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We present distributed network algorithms to compute weighted and unweighted matchings with improved
approximation ratios and running times. The computational model is a network of processors exchanging
O(log n)-bit messages (the CONGEST model). For unweighted graphs, we give an algorithm providing (1−ε)-
approximation in O(log n) time for any constant ε > 0, improving on the classical 1

2 -approximation in O log n)
time of Israeli and Itai [1986]. The time complexity of the algorithm depends on 1

ε
exponentially in the

general case, and polynomially in bipartite graphs. For weighted graphs, we present another algorithm
which provides ( 1

2 − ε) approximation in general graphs in O(log ε−1 log n) time, improving on the previously
known algorithms which attain ( 1

4 − ε)-approximation in O(log n) time or 1
2 -approximation in O(n) time. All

our algorithms are randomized: the complexity bounds hold both with high probability and for the expected
running time.
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1. INTRODUCTION

Computing a set of disjoint edges in a graph, also called a matching, is one of the fun-
damental tasks in combinatorial optimization and in distributed systems. Matching
computation routines are often used as building blocks in complex distributed algo-
rithms, and a matching may be the target application in its own right. As a concrete
example, consider a communication switch (like an Internet router), whose basic task
is to transfer packets from input ports to output ports through an internal network
called the “switch fabric” (see Figure 1). In most switch architectures, the switch fabric
can deliver in each cycle at most one packet from each input and at most one packet
to each output port, and an internal scheduling routine decides which ports will be
connected in each cycle. The scheduling routine tries to maximize throughput, which
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Fig. 1. Schematic switch structure. The fabric can realize a matching between the input ports and the
output ports.

is usually interpreted as finding the largest possible matching between the input ports
(see, e.g., [McKeown 1999]).

One significant generalization of the matching problem is the case where edges of
the graph have intrinsic positive weights, and a matching of the largest possible weight
is sought. A simple example for this case is the following scenario. There is a set of
different servers and a set of jobs, and for each job, there is some benefit to be gained if
the job is executed on one of a given subset of the servers. Assuming that each server
can execute at most one job, maximizing the total gain is equivalent to computing a
maximal weight matching.

Note that in both the switch and the job-server examples, as well as in many other
important applications, the underlying graph for the matching problem is bipartite,
that is, the nodes can be partitioned into two subsets such that all edges have one
endpoint in each subset.

A Brief History of Distributed Matching. Due to its prominent role, much research has
been invested in developing efficient and effective algorithms for maximum matching,
in bipartite and general graphs and in the weighted and unweighted. Let us first try
to quickly summarize the situation from the distributed algorithm point of view (for
a summary of results in the sequential settings, see the following). First we note that
finding an optimal matching distributively, even for unweighted graphs, may require
time proportional to the diameter of the graph regardless of the message size.1

As a result, most research focuses on fast approximation algorithms. To discuss
approximations, let us introduce some notation first. For 0 ≤ δ ≤ 1, we use δ-MCM
to denote a matching that is a δ-approximation to the maximum cardinality matching
(i.e., whose size is at least a δ fraction of the size of the largest possible matching
for that graph). Similarly, we use δ-MWM to denote a weighted matching whose total
weight is at least a δ fraction of the best possible.

It is straightforward to observe that the greedy algorithm (that repeatedly adds the
heaviest remaining edge to the matching and removes all its incident edges from the
graph) finds a 1

2 -MWM (or 1
2 -MCM if the graph is unweighted). Even such seemingly

trivial guarantees are not very easy to obtain in the distributed setting (unless one is
willing to pay time proportional to the number of edges [Hoepman 2004]). The basic
result in this area is the elegant algorithm of Israeli and Itai [1986], called II henceforth.
II is a randomized algorithm in the CONGEST model (i.e., using small messages, see
Section 2) which is guaranteed to produce a 1

2 -MCM in O(log n) time in n-nodes graphs.
(The running time is both expected and holds with high probability.) Ideas from II are
the basis of the PIM algorithm used in the high-speed AN2 switch of DEC [Anderson
et al. 1993]. PIM was later refined to the deterministic iSLIP algorithm [McKeown
1999], which is the algorithm of choice in many of today’s routers. From the worst-case
complexity viewpoint, PIM and iSLIP algorithms are no better than II. To date, II has

1To see that, consider C2n, that is, a ring even size. There are only two maximum matchings in C2n (either
all even edges or all odd edges). Intuitively, computing a maximum matching requires global coordination
that cannot be achieved in sublinear time. For a formal argument, note that finding a maximum matching
in C2n is equivalent to 2-coloring the nodes of C2n (because the line graph of C2n is C2n), which cannot be
done in less than n − 1 time units [Linial 1992], Theorem 2.2.
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not been completely subsumed. Barenboim et al. [2012] gave a randomized maximal
matching algorithm in the CONGEST model running in O(log � + (log log n)4) time
with high probability, which has optimal dependence on � [Kuhn et al. 2006]. Building
on Hańćkowiak et al. [1999], a deterministic algorithm that computes a 2

3 -MCM using
large messages in O(log4 n) time is presented by Czygrinow et al. [2004]. Czygrinow
and Hańćkowiak [2003], it is shown that in bipartite graphs, a (1 − ε)-MCM can be
computed deterministically in (log n)O(1/ε) time, again using large messages.

For weighted graphs, Lotker et al. [2009] give a randomized algorithm for ( 1
4 − ε)-

MWM using O(log n) time (expected and with high probability), and based on the
approach of Wattenhofer and Wattenhofer [2004], they explain how to get ( 1

2 − ε)-
MWM in O(log2 n) time. In the special case of trees, it is shown in Hoepman et al.
[2006] that a ( 1

2 − ε)-MCM can be computed in expected constant time. Concurrently
with the preliminary version of this work, Nieberg [2008] presented an algorithm to
compute (1 − ε)-MWM in O(log2 n) time using large messages.

