm — O(1) when i = 1 and that j =
log" Y (m)— O(1) when i > 1, the effect of the ¢ parameter being negligible since a; ; and
af ; are essentially identical relative to any sufficiently slowly growing function.?” Thus,
the bounds of Lemma 5.3 could be rephrased as As(n, m) < ps;(n+ O (m(log[i “Um))s-2)).
Since us; is increasing in i, the best bounds are obtained by choosing i to be minimal
such that log" " (m) = n/m+ O(1).

22Recall that log® ! (m) is short for log* *(m) with i — 1 «s.
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B.3. Bounds at Order 3

LEmMA B.2. Let n and m be the alphabet size and block count of an order-3 DS
sequence S. For any i,c¢ > 1, define j to be minimum such that m < o ;. Then A3 is
bounded by

rs3(n,m) < (2i +2)n+ (8i — 2)cjim— 1).

ProorF. The base casesi = 1 and j = 1 have been handled already. Let i, j > 1 and
w = a; j_1. We invoke Recurrence 3.3 with the uniform block partition {m}1<4<s, Where
m = [m/w°] (see Section B.2).

dg(n,m) < Y0 As(ig. mg) + 2 Ao(h.m) + A(As(R, ) — 24, m)

<@2i+2)n—-n) + Bi —2)(j — 1)m — ) {local symbols}
+ 47 + 2(m—1) {global first and last}
+ 2 -2)n + BG -1 —=2)cwim—1) + (m—1) {global middle}

<@i+2n + Bi —2)jim—1)
+[—2i+2)+4+2i —2)]a + [-cBi —2)+Bi —5)+3lm—1)
<@i+2n + Bi —2)jm—1).

The last inequality holds sincec >s—-2=1. O

At s = 2 and s = 3, the terms involving n and m have different leading constants,
namely, 2 and 1 when s = 2 and 2 + 2 and 3i —2 when s = 3. To provide some uniformity
in the following analyses, we will use the inequalities Ao(n, m) < ug;(n+m—1) and
rs(n,m) < usi(n+ (cj)im — 1)) when invoking the inductive hypothesis at i > 2 and
s € {2, 3}. By definition, us; = 2 and p3; = 3i. Note that when i > 2, uz; = 3i >
max{2i + 2, 3i — 2}.

B.4. Lower Bounds on us; and vg;

Call an ensemble of values {jts i, Vs i }s.in<(s.0) happy if hs (n, m) < pg i (n4(cj)* ~2(m—1))
and &y(n,m) < vy (n+ (cj»~2(m — 1)), where ¢ and j are defined as usual. (In the
subscript, ‘<’ represents lexicographic ordering on tuples.) In Lemma B.3, we determine
lower bounds on us; and vs; in a happy ensemble. In Section B.5, we prove that the
specific ensemble proposed in Lemma 5.3 is, in fact, happy.

LemMma B.3. Lets > 4andi > 2. Definen, m, c, and j asusual. If {iis i1, Vs ir }sr in<(s.i-1)
is happy, then {is ', vo i} in<Gs.i) 1S as well, so long as

Msi = 2s—1; + Ms—2,iMsi—1 even s
Msi = 217 + 2ps-2,Vsi—1 + Ms—3iMsi-1 odd s
Vsi > Vsi—1 + vs—1; + 1 all s.

Proor. When s > 4 is even, Recurrence 3.3 implies that

m
hsln,m) <Y Aslitg.mg) + 2 he_1(om) + Ao—o(hg(h, 170), m)
q=1

< usiln—10) + (c(j — 1)) 2m—m) {happiness of the ensemble}
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+ 2us_1.:(A + ()P 3(m—1))
+ ps—2i(psi—1(h + (Ccwy20h—1) + (¢ *m—1)
< wsi(n + (cj>* 2m—1))

+ =i + 20510 + ps-2iptsio1] - 7 (5)

+ [ psic® 2752 + 2p_1,4(cf)*°

+ ps2ittsi1¢” 2+ pg2i(cj) - (m— 1) 6)
< wsi(n + (cj 2(m—1)). 7

Inequality (7) will be satisfied whenever (5) and (6) are nonpositive, that is, when

Msi = 2s—1; + Ms—2.ilsi-1 (8)
2:“*3—1 i Ms—2,iMsi—1 Ms—2.i

> : ills, i 9

Psi 2 ——) + 953 + s — 27 9

Inequality (9) was obtained by dividing (6) through by ¢*~2j5~2 and noting that ¢ >
s —2 > 2 and j > 2. Note that Inequality (9) is weaker than Inequality (8), since
Wsi > Ms—1i > Ms—2.i, S0 it suffices to consider only the former.

