
Dual-Failure Distance and Connectivity Oracles∗

Ran Duan
University of Michigan

Seth Pettie
University of Michigan

Abstract

Spontaneous failure is an unavoidable aspect of all net-
works, particularly those with a physical basis such as
communications networks or road networks. Whether
due to malicious coordinated attacks or other causes,
failures temporarily change the topology of the network
and, as a consequence, its connectivity and distance
metric. In this paper we look at the problem of effi-
ciently answering connectivity, distance, and shortest
route queries in the presence of two node or link fail-
ures. Our data structure uses Õ(n2) space and answers
queries in Õ(1) time, which is within a polylogarithmic
factor of optimal and nearly matches the single-failure
distance oracles of Demestrescu et al. It may yet be
possible to find distance/connectivity oracles capable of
handling any fixed number of failures. However, the
sheer complexity of our algorithm suggests that moving
beyond dual-failures will require a fundamentally differ-
ent approach to the problem.

1 Introduction

We consider the problem of answering distance queries
in a weighted directed graph G = (V,E, `), where one
or more nodes or edges are unavailable due to failure
or other causes. Specifically, given source and target
vertices x, y and a set F ⊂ V , the problem is to report
δG−F (x, y), where δG′ is the distance function w.r.t. the
subgraph G′.1 In the absence of failure, the best oracle
for answering distance queries in O(1) time is a trivial
n × n lookup table, where n = |V | is the number of
vertices. Thus, a distance oracle that is sensitive to
node failures should be considered (nearly) optimal if it
occupies (nearly) quadratic space and answers queries
in (nearly) constant time. Demetrescu et al. [6] showed
that single-failure distance queries can be answered in
constant time by an oracle occupying O(n2 log n) space.
Very recently Bernstein and Karger [3] improved the
construction time of [6] from Õ(mn2) to Õ(n2

√
m).

Both [6] and [3] highlighted the problem of finding

∗Email: {duanran, pettie}@umich.edu. This work was sup-

ported by NSF CAREER grant no. CCF-0746673.
1The notation G − z refers to the graph G after removing z,

where z is a vertex, edge, or set of vertices or edges.

distance oracles capable of dealing with more than one
failure.

In this paper we show that dual-failure dis-
tance queries can be answered in O(log n) time us-
ing O(n2 log3 n) space. Our data structure and query
algorithm are considerably more complex than those
of [6, 3], an unfortunate situation which is partially ex-
plained by a sharp qualitative difference between short-
est paths avoiding 1 and 2 failures. If p is a shortest
path from x to y and u a failed vertex, the shortest
path avoiding u consists of a prefix of p followed by a
“detour” avoiding p (and u), followed by a suffix of p. In
the presence of 2 or more failures it is no longer possible
to create such a clean decomposition. The shortest path
avoiding two failures on p may depart from and return
to p an unbounded number of times and furthermore,
each such segment may not even be a shortest path.
With 3 (or more) failures the potential complexity of
the optimal detours becomes even more unwieldy. Our
main result is as follows:

Theorem 1.1. Given a weighted directed graph G =
(V,E, `), where ` : E → R assigns arbitrary real
lengths, a data structure with size O(n2 log3 n) can be
constructed in polynomial time such that given vertices
x, y ∈ V and two failed vertices or edges u, v ∈ V ∪
E, δG−{u,v}(x, y) can be reported in O(log n) time.
Furthermore, a path with this length can be returned in
O(log n) time per edge.

As a special case, Theorem 1.1 allows one to answer
connectivity queries in O(log n) time. We only prove
Theorem 1.1 for two vertex failures. There is a simple
reduction from an f -edge failure distance query to O(1)
f -vertex failure queries, for any fixed f . We can use
Theorem 1.1 to answer distance queries involving an
arbitrary number of failures. For f ≥ 2 we can build an
Õ(nf)-space data structure answering f -failure distance
queries in Õ(1) time. This compares favorably with the
trivial O(nf+2) space bound and the Õ(nf+1) bound
implied by [6, 3].