On the negative side, it is known that any distributed algorithm, randomized or
deterministic, requires �(

√
log n) (expected) time to compute a �(1)-approximate maxi-

mum cardinality matching [Kuhn et al. 2006]. The lower bound holds even if messages
have unbounded size, so long as messages may progress only one hop at a time step.

Our Results. In this article, we give substantially improved distributed algorithms
for approximate maximum matchings. Building on some known techniques [Hopcroft
and Karp 1973; Fischer et al. 1993; Pettie and Sanders 2004; Lotker et al. 2009], and
adding a few new ideas, we obtain the following results. For unweighted graphs and
any constant ε > 0, we present the first (1−ε)-MCM in O(log n) time using messages of
O(log n) bits. (All our algorithms are randomized, and their stated running time is with
high probability.) Our derivation consists of three steps. First, we describe a generic
algorithm that requires, in the general case, messages of linear size. We then show
how to implement the algorithm in the special case of bipartite graphs using messages
of O(log n) bits, and the resulting time complexity is O(ε−3 log n). Finally, we give a
randomized reduction from general graphs to bipartite graphs. The running time of
the last algorithm is 2O(1/ε) log n. For general weighted graphs, we give a ( 1

2 − ε)-MWM
algorithm whose running time is O(log n) using O(log n)-bit messages. The idea is to
show that if a δ-MWM can be computed in time T for some constant δ > 0, then it
is possible to compute a ( 1

2 − ε)-MWM in time O(T log 1
ε
). Using the ( 1

4 − ε)-MWM
algorithm of Lotker et al. [2009], we obtain the result.

More Related Work. Maximum matching is a classic optimization problem that is the
target of extensive research for both the bipartite and general case. We refer the reader
to Lovász and Plummer [1986] for a comprehensive account on matching theory, and
to more recent [Mucha and Sankowski 2004; Harvey 2006; Cygan et al. 2012; Vazirani
2012; Duan et al. 2015] on the problem. The best sequential algorithm for approximate
MWM guarantees (1 − ε)-MWM in time O(ε−1 log ε−1m), where m is the number of
edges in the graph [Duan and Pettie 2014]. Refer to Drake and Hougardy [2003] and
Pettie and Sanders [2004] for earlier linear-time sequential algorithms for computing
( 2

3 − ε)-MWM.
Matching is also studied in the context of parallel computation. For example, Karp

et al. [1985] give a randomized NC algorithm for maximum cardinality matching,
and Fischer et al. [1993] give a PRAM algorithm for computing approximate maximum
cardinality matchings. In their algorithm, n�(1/ε) processors produce a (1 − ε)-MCM in
O(log3 n) time. In Hougardy and Vinkemeier [2006], the algorithm from Fischer et al.
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[1993] is extended to a (1− ε)-MWM PRAM algorithm, with similar processor and time
bounds.

We conclude this brief survey with a few results that were published following the
publication of the preliminary version of this work [Lotker et al. 2008]. One direction
was to extends matching to a more general edge packing problem called c-matching,
where the goal is to select subsets of the edges with the greatest possible size or weight,
subject to capacity constraints in the nodes (in a simple matching, the constraint is that
each node touches at most one selected edge). This problem is treated (with a general
framework for packing and covering) in Koufogiannakis and Young [2011], where an
O(log n)-time distributed algorithm with approximation ratio 1

2 is presented.
Our algorithm is used as a building block in some distributed applications. One

example is Patt-Shamir et al. [2012], where our matching algorithm serves as a key
component in a distributed procedure that finds an assignment of mobile nodes to base
stations in 4G cellular networks.

Another interesting new research direction is that of local computation algorithms
abbreviated (LCAs) [Rubinfeld et al. 2011]. In the context of the matching problem, an
LCA is an algorithm which consistently answers queries as to whether a given edge
belongs to some (fixed, unknown) approximate matching. The twist is that the sequen-
tial time complexity of processing any query should be sublinear, so computing the
complete matching is infeasible. LCAs are relevant to our work due to the observation
that distributed algorithms can be transformed into sublinear-time algorithms [Parnas
and Ron 2007]. And indeed, the matching LCAs [Mansour and Vardi 2013; Even et al.
2015] are based in part on our algorithm.

Organization. In Section 2, we describe the model and introduce some notation. In
Section 3, we give our (1 − ε)-MCM algorithms. Section 4 covers our ( 1

2 − ε)-MWM
algorithm. We conclude with some open problems in Section 5.

2. PRELIMINARIES AND NOTATION

Computational Model. Throughout this article, we assume the standard synchronous
network model, where in each time step, processors send (possibly different) messages
to neighbors, receive messages from neighbors, and perform some local computation.
We consider both the LOCAL model where message size may be unbounded, and the
CONGEST(log n) model where messages contain O(log n) bits. We assume that nodes
have unique identifiers of O(log n) bits. See Peleg [2000] for more details.2

Graphs, Matching Etc. The input is an undirected graph G = (V, E), which needs
not be simple. If the graph is weighted, there is also a weight function w : E → R

+. If
the graph is unweighted, we assume an implicit weight function w(e) = 1 for all e ∈ E.
We use n to denote |V |, deg(v) to denote the degree (number of incident edges) of a node
v ∈ V , and � to denote the maximal node degree in G.