When s > 5 is odd, Recurrence 5.2 implies that

m
ds(nm) < Aslitg. mg) + 2+ Ae_1 (R m) + As(2 - DR, ), m) + As_3(As(Rr, 112), M)
g=1

< psiln—1n) + (c(j — 1))*~2(m — i) {happiness of the ensemble}
+ 2us-1,(A + () 3(m—1))
+ Hs—2i(2-v5;_1(A + (cw)2(h—1) + (¢j) *(m—1))
+ ts-3i(usi—1( + (cw)2(h—1) + (¢j) °(m— 1))

< psi(n + (cjy2(m—1)

+ [=psi + 215210 + 2ps-2iVsi-1 + Hs-3.iltsi-1] -7 (10)

+ [_MS.ics_2js_3 + 2“371,1'(0]-)8_3 + 2/Ls,z,ivs,i,1cs_2

+ pe2i (€T + peginsic®? + ez’ (m—1) (11)
< wsi(n + (cj 2(m—1)). (12)

Inequality (12) will be satisfied whenever (10) and (11) are nonpositive, that is, when

Msi = 2hs—1i + 2ks—2iVsi—1 + Ms—3,ilsi-1 (13)
2p5-1, Ms—2iVsi—1 Ms—2.i Ms—3,iMs,i—1 Ms—3.i

> : Z : — e 14

msi 2 <ot T Y ag_op v s T as_gp Y

The denominators of Inequality (14) follow by dividing (11) through by ¢*~2;5~2 and
noting that ¢ > s — 2 > 3 and j > 2. Inequality (14) is weaker than Inequality (13),
since us—1,; > Ws—2; > MUs—3.i, S0 it suffices to consider only Inequality (13).

Using similar calculations, one derives from Recurrence 5.1 the claimed lower bound
on vg;.

Vsi = Vgi—1 + vs—1; + 1. O (15)
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B.5. The Happiness of the Ensemble

From this point, on we argue the happiness of the specific ensemble {us;, vs;} stated
in Lemma 5.3. We can say an individual value us; or vs; is happy if it satisfies the
appropriate lower bound inequality, either (9), (14), or (15).

Lemma B.4. The ensemble {5, vsi} defined in Lemma 5.3 is happy.

Proor. The {vs;} are happy since

it v+ 1= (52D 4 () D) 1= (1) -1 =

When s = 4 and ¢ = [ 52| = 1, the expression for ;4; simplifies to 2/+1%C — 6(i + 2).
The happiness of u4; follows easily, as seen here.
2usi + MoiM4ai-1
=2(3i) + 2- (27 - 6( + 1))
=210 6 — 126+ 1)
= 2T1C _ 6(i +2) = g,

When s = 5 and ¢ = |55%] = 1, the expression for u5; simplifies to 3i - 271C, which
lets us quickly certify the happiness of us ;.

24 + 2us,v5,-1 + Mo id5i-1
<22 + 2.8i - (T1P) + 2.8 - 1) 27C

<3 2i+1+C = 15

The last inequality follows from the fact that 6; - (*"3"°) < 2/+14C when C is sufficiently
large. We now turn to the happiness of u,; for even s > 6. Note that when we invoke

the definition of us_1,; and ps_g;, their “¢” parameteris¢ — 1 = L(s’é)’ZJ = L(s’?’2j.

201 + Ms—2,ilsi-1
[31 (e ] [2(’“ T 66+ 2)] [2(’ ) _ 66+ 1)]

< 2(”3*0) — 6 +2) = usi.

In other words, u,; satisfies Inequality (8) when s > 6 is even. It also satisfies Inequal-
ity (13) at odd s > 7, which can be seen as follows. Note that the ¢ parameter for s — 1
is t, whereasitist — 1 fors —2and s — 3

251 + 2Ms-2iVsi-1 + Ms-3.ilsi-1
< [2.2(”‘?0)] [2 3. 90" .(i—ij;-z)] [2(‘” .86 —1)- 20 “/*C)]
_ [2-2("”:”)] [2 3i . 20" -(”ij;*z)] + [3(i— 1)-2("”?0)]

i+t+C)

<3207 = pg.

The last 1nequahty follows from that fact that the middle term, 6 - 2(") (i~ 1+S )
is less than 2("") when C is sufficiently large.
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We have shown that {i;;} and {vs;} are happy over the full range of parameters. This
concludes the proof of Lemma 5.3. O
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