The High-Level Strategy. Our strategy for an-
swering a dual-failure distance query is to systemati-
cally reduce it to queries that are qualitatively simpler
or perhaps “smaller” in a certain sense. This brings up

the question of what makes for a complicated query. It
turns out, perhaps contrary to intuition, that the most
difficult queries to handle are when both failed vertices
lie on the original shortest path; we call these Case III
queries. Our objective is to reduce such a query to O(1)
Case II queries, where exactly one vertex lies on the
original shortest path. We attempt to answer a Case II
query by reducing it to O(1) Case I queries, where the
distance (measured in edges) from the source to one of
the failed vertices is a power of 2. It may not always be
possible to reduce a Case II query to Case I or to an-
swer a Case I query directly. Many of our reductions are
actually auto-reductions, where, for example, a Case II
query is reduced to another Case II query that is mea-
surably shorter. We can guarantee that the number of
auto-reductions (i.e., the depth of the recursion) is only
logarithmic. The high-level description of our query al-
gorithm given above is not inaccurate but it does mask
a truly intimidating number of sub-cases. Each of Cases
I, II, and III has several varieties, each depending on the
configuration of the two failures relative to some other
critical vertices.

The moral conclusion we draw from our results
is that handling dual-failure distance queries is possi-
ble but extending our data structure to handle 3 or
more failures is practically infeasible. If there is a hu-
manly comprehensible data structure for answering f -
failure distance queries (for an arbitrary f = O(1)), it
will probably not resemble our solution or its predeces-
sors [6, 3].

Related Work. Our results fall into the genre of
algorithms that plan for failure. In contrast to fully
dynamic data structures, which allow the underlying
graph to evolve in completely arbitrary ways, many
algorithms [16, 4, 18, 12, 8, 7] implicitly operate un-
der the assumption that the graph is essentially fixed
and subject only to prescribed changes. Pǎtraşcu and
Thorup [16] showed that an undirected graph could be
preprocessed to answer connectivity queries after multi-
ple failures. Specifically, given vertices s, t and edges
F = {f1, . . . , fd}, whether s and t are connected in
G − F can be determined in Õ(d) time, where d is not
a parameter of the preprocessing algorithm. Chan et
al. [4] considered a model where the underlying graph is
fixed but nodes can be flipped on or off. They showed
that after Õ(m4/3) preprocessing there is a data struc-
ture handling node updates (flips) in Õ(m2/3) time and
connectivity queries in Õ(m1/3) time. Malik, Mittal,
and Gupta [12] showed that for fixed nodes s, t in a
weighted undirected graph, the distance δG−e(s, t) could
be computed for every edge e in O(m + n log n) time.
(This is often called the replacement paths problem.)
This algorithm was rediscovered much later [8] in the

context of a mechanism design problem [15], namely,
computing the Vickrey prices for edges along a short-
est path, where each edge is controlled by a single selfish
agent. The time bound of the Malik et al. [12] algorithm
was improved to O(mα(m,n)) time for integer-weighted
undirected graphs [13]. A similar O(m + n log n)-time
algorithm [14] was given for the vertex-failure problem,
i.e., computing δG−v(s, t) for each vertex v. The re-
placement paths problem appears to be much more dif-
ficult on directed graphs. The trivial algorithm (see
Yen [20] and Lawler [11]) takes O(mn + n2 log n) time.
For unweighted directed graphs, Roditty and Zwick [18]
gave an Õ(m

√
n) time algorithm. Hershberger et al. [9]

gave a lower bound of Ω(m
√

n) for weighted directed
graphs in the path-comparison model [10]. In recent
work, Emek et al. [7] showed that when the underlying
graph is planar the replacement paths problem (avoid-
ing edges or vertices) is significantly easier to solve.
Their algorithm runs in O(n log3 n) time. The replace-
ment paths problem is closely related to sensitivity anal-
ysis of shortest paths, i.e., to compute the amount by
which each edge length can be changed until the identity
of the shortest path changes. Pettie [17] showed that
the sensitivity analysis of single source shortest paths
(and minimum spanning trees) could be computed in
O(m log α(m,n)) time.