A matching M ⊆ E is a subset of the edges such that no two edges in M share an
endpoint. Throughout the article, we use M to denote a matching in general, and M∗
to denote the matching of maximum cardinality (or weight). A vertex is said to be free
with respect to M if it is not incident with any edge in M, and matched otherwise. An
augmenting path with respect to M is a simple path whose endpoints are free with
respect to M and whose edges alternate between E\M and M (we usually omit the
qualification “w.r.t. M” when it is clear from the context). Given an augmenting path

2Within these models, the assumption that the network is synchronous can be made without loss of generality
(using, say, the α synchronizer of [Awerbuch 1985]), because we do not consider faults and because we are
not interested in the message complexity of algorithms.
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ALGORITHM 1: Abstract Algorithm (The input is a graph G = (V, E) and ε > 0)
1: M ← ∅ �M ranges over sets of edges
2: k ← 	1/ε

3: for � ← 1, 3, . . . , 2k − 1 do
4: Construct the conflict graph CM(�) �See Def. 3.1
5: Compute an MIS I of CM(�)
6: Let P be the union the of augmenting paths corresponding to I
7: M ← M ⊕ P
8: end for
9: Output M �M is a (1 − 1

k+1 )-approximate MCM

A, we will abuse notation slightly and use A also to denote the set of edges in A. For
sets A and B, we denote A⊕ B def= (A∪ B)\(A∩ B).

Distributed Matching. As is customary in the distributed model, we assume that the
input graph is also the underlying computational platform. The output is distributed
in the following sense. Each node maintains an output register which either points to
an incident edge (this is a matching edge) or points to NULL if that node is unmatched.
In the case of weighted graphs, we assume that every node knows the weights of all
its incident edges. We also assume that all nodes have a common upper bound on the
maximal identifier value Wmax, such that log Wmax = O(log n). Finally, we assume, for
ε-dependent approximations, that all nodes know the value of ε.

General Conventions. All logarithms in this article are to base 2. We use the phrase
“with high probability,” abbreviated “w.h.p.,” as a synonym of “with probability 1 − n−c,
for any desired constant c > 0.”

3. UNWEIGHTED MATCHINGS

In this section, we present a (1 − ε)-approximation for maximum cardinality matching,
which runs in O(log n) time for any constant ε > 0 and uses messages of O(log n) bits.
Our development consists of three steps: in Section 3.1, we give a generic algorithm
that requires messages whose size may be linear in the graph size; in Section 3.2, we
show how to reduce the message size to O(log n) bits in the case of bipartite graphs, and
finally, in Section 3.3, we give a randomized reduction of general graphs to bipartite
graphs.

3.1. Generic Algorithm

In this section, we present a generic distributed matching algorithm which uses large
messages and runs in time polynomial in ε−1 and log n. In the following sections, we
show how to implement it using small messages.

The basic idea of the algorithm is the following. We proceed in phases, where in
phase �, for � = 1, . . . ,

⌈ 1
ε

⌉
, we identify a maximal set of augmenting paths of length

2� − 1; we augment the matching from phase � − 1 along these paths and obtain the
matching of phase �. The key to the analysis of the algorithm is that the matching
obtained in phase � is a (1 − 1

�+1 )-approximation to the maximum matching. We note
that a similar idea, for the PRAM model, appeared in Fischer et al. [1993]. The only
part of our generic algorithm which is slightly less standard is how to distributively
identify a maximal set of nonconflicting augmenting paths. We implement this part
by constructing a certain “conflict graph” and emulating an execution of a maximal
independent set (MIS) algorithm on that graph.
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To specify the algorithm in detail, we formalize the concept of a conflict graph.

Definition 3.1. Let G = (V, E) be a graph, let M ⊆ E be a matching, and let
� > 0 be an integer. The �-conflict graph w.r.t. M in G, denoted CM(�), is an undirected
graph defined as follows. The nodes of CM(�) are all augmenting paths w.r.t. M of
length at most �, and two nodes in CM(�) are connected by an edge if and only if their
corresponding augmenting paths intersect in G.

Observe that two augmenting paths intersect if and only if they have a common node.
Algorithm 1 contains pseudocode of an abstract algorithm that uses conflict graphs.

We note that the algorithm is well-defined in the sense that no two augmentations
applied in Step 7 are conflicting: if they were, then their paths intersect, contradicting
the independence of their corresponding nodes in the conflict graph. The correctness
and approximation ratio guaranteed by Algorithm 1 is a consequence of the following
two facts, proved in Hopcroft and Karp [1973] (see also Karzanov [1973]).

LEMMA 3.2. If the shortest augmenting path w.r.t. M has length � and P is a maximal
set of augmenting paths of length �, then the shortest augmenting path w.r.t. M ⊕ P has
length strictly greater than �.

LEMMA 3.3. If the shortest augmenting path w.r.t. M has length 2k − 1 ≥ 1 for some
integer k > 0, then |M| ≥ (1 − 1

k )|M∗|, where |M∗| is the maximum cardinality of a
matching in G.

Next, we explain how to implement the abstract algorithm over the physical graph
and analyze its time complexity. The conflict graph construction (Step 1 of Algorithm 1)
is implemented by Algorithm 2. The idea there is that each node explores G to distance
�, and a deterministic rule assigns each augmenting path to a leader node. Exploration
is done essentially by flooding the adjacency information for � rounds. Paths are as-
signed to their endpoint of the smaller ID. When Algorithm 2 terminates, each leader
knows of all the intersections its augmenting paths are involved in.

Regarding the complexity of Algorithm 2, we note that since messages of Algorithm 2
contain descriptions of portions of the graph, message size can be bounded by the
length of the description of G, namely, O((|V | + |E|) log n) bits, and we therefore have
the following immediate result.

LEMMA 3.4. Step 4 of Algorithm 1 can be implemented in the LOCAL model in O(�)
time using O((|V | + |E|) log n)-bit messages.

After Step 4 of Algorithm 1, each node P in CM(�) (where P is an augmenting path) is
associated with a physical node leader(P) = v ∈ V , and furthermore, each node v ∈ V
which is a leader of an augmenting path knows where its neighbors are in the conflict
graph. This information allows for emulating a distributed algorithm of CM(�) over G.
More formally, if v = leader(P), u = leader(P ′), and P, P ′ are neighbors in CM(�), then
u and v know of each other, so that when a message needs to be sent in CM(�), say
from P to P ′, that message is routed from v to u over G along P and P ′, which takes at
most 2� steps. Therefore we can emulate any distributed algorithm for CM(�) over G,
as stated in the following straightforward lemma.

LEMMA 3.5. Let A be a distributed algorithm for the conflict graph CM(�) that runs
in time t(N), where N is the number of nodes in CM(�). Then A can be implemented on
G in O(t(N) · �) time.
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ALGORITHM 2: Find the Conflict Graph CM(�) (Step 1 of Algorithm 1), Run at Node v

1: In time step i = 1, . . . , 2�, v sends to all its neighbors a description of its neighborhood to
distance i −1 as obtained from incoming messages in the previous step. Let Gv(�) and Gv(2�)
be the local views to distance � and 2�, respectively.

2: Let Pv(�) be the set of all augmenting paths in Gv(�), and similarly Pv(2�) in Gv(2�) (local
computation).

3: For all P ∈ Pv(�): v assigns leader(P) ← v if v is an endpoint of P whose ID is smaller than
the ID of the other endpoint of P. Similarly, v computes the identity of leaders of paths in
Pv(2�).

4: v sends out full path description (node identifiers) along all paths P with v = leader(P).

More specifically, we need the following result.

COROLLARY 3.6. Step 5 of Algorithm 1 can be implemented, with probability 1−n�(1),
in O(�2 log n) time.

PROOF. We invoke either the algorithm of Luby [1986] or Alon et al. [1986] to do
the MIS computation. The distributed version of these algorithm runs in time t(N) =
O(log N) (w.h.p.), where N is the number of nodes in the graph, and finds an MIS with
probability 1− N−�(1). In our case, the number of nodes in CM(�) is N = nO(�). The result
therefore follows from Lemma 3.5.

We summarize the properties of the generic algorithm as follows.

THEOREM 3.7. For any given n-node graph G = (V, E) and any ε ≥ 1/n, a (1−ε)-MCM
can be computed w.h.p. in the LOCAL model in O(ε−3 log n) time.

PROOF. Let us first bound the probability that the algorithm fails due to the MIS
computation (which is the only randomized step in Algorithm 1). By Corollary 3.6, for
any given constant c1, there exists a constant c2 such that if we implement Step 5 in
c2 log n steps, the probability that it fails is at most n−c1 . Since Step 5 is executed O(1/ε)
times, the total probability of failure is at most O(n−c1/ε) by the union bound. Since
ε ≥ 1/n, w.h.p. the algorithm does not fail.

Now, assuming that all MIS computations succeed, we prove the correctness of the
algorithm by induction on the number of iterations of the main loop (lines 3–8 in
Algorithm 1). We claim that before iteration 2� − 1, the length of the shortest aug-
menting path in G is at least 2� − 1. The base case, � = 1, is trivial. The inductive
step follows from Lemma 3.2 and the maximality of the MIS computed in Step 5 of
Algorithm 1. Therefore, by Lemma 3.3, when the algorithm terminates, the size of M
is at least (1 − 1/k) ≥ (1 − ε) times the optimum.

Finally, we consider time complexity. Each execution of Step 5 takes O(1/ε) time
by Lemma 3.4 and each execution of Step 5 takes O(ε−2 log n) time by Corollary 3.6.
Step 7 is implemented distributively by letting leader nodes send messages along the
paths chosen to the MIS in Step 5, which takes O(�) time. Therefore an execution of
an iteration is completed in O(ε−2 log n) time, and the time bound follows from the fact
that there are O(ε−1) iterations.

3.2. Bipartite Graphs

In this section, we show how to reduce the message size to O(poly(ε−1) log n) in the case
of bipartite graphs. There are two ideas underlying our algorithm.

The first idea, due to Hopcroft and Karp [1973], is that given a bipartite graph
G = (X, Y, E) and a matching M ⊆ E, it is easy to find augmenting paths by orienting
all matching edges from Y to X and all edges in E\M from X to Y . This way, any
directed path from a free X node to a free Y node is an augmenting path, and finding
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Fig. 2. Illustration of Algorithm 3. Hollow and filled circles represent free and matched vertices,
resp. Dashed and solid arcs represent nonmatching and matching edges, resp. The algorithm
starts at the top layer and progresses one layer at a time. Numbers next to nodes are the sum of
numbers received from the previous level.

the shortest ones is easily done by a breadth-first search. (In the case of general graphs
orienting the edges does not achieve this effect.)

The second idea is how to select a maximal set of shortest augmenting paths effi-
ciently in a distributed way. Implementing Steps 4 and 5 of Algorithm 1 directly is
expensive. Our approach is to combine these steps by constructing the conflict graph
“on the fly,” while performing the breadth-first search for the shortest augmenting
paths. This results in a dramatic improvement in the complexity due an simple insight
into the way the MIS algorithm works, which implies that it is sufficient for each node
to know only the number of augmenting paths it is a member of. Briefly, the MIS algo-
rithm adds a node v to the MIS with probability 1/(deg(v) + 1); our algorithm mimics
this random experiment by counting, for each node (in our case, for each augmenting
path), its number of neighbors.