2 Notations:

In this section we summarize the notation and conven-
tions used throughout the paper.

• The query asks for the shortest path from x to y
avoiding vertices u and v. We assume that at least
one failed node, u, lies on the shortest path from x
to y.

• We use pH(x, y) to denote the shortest path from x
to y in the subgraph H and use xy as shorthand for
pG(x, y), where G is the whole graph. The length
and number of edges in a path p are denoted as
‖p‖ and |p|, respectively. The concatenation of two
paths p and p′ is p·p′. We use min to select the path
with minimum length, i.e., min{p1, . . . , pk} refers
to the minimum length path among {p1, . . . , pk}.

• We define the function ρs(pH(s, t)) to be the vertex
c ∈ pH(s, t) such that |pH(s, c)| = 2blog |pH(s,t)|c,
i.e., ρs(pH(s, t)) is the farthest vertex from s in
the path pH(s, t), whose unweighted distance from
s in H is a power of 2. Symmetrically, the
function ρt(pH(s, t)) is the vertex c ∈ pH(s, t) such
that |pH(c, t)| = 2blog |pH(s,t)|c. It is easy to see
ρt(pH(s, t)) is before ρs(pH(s, t)) in pH(s, t).

• Let pH(x, y) � A be short for pH\A(x, y). For
example, our query is to determine ‖xy � {u, v}‖
: the shortest x-y path avoiding u and v. Here A
can be a range of vertices if the range is clear from
context. For example, if we have established that
s and t appear in xy � u then xy � u � [s, t] refers to
the shortest path from x to y avoiding u and the
subpath from s to t within xy � u.

• We let s ⊕ i and s 	 i be the ith vertex after s
and before s on some path known from context.
Typically the path we are considering is from x to
y. For brevity we use ⊕i and 	i as short for x⊕ i
and y 	 i, respectively. For example, xy � u � (i)
is the shortest path from x to y avoiding u and
avoiding the ith vertex before y on the path xy � u.

The following vertices are all with respect to some
path pH(x, y) known from context, e.g., pH(x, y) may
be xy � u.

• ∆,∇: The vertex at which pH(x, y) and xy first
diverge is ∆, and, symmetrically, the first vertex
where they converge is ∇.

• w,w′: Let w ∈ pH(x, y) be the first vertex such
that wy = pH(w, y); i.e., for every vertex before w,
the shortest path to y goes through some vertex
in G\H. Symmetrically, w′ ∈ pH(x, y) is the last
vertex such that xw′ = pH(x,w′).

Throughout the paper we use the term detour
to mean a (non-shortest) path avoiding some set of
vertices.

3 Review of the One-Failure Distance Oracle

As in [6], throughout the paper we assume that all
shortest paths are unique. Thus, we can determine
if u is on the shortest path xy by checking whether
‖xu‖+ ‖uy‖ = ‖xy‖.

Before delving into the description of our two-failure
distance oracle, we first give a simplified version of the
one-failure oracle [3, 6] that uses a log-factor more space:
O(n2 log2 n).

3.1 Structure

• B0: For every pair of vertices x and y, B0(x, y)
stores the length and the number of vertices of xy.
We also preprocess the shortest path trees [1] so
that, given x1, x2, y, the first common vertex of x1y
and x2y can be answered in constant time.

• B1: For every pair of vertices x and y, B1(x, y)
stores the length and number of vertices of the

paths:

xy � {⊕2i} , ∀i < blog |xy|c
xy � {	2i} , ∀i < blog |xy|c

xy � [⊕2i,	2j] , ∀i, j < blog |xy|c

3.2 Query Algorithm Let the only failed vertex on
the path xy be u. If |xu| or |uy| is an integer power
of 2, then xy � u will be in B1, so we can get the
distance avoiding u immediately. Otherwise we will find
ul = ρu(xu) and ur = ρu(uy) on xy, so |ulu| and |uur|
are powers of 2. There are 3 possible types of detours:

1. The detour that reaches some point in (u, ur].
2. The detour that reaches some point in [ul, u).
3. The detour that avoids the range [ul, ur] in xy.