More specifically, the implementation is as follows (see Figure 2 for an example, and
Algorithm 3 for pseudocode). Suppose that we are given a bipartite graph G = (X, Y, E),
where X and Y are the node sets and E is the set of edges connecting them. We
count the number of augmenting paths of length � by initiating a breadth-first search
(BFS) from all free X nodes simultaneously. As the BFS progresses, each edge records
the number of partial augmenting paths it leads to. A node sends only one message,
immediately after the first round in which it received messages. All messages received
later are discarded (these are the back arrows in Figure 2). The algorithm starts with
each unmatched X-node sending 1 to all neighbors. Thereafter, when a node receives
messages (i.e., numbers arriving from edges) for the first time, it records the received
messages, and sums their numbers up. A receiving Y node sends the sum it obtained
only if it is matched, and only to its mate. (A message arriving before round � to an
unmatched Y node indicates an augmenting path of length less than �.) A receiving X
node, which is necessarily matched (the message has arrived from its mate), sends the
received number to all its unmatched neighbors. Messages arriving to visited Y nodes
indicate an augmenting path that intersects a shorter one. This forwarding procedure
is executed � rounds. The last round is slightly different: X nodes send their value to
all their neighbors as usual, but in this case, we care only for the values recorded by
free Y nodes.
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ALGORITHM 3: At Node v: Counting Half-Augmenting Paths of Length � in Bipartite
Graphs (Precondition: there are no augmenting paths of length less than �)

1: cv[i] ← 0 for all 1 ≤ i ≤ deg(v) �cv[i] is the number of paths from edge i at v
2: if v ∈ X and v is free then
3: send 1 to all neighbors and halt
4: end if
5: wait until a message is received; let t(v) denote the message arrival time
6: cv[i] ← the number received on edge i
7: nv ← ∑deg(v)

i=1 cv[i]
8: if v ∈ X then
9: send nv to all neighbors and halt

10: end if
11: if v ∈ Y , v is matched to a node u, and time < � then
12: send nv to u and halt
13: end if

Call a sequence of edges a half-augmenting path if it starts with a free X node and
alternates between nonmatching and matching edges, with no restrictions on the last
edge. Let d(v) be the minimal length of any half-augmenting path which ends at v.

LEMMA 3.8. Suppose that G and M are such that there are no augmenting paths
shorter than �. Consider a node v in the execution of Algorithm 3. Let nv be as computed in
line 7. Then there are nv half-augmenting paths of length d(v) that end at v. Furthermore,
nv ≤ �	d(v)/2
.

PROOF. Let t(v) be as defined in line 5. We prove, by induction on t(v), that t(v) = d(v)
and that there are nv shortest half-augmenting paths of length t(v) that end at v. The
base case is when t(v) = 0. In this case, v is a free X node. The assertion then follows
from lines 2–3 of the code. For the inductive step, let t(v) = t + 1, and suppose that the
hypothesis holds for t(v) = t. We distinguish between the cases where t is even and t
odd.

Suppose first that t is odd. Then v (that receives a first message at time t + 1) is
an X node. At time t, only Y nodes send messages, and these messages are sent only
along matching edges. Suppose that node u ∈ Y is matched to v. Then by definition, the
number of half-augmenting paths of length t+1 that end with v is equal to the number
of half-augmenting paths of length t that end with u. Since v, in this case, receives in
round t + 1 only a message from its mate u, the inductive claim holds for t + 1.

Suppose now that t is even. Then v is a Y node. At time t only X nodes send messages.
By induction, the message received by v at time t + 1 from any neighbor u is exactly
the number of half-augmenting paths of length t that end with u. Since the prefix of
length t of each half-augmenting path of length t + 1 that ends with v must be a half-
augmenting path of length t that ends with some neighbor u of v, the assignments of
lines 6–7 guarantee that the inductive claim holds in this case as well.

Clearly, messages arriving after time t correspond to non-shortest augmenting paths,
and thus need not be counted.

Finally, we note that nv ≤ �	d(v)/2
 because the maximum number sent at time t + 2
is at most � times the maximum sent at time t.

It follows from Lemma 3.8 that if there are no augmenting paths of length less
than �, then, for every unmatched node y ∈ Y , after � time steps ny is the number of
augmenting paths ending at y.

Computing a Maximal Set of Augmenting Paths. We adapt the MIS algorithm of Luby
[1986] to our setting. The algorithm works in iterations as follows. In each iteration,
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each node in the conflict graph (representing an augmenting path of length �) chooses
a random number, and that node is added to the MIS if and only if its number is
larger than all numbers chosen by its neighbors. The numbers are chosen uniformly
at random from [1, N4], where N is the number of nodes in the conflict graph., which
in our case is bounded by n�(�+1)/2. (If n and � are not known to the nodes, we can use
Wmax, the maximal possible node identifier value, as a substitute for both: all we need
is an upper bound on N.) After O(log N) iterations of this procedure, an MIS is found
with probability 1 − n−�(1).

We emulate an iteration distributively as follows. First, we change Algorithm 1
slightly by stipulating that the leader of each augmenting path is its free Y endpoint
(we do not need identifiers to break symmetry in the bipartite case). Suppose that
node y is the leader of ny paths (as determined by Algorithm 3). First, instead of each
leader selecting a number for each of its paths explicitly, we let each leader y select
a single number wy which is the “winner” of all paths which y leads. This number is
chosen according to the probability distribution of the maximum of ny uniform random
variables over {1, . . . , N4}. Since the probability that such a variable gets a value at
most m is exactly m

N4 , it follows that the probability that the maximum of ny such i.i.d.
variables is at most m is given by the following function:

Pr[max ≤ m] =
⎧⎨
⎩

0, if m < 1,( m
N4

)ny
, if 1 ≤ m ≤ N4,

1, if m > N4.

Once we determine the winning number, we select the winning path by constructing
it stochastically link by link. We work backwards (bottom up in Figure 2) as follows.
The first node of the path is the leader node. Now, at any point in the construction, if
we are at a node y ∈ Y , the next edge is a nonmatching edge i, chosen randomly with
probability cy[i]/ny (using the c array computed in Step 6 of Algorithm 3); and if we
are at a node x ∈ X, the next edge is the unique matching edge incident with x.

In the algorithm, each leader y sends a token message carrying their chosen number
wy. The path traversed by the token is selected stochastically as previously described,
and the path is recorded by the nodes. Whenever tokens meet, only the token carrying
the largest number wy continues with constructing its path, and the other colliding
tokens disappear. From the way the paths were constructed, tokens may arrive at a
node only at a single round. Finally, when a token arrives at the last node of its path,
it traces that path back, and while doing so, it also performs augmentation along that
path, that is, it flips the status of matching edges to nonmatching edges and vice-versa.

We can now prove the following.

LEMMA 3.9. In bipartite graphs with no augmenting paths shorter than �, a maximal
independent set of augmenting paths of length � can be found (w.h.p.) in O(� log N) =
O(�2 log � + � log n) time using messages of O(log n) bits.

PROOF. Consider the algorithm just describe, where routing the messages is im-
plemented as follows. By Lemma 3.8, the numbers wy to be routed are O(� log �) ≤
O(� log n) bits long, and they need to traverse paths of � hops. To send a number of
j log n bits over an edge, we break it into j chunks of O(log n) bits each, and send the
chunks one by one in a pipelined fashion as follows. Initially, all incident edges are
marked as qualifying to be a possible source of the largest number. The chunks are
sent in decreasing order of significance. In each routing step, only chunks from qual-
ifying edges are examined. Of them, only the chunk encoding the largest number is
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ALGORITHM 4: Given G = (V, E) and k > 2, find w.h.p. a (1 − 1
k )-MCM

1: M ← ∅
2: for 22k+1(k + 1) ln k iterations do
3: Each node independently colors itself red or blue with probability 1/2.
4: Let Ĝ ← (V̂ , Ê), where

V̂ = {u | u ∈ V is free, or ∃(u, v) ∈ M s.t. (u, v) is bichromatic}, and
Ê = {(u, v) | (u, v) ∈ E, u, v ∈ V̂ and (u, v) is bichromatic}.

5: P ← Aug(Ĝ, M, 2k − 1) �P is a maximal set of disjoint augmenting paths of length
≤ 2k − 1

6: M ← M ⊕ P
7: end for
8: return M

transmitted in the next step, and the sources of other chunks are disqualified. Once
a single qualifying edge remains, it is recorded as the source of the maximal value
token. This way, an iteration of the MIS algorithm on the conflict graph CM(�) is emu-
lated in O(�) steps in G, and therefore an MIS of the conflict graph is found (w.h.p.) in
O(� log N) = O(�2 log � + � log n) time.

Lemma 3.9 suffices for the next step of our development, as described in Section 3.3.
But since bipartite graphs are an important special case in their own right, we state
the following result explicitly.

THEOREM 3.10. In the CONGEST model, a (1 − 1
k )-approximation to the maximum

matching in bipartite graphs can be found in O(k3 log � + k2 log n) time.

The proof follows from applying Lemma 3.9 in the context of Algorithm 1.

3.3. Matching in General Graphs Revisited

In this section, we give a randomized reduction of general graphs to bipartite graphs.
The idea is to repeatedly sample a bipartite subset of the edges and find a maximal
set of short augmenting paths in the resulting bipartite subgraph. Given an integer
k > 2, after a constant number of iterations of this procedure (depending only on k) we
will, with high probability, obtain a (1 − 1

k )-approximation to the maximum cardinality
matching. The analysis must now handle the fact that instead of choosing shortest
augmentations as before, we now use augmentations that are only “not too long,”
which means that we cannot apply Lemmas 3.2 and 3.3 directly.

Pseudocode is given in Algorithm 4. The subroutine Aug(H, M, �), takes a matching
M in a bipartite graph H and an integer � ≥ 1, and returns a maximal set of disjoint
augmenting paths w.r.t. M, each of length at most �.

We start the analysis with two straightforward observations.

OBSERVATION 3.11. Consider Ĝ = (V̂ , Ê) as defined in Line 4 of Algorithm 4, and let
M̂ = M ∩ Ê. If P is an augmenting path w.r.t. M̂ in Ĝ, then P is also an augmenting
path w.r.t. M in G.

OBSERVATION 3.12. If P is an augmenting path of length � w.r.t. M in G, then Pr[P ⊆
Ê] = 2−�.

Using Observations 3.11 and 3.12, we now analyze the overall behavior of the algo-
rithm. Recall that M∗ denotes an optimal matching in G.
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LEMMA 3.13. Let α = (1− 1
k+1 )|M∗|−|M|. In Line 5 of Algorithm 4, Pr[|P| ≥ α

(k+1)22k ] =
1 − e−�(α).