For the first and second types, the path will go
through ur or ul. Since u is not on xul and |ulu| is a
power of 2, xul is in B0(x, ul) and uly �u is in B1(ul, y).
The concatenation of them is just the shortest path of
the first type. In this situation, we say that the path
xul ·uly�u covers this case. Symmetrically, xur �u ·ury
can cover the second type. When we deal with the third
type, we let x′ = ρx(xu) and y′ = ρy(uy), so |xx′| and
|y′y| are integer powers of two and xy�[x′, y′] ∈ B1(x, y).
Since x′ is after ul and y′ is before ur on xy, the detour
avoiding [ul, ur] must also avoid [x′, y′], so xy � [x′, y′]
covers the third type. (See Figure 1.) Thus, the single
failure distance can be found in constant time.

Figure 1: One-failure case, where the thick line denotes
a detour of the third type.

In the following parts of this paper, we will consider
the dual failure data structure in three cases:

• Section 4: Case I: only u is on xy and |xu| or |uy|
is a power of 2.

• Section 5: Case II: only one failed vertex is on xy.

• Section 6: Case III: both u and v are on xy.

4 Case I

The first case we consider is when only one of the failed
vertices u is on the original shortest path from x to y
and |xu| (or, symmetrically, |uy|) is a power of 2.

In Section 4.1 we present the data structures used
in Case I. In Section 4.2 we present the query algorithm
and dispense with several relatively easy subcases. Sec-
tions 4.2.1 and 4.2.2 cover the more complicated sub-
cases of Case I.

4.1 Structures First we will introduce the data
structures used in Case I, which are

4.1.1 Common Structures B0, B1: As described
in the one-failure case.

B2: For every detour pH(xy) ∈ B1(x, y) and every
x′ ∈ {x,∆, w}, y′ ∈ {y,∇, w′} (x′ is before y′), B2(x, y)
stores the length and number of vertices of the paths:

pH(xy) � {x′ ⊕ 2i}, i < blog |pH(xy)|c
pH(xy) � {y′ 	 2i}, i < blog |pH(xy)|c

pH(xy) � [x′ ⊕ 2i, x′ ⊕ 2i+1], i < blog |pH(xy)| − 1c
pH(xy) � [y′ 	 2j+1, y′ 	 2j], j < blog |pH(xy)| − 1c

One can see the structures B0, B1, B2 occupy
O(n2 log3 n) space.

4.1.2 The Tree Structure In this section we intro-
duce a specialized but useful data structure whose pur-
pose will only become clear once it is seen in action, in
Section 4.2. For every pair of vertices (u, y), define the
sets S(u, y) and Ŝ(u, y) as:

S(u, y) = {x | u ∈ xy and |xu| is a power of 2}
Ŝ(u, y) = S(u, y) ∪ {z | ∃x1, x2 ∈ S(u, y)

s.t. z is the first common vertex of
x1y � u and x2y � u}

In the tree formed by the shortest paths from the
vertex set of S(u, y) to y in the subgraph G−{u}, Ŝ(u, y)
is the set of all leaves and branch vertices in the tree,
so |Ŝ(u, y)| ≤ 2|S(u, y)|. Given a vertex y, every other
vertex x can only be in at most log n different S(u, y)
since u must be on xy and |xu| is a power of 2. Thus∑

u |S(u, y)| = n log n, and
∑

u,y |S(u, y)| = n2 log n.
For every pair of vertices (u, y) we store the fol-

lowing tree structure T (u, y). For a given x let zi

be the 2ith vertex of Ŝ(u, y) on the path xy � u, i.e.,
|(xzi � u) ∩ Ŝ(u, y)| = 2i. For each x ∈ S(u, y) and i, j,
we store in T (u, y) the path (xy � u) � [zi,	2j], where
	2j is w.r.t. xy � u. We also preprocess T (u, y) to an-
swer level ancestor and least common ancestor queries
[1, 2] in the tree induced by Ŝ(u, y); this allows us to
identify zi and other vertices in O(1) time. Obviously
the size of T (u, y) is O(|Ŝ(u, y)| log2 n), and the total
space for the T structure is O(n2 log3 n).