PROOF. The graph M⊕ M∗ consists of a set of paths and cycles whose edges alternate
between M and M∗. Let P∗ be the set of augmenting paths in M ⊕ M∗ with length
at most 2k − 1. We claim that |P∗| ≥ α. To see this, consider how “far” M is from a
(1 − 1

k+1 )-MCM. By definition, M is exactly α edges short of a (1 − 1
k+1 )-MCM in G,

and hence at least α edges short of a (1 − 1
k+1 )-MCM in M ⊕ M∗. However, if |P∗| < α,

then one could eliminate all augmenting paths of length at most 2k − 1 by adding less
than α edges to the matching, and then, by Lemma 3.3, the resulting matching is a
(1 − 1

k+1 )-MCM in M ⊕ M∗, a contradiction.
Now, let P̂∗ ⊆ P∗ be those augmenting paths appearing in Ĝ. Since the augmenting

paths in P∗ are disjoint, each augmenting path in P∗ is included in P̂∗ independently
with probability at least 2−2k+1, and therefore, by the Chernoff Bound (e.g., [Alon
and Spencer 2000]), the probability that |P̂∗| < |P∗|/22k (i.e., half its expectation) is
exp(−�(α)).

Finally, consider P. The call to Aug(Ĝ, M, 2k− 1) returns a maximal set P of noncon-
flicting augmenting paths in Ĝ. Each augmenting path in P can intersect at most k+ 1
paths in P̂∗, which implies that |P| ≥ |P̂∗|/(k+ 1) and hence |P| ≥ |P∗|/((k+ 1)22k) with
probability 1 − exp(−�(α)).

LEMMA 3.14. The matching returned by Algorithm 4 is a (1 − 1
k )-MCM with high

probability.

PROOF. Let δi be the difference between |M| and (1 − 1
k+1 )|M∗| after i iterations

of Line 2. Thus, δ0 = (1 − 1
k+1 )|M∗|. If M is not a (1 − 1

k )-MCM after i iterations,
then δi > 1

k(k+1) |M∗|, and then, by Lemma 3.13, δi+1 ≤ (1 − 1
(k+1)22k )δi with probability

1−exp(−�(|M∗|)). Thus, after 22k+1(k+1) ln k iterations we have, with high probability,

δ22k+1(k+1) ln k ≤ δ0

(
1 − 1

(k + 1)22k

)22k+1(k+1) ln k

≤ e−2 ln k
(

1 − 1
k + 1

)
|M∗|

= 1
k2

(
k

k + 1

)
|M∗|

=
(

1
k

− 1
k + 1

)
|M∗| .

Thus, the matching M returned by Algorithm 4 is a (1 − 1
k )-approximation with proba-

bility 1 − exp(−�(|M∗|)).
The procedure Aug is implemented by the algorithm of Section 3.2 with the following

slight adjustment. In bipartite graphs, we may assume that the shortest augmenting
path had a known length �. In the general case, this is no longer true, but this is not
a real problem: it only means that a free Y node may receive messages before time �.
Lemma 3.13 ensures that w.h.p., no augmenting path longer than 2k−1 remains when
the algorithm terminates.

The complexity of Algorithm 4 is dominated by the call to Aug(Ĝ, M, 2k − 1),
and hence, by repeated application of Lemma 3.9, O(k3 log n) time with O(log n)-bits
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ALGORITHM 5: Returns a ( 1
2 − ε)-MWM of a weighted graph G = (V, E, w)

1: M ← ∅
2: for (3/2δ) ln(2/ε) iterations do
3: G′ ← (V, E, wM)
4: M′ ← δ-MWM(G′) �invoking a black-box δ-MWM algorithm
5: M ← M ⊕ (

⋃
e∈M′ wrap(e))

6: end for
7: return M

messages suffice for the implementation. As a corollary, we arrive at our main result
of this section.

THEOREM 3.15. For any graph G and integer k > 2, a (1 − 1
k )-MCM of G can, with

high probability, be computed distributively in O(22kk4(log k) log n) time using messages
of length O(log n) bits.

4. WEIGHTED MATCHINGS

In this section, we present an algorithm for ( 1
2 −ε)-approximation of weighted matchings

running in time O(log 1
ε

log n). While in the unweighted case, we reduced maximum
matching to the maximal independent set, in the weighted case, we reduce (1

2 − ε)-
MWM to δ-MWM, for any δ > 0; in other words, we show how to obtain ( 1

2 −ε)-weighted
matching using a δ-MWM.

Preliminaries. For an edge (u, v) in a matching M, we denote M(u) def= v. For any
edge (r, s) ∈ E\M, let wrap(r, s) be the path consisting of the edges (M(r), r), (r, s), and
(s, M(s)). The length of wrap(r, s) may be one, two, or three, because the edges (M(r), r)
and (s, M(s)) may or may not exist, but wrap(e) is always defined. Given a set P of
augmenting paths w.r.t. a matching M, define

g(P) def= w(M ⊕ P) − w(M) .

Intuitively, g(P) is the resulting gain in weight if M was augmented along P.

Algorithm. Our key tool is a new edge-weight function wM, defined for each edge
(u, v) by

wM(u, v) =
{

g(wrap(u, v)) for (u, v) /∈ M,
0 otherwise.

Intuitively, wM(u, v) is the gain in weight of M if we modify M by adding (u, v) and
deleting edges incident to u and v (if such edges are in M). See Figure 3 for an example.

The idea of our approximate MWM algorithm is to apply a set of augmenting paths
of length 3. Since different augmenting paths may conflict with each other, we select
paths using a maximal-weight matching algorithm (see Algorithm 5). In each iteration,
Algorithm 5 is given a matching M (starting with the empty matching). The algorithm
finds a δ-MWM in the graph G modified to have edge weights defined by wM, obtaining
a matching M′. M is then augmented by all augmenting paths of length 3 centered at
the edges of M′, and the result fed into the next iteration.

Analysis. We first prove that after each iteration, M is a matching of increased
weight. The idea is that we may add an edge e to the matching only if its weight is
larger than the weight of matching edges e is adjacent to (those edges will be thrown
out of the matching if we add e).
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Fig. 3. Top: a matching M (bold edges matched, dashed edges unmatched) with weight 14 under
the original weight function w. Middle: a matching M′ with weight 10 under the weight function
wM. Bottom: the matching M′′ = M⊕⋃

e∈M′ wrap(e), having weight w(M′′) = 26 ≥ w(M)+wM(M′).

LEMMA 4.1. Let M and M′ be two disjoint matchings, and let M′′ def= M ⊕ ⋃
e∈M′

wrap(e) (note that wrap(e) is w.r.t M). Then M′′ is also a matching, and furthermore,
w(M′′) ≥ w(M) + wM(M′).

PROOF. We first show that M′′ is a matching by contradiction. If M′′ is not a matching
then it must contain two adjacent edges f ∈ M and e ∈ wrap(e′) for some e′ ∈ M′. Since
e /∈ M, it must be the case that e ∈ M′ and then f ∈ wrap(e), a contradiction to f ∈ M′′.
Turning to the second part, we have the following inequalities:

w(M′′) − w(M) = g

( ⋃
e∈M′

wrap(e)

)

≥
∑
e∈M′

g(wrap(e)) = wM(M′).
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The first and last equality follow immediately from the definitions. Notice that the
short augmenting paths in

⋃
e∈M′ wrap(e) could overlap, but only at M edges. Thus,

adding the individual gains in
∑

e∈M′ g(wrap(e)) is, if anything, an underestimate of
g

(⋃
e∈M′ wrap(e)

)
. See Figure 3 for an example.

We use the following fact from Pettie and Sanders [2004] (recall that M∗ denotes an
optimal matching).

LEMMA 4.2. For all k > 0, there exists a collection P of disjoint augmenting paths
and cycles, each having no more than k unmatched edges, such that w(M⊕P) ≥ w(M)+
k+1

2k+1 ( k
k+1w(M∗) − w(M)).

Using Lemma 4.2 with k = 2, we obtain the following.

LEMMA 4.3. Let Mi be the matching after i iterations. Then, w(Mi) ≥ 1
2 (1 − e−2δi/3) ·

w(M∗).

PROOF. Consider iteration i. By Lemma 4.2, there exists a set P of vertex-disjoint
augmentations (each with one unmatched edge) such that g(P) ≥ 2

3 ( 1
2w(M∗)−w(Mi−1)).

By the definition of wMi−1 and the disjointness of the augmentations in P, it follows that
wMi−1 (P\Mi−1) = g(P). Lemmas 4.2 and 4.1 together imply that

w(Mi) = w

(
Mi−1 ⊕

⋃
e∈M′

wrap(e)

)

≥ w(Mi−1) + 2δ

3

(
1
2

w(M∗) − w(Mi−1)
)

.

Applying the argument inductively, we obtain that w(Mi) ≥ 1
2 (1 − (1 − 2δ

3 )i) · w(M∗).

We also use the following fact from Lotker et al. [2009].

LEMMA 4.4. In the CONGEST model, 1
5 -MWM can be computed in O(log n) time

(w.h.p.).

Now we conclude with the following theorem.

THEOREM 4.5. In the CONGEST model, for any ε > 0, ( 1
2 − ε)-MWM can be computed

in O(log ε−1 log n) time (w.h.p.).

PROOF. We use the algorithm of Lotker et al. [2009] in Line 4 with δ = 1/5. Since in
constant time we can find wrap(e) for any edge e and apply augmentation, it follows from
Lemma 4.4 that each iteration of Algorithm 5 takes O(log n) time. Applying Lemma 4.3
with i = 3

2δ
· ln 2

ε
yields the result.

We note that our algorithm cannot yield approximation better than 1/2 in general,
as can be seen by a graph with three unit-weight edges in series, and the matching
that consists of the middle edge. The gain of all edges is 0 in this case.

Remark. A (1 − ε)-MWM can be obtained in O(ε−4 log2 n) time, using messages of
linear size, by adapting the PRAM algorithm of Hougardy and Vinkemeier [2006] to
the distributed setting using Algorithm 2. Since a similar result was reported indepen-
dently in Nieberg [2008], we give here only a high-level overview of the algorithm. The
idea is as follows. Using Algorithm 2, we look at all augmentations of length O( 1

ε
) and

calculate for each its “gain” (similar to the wM weight). The augmentations are then
partitioned into classes, where the gain of augmentations in class i is at least 2i−1 and
less then 2i. Then, an MIS algorithm is run repeatedly over the conflict graph, taking
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into account only nodes (i.e., augmentations) of the highest remaining class: after each
MIS invocation, the resulting node set and its neighbors are removed from the conflict
graph and the process is repeated. After invoking the MIS algorithm on the top O(log n)
classes, the matching is extended along all augmentations selected. In Hougardy and
Vinkemeier [2006], it is shown that repeating this procedure O( 1

ε
) times results in a

(1 − ε)-MWM. The time complexity, using Lemma 3.5, is O(ε−4 log2 n), but messages
may be O((|V | + |E|) log n) bits long.

5. CONCLUSION

In this article, we have greatly improved the quality of approximate (weighted and un-
weighted) matchings that can be computed by distributed algorithms. There is clearly
still plenty of room for improvement in the weighted case: it may yet be possible to ob-
tain weighted matchings that are arbitrarily close to optimal using small messages. For
unweighted graphs, it is interesting to see whether there exists a (1−ε)-approximation
for general graphs, using small messages, with time complexity polynomial in 1/ε
and log n. And of course, the long-standing open question: can maximal matching, or
independent set, be computed deterministically in O(log n) time on general graphs?
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