Lemma 4.1. Given x1, x2 ∈ S(u, y) and an integer
j, let z be the first common vertex of x1y � u and
x2y � u. Using the tree structure T (u, y) we can find
‖(x1y � u) � [z,	2j]‖ in constant time.

Proof. The vertex z can be identified in O(1) time
with a least common ancestor query. Let i =⌊
log |(x1z � u) ∩ Ŝ(u, y)|

⌋
be the log of the number of

Ŝ(u, y)-vertices on the path x1z � u. Using two level
ancestor queries we can identify zl and x′1 where |(zlz �
u) ∩ Ŝ(u, y)| = 2i and |(x1x

′
1 � u) ∩ Ŝ(u, y)| = 2i. The

shortest detour (x1y � u) � [z,	2j] must be one of the
following.

1. The detour that avoids the range [zl,	2j] in xy �u.

2. The detour that reaches some point in [zl, z).

Both of the paths (x1y � u) � [x′1,	2j] and x1zl ·
(zly � u) � [z,	2j] can be retrieved in O(1) time from
T (u, y) and B0(x1, zl). These two paths cover both of
the possibilities for (x1y � u) � [z,	2j]. See Figure 2.

u y

z
y⊖2 j x'1z l

x1

x2

Figure 2: An illustration of the query (x1y�u)� [z,	2j],
where we are given j, x1, x2, and y, but not z.

4.2 The detour from x to y avoiding u We begin
with a simple observation:

Lemma 4.2. Suppose for some distinct vertices u, v, x
and y, v is on the detour xy � u. Then at least one of u
and v is on xy.

Proof. Suppose u is not on xy, then xy � u = xy, so
v ∈ xy.

Since |xu| is a power of 2, xy � u ∈ B1(x, y).
We determine if v ∈ xy � u by checking whether
‖xv �u‖+‖vy �u‖ = ‖xy �u‖ in constant time using the
one-failure oracle. If v /∈ xy � u, the optimal detour has
been found. If |xv�u| or |vy�u| is a power of 2, then we
may return (xy �u)�v, which is in B2(x, y). Otherwise,
we proceed to find vl = ρv(xv � u) and vr = ρv(vy � u)
in O(log n) time as follows:

Since |xu| is a power of 2, if u ∈ xv then xv � u ∈
B1(x, v), otherwise xv � u = xv ∈ B0(x, v). Thus the

vertex vl whose unweighted distance from v in xv � u
is a power of 2 can be found in B2(x, v) or B1(x, v) in
constant time.

However, since |uy| is not necessarily a power of 2,
vr is not symmetrical to vl. To locate vr, we analyze
how the path vy � u was constructed in the one-failure
query algorithm. The only non-trivial case is when vy�u
was composed of two parts (the first or second types,
from Section 3.2), i.e., it was of the form vu′l · u′ly � u
or vu′r � u · u′ry, where |uu′r| and |u′lu| are powers of 2.
We find some vertex v′ that, depending on the form of
vy � u, is a maximal power of 2 from v, u′l, or u′r (in
unweighted distance) but before vr. We then continue
to search for vr on v′y � u. Since |v′y � u| < |vy � u|/2
this procedure terminates after O(log n) steps. If vr lies
in vu′l or u′ry then v′ may be retrieved from B1; if it lies
in vu′r � u or u′ly � u then v′ is stored in B2.

The optimal detour avoiding u and v will belong to
one of the following types:

1. The detour that avoids u and the range [vl, vr] in
xy � u.

The shortest detour of this kind must be no shorter
than (xy � u) � [⊕2j ,⊕2j+1] ∈ B2(x, y) or (xy � u) �
[2j′+1,	2j′

] ∈ B2(x, y) where j = blog |xv � u|c
and j′ = blog |vy � u|c. To see this, without loss
of generality, assume j < j′. Then vl is before
x⊕ 2j and |vvr| = 2j′

> 2j , so vr is after x⊕ 2j+1

in xy � u. Therefore, any detour avoiding [vl, vr]
belongs to the set of detours avoiding [⊕2j ,⊕2j+1]
or [2j′+1,	2j′

]. (This is the same argument used
in [6].)

2. The detour that reaches some points in (v, vr].

In this case, the detour must go through vr. Since
u, v /∈ vry, we just need to find the path (xvr�u)�v.
Suppose that u ∈ xvr. Since |xu| and |vvr � u|
are powers of 2, we can immediately return (xvr �
u) � v ∈ B2(x, vr). Now suppose u 6∈ xvr. Since
v ∈ xvr � u, by Lemma 4.2 only v is on xvr and
|vvr| is a power of 2. Thus xvr � v ∈ B1(x, vr).
If u 6∈ xvr � v (which can be checked with the
one-failure oracle) we are done. If not, we return
(xvr � v) � u, which is stored in B2(x, vr).

3. The detour that reaches some point in [vl, v), but
does not reach (v, vr].

So now we only have to consider the last type of
detour, which must go through vl but not (v, vr]. So far
we have only ascertained that v ∈ vly � u and |vlv � u|
is a power of 2. From Lemma 4.2, at least one of u and
v is on vly. We break the analysis into two main cases
depending on whether v is in vly (Case I.1) or not (Case

II.2). In both cases, we begin by locating the ul and ur

relative to u on the path vly � v. We consider further
subcases depending on whether ul ∈ xy � u:

• I.1.a: v ∈ vly and ul ∈ xy � u

• I.1.b: v ∈ vly and ul /∈ xy � u

• I.2.a: v /∈ vly and ul /∈ xy � u

• I.2.b: v /∈ vly and ul ∈ xy � u

4.2.1 Case I.1: v is on vly Since v is not on uy,
u cannot be before v on vly. So u /∈ vlv and |vlv| is a
power of 2. We check whether u is in vly � v; if not,
we are done. If u ∈ vly � v, define w as the point w of
the detour vly � v, i.e., the first vertex in vly � v which
satisfies v /∈ wy. Since v /∈ uy, u must be equal to or
after w on vly � v. If u = w, then (vly � v) � w is in
B2(vl, y). Otherwise we can find ul = ρu(wu � v) and
ur = ρu(uy � v) in O(log n) time as in Section 4.2. So
ul is after w on vly � v, and v /∈ uly. The possible types
of detours from vl to y are:

1. The detour that avoids v and the range [ul, ur] in
vly � v.

2. The detour that reaches some point in (u, ur].

3. The detour that reaches some point in [ul, u), but
does not reach (u, ur].

Similar to the discussion in Section 4.2, the first
case can be covered by the paths (vly � v) � [w⊕ 2k, w⊕
2k+1], (vly�v)� [2k′+1,	2k′

] ∈ B2(vl, y) for some k, k′,
and the second case can also be handled in the same
way. Thus we only have to consider the third case, that
is, the path from ul to y avoiding u and (v, vr]. Since
v /∈ uly and |ulu| is a power of 2, uly � u is in B1(ul, y).
We check whether ul is on xy � u in constant time and
have the following subcases:

Case I.1.a When ul ∈ xy � u, we know that
vl ∈ xy � u and u /∈ vlv. Furthermore, ul is not in
the range [vl, v) on xy � u. To see this, assume ul is on
vlv �u = vlv (the range [vl, v) on xy �u). Since v ∈ vly,
ul is before v on vly and v ∈ uly, which contradicts the
fact that v /∈ uly.

If ul is after v on xy � u, then v /∈ uly � u, so we
just return uly �u. We do not need to consider the case
when ul is before vl on xy �u since any detour that goes
through vl then ul contains a cycle.

Case I.1.b When ul /∈ xy �u, since u ∈ xy, u ∈ uly
and |xu|, |ulu| are both powers of 2, x and ul are both in
S(u, y). From Lemma 4.1, we can find the least common
ancester z of x and ul in T (u, y) in constant time [19],
i.e., z is the first common vertex of the shortest paths
xy � u and uly � u. (See Figure 3.) If v /∈ uly � u, just

u y

z
v

x
Δ Δ

w ul

vl

Figure 3: The usage of tree structure in Case I.1.b.

return uly � u. If v ∈ uly � u, v must be after z in the
path uly � u because v ∈ xy � u.

Assume the shortest detour reaches ul then to some
point in the common range [z, v) of xy � u and uly � u.
Since ul /∈ xy � u, the path from x through xy � u to
[z, v) must be shorter than that detour. Thus we do not
need to consider the detours that pass through ul then
to some vertices in [z, v) of uly � u.

Since we are in the third type of Section 4.2, in
which the range (v, vr] is avoided, we just have to find
(uly � u) � [z, vr], which can be covered by (uly � u) �
[z,	2j′

] (where j′ = blog |vy � u|c) since vr = v ⊕ 2j′

is after y 	 2j′
on xy � u. By Lemma 4.1, this can be

achieved in constant time using the T (u, y) structure.

Figure 4: The illustration of the case that ul is not on
xy � u

4.2.2 Case I.2: v is not on vly Since v is on vly�u,
by Lemma 4.2, u must be on vly. We find the vertices
ul = ρu(vlu) and ur = ρu(uy). There are two further
possible cases:

Case I.2.a If ul is not on xy � u, this case is very
similar to Case I.1.b. The three possible types of detours
are:

1. The detour that avoids the range [ul, ur] in vly and
the vertex v.

2. The detour that reaches some point in (u, ur].

3. The detour that reaches some point in [ul, u), but
does not reach (u, ur].

The first type is clearly in B2(vl, y), since (vly �
[ul, ur]) � v can be covered by vly � [⊕2j ,	2j′

] � v
(j = blog |vlu|c and j′ = blog |uy|c), and the number

of vertices between vl and v in that path is a power
of 2 (see Figure 4). The second type is also similar to
Section 4.2. But for the third type, the detour must
reach ul, so we have to find the path uly avoiding u
and v. Since ul and x are both in S(u, y), by the same
argument of Case I.1.b, we only need to find the path
(uly � u) � [z, vr], where z is the first common vertex of
xy�u and uly�u. By utilizing the tree structure T (u, y),
the path (uly �u)� [z,	2j′

] where j′ = blog |vy �u|c can
be answered in constant time.

Case I.2.b If ul is on xy �u, there are two kinds of
detours since our overall goal is to find (xy �u) � (v, vr]:

1. The detour (xy � u) � [ul, vr]

2. The detour that reaches some point in [ul, v)

For the first kind, it is easy to see both x and
ul are in S(u, y), so they are in the tree structure
T (u, y). We can find the detour (xy � u) � [ul,	2j′

]
where j′ = blog |vy � u|c in constant time, which will
cover the first kind.

u y

v

x
Δ Δ

ul
vl

v'l

powers of 2

Figure 5: The illustration of Case I.2.a.iii, where v′l is
the corresponding vl for the path uly � u.

For the second kind, the detour will reach ul

through xul � u. Since only u is on uly and |ulu| is
a power of 2, uly � {u, v} itself is in Case I, and we
can deal with it recursively by the procedure of Case I.
When we try to find the detour from ul to y avoiding
u and v by the procedure in Section 4.2, the position of
vr has not changed, so we do not need another O(log n)
time to locate it. Furthermore the new v′l found must be
such that |v′lv � u| is a smaller power of 2 than |vlv � u|;
see Figure 5. Thus, the number of recursive invocations
of Case I is O(log n).

5 Case II: One failed vertex on xy

In Case II we deal with the situation where only one
failed vertex is on xy. Our strategy is to systematically
reduce such a query to several Case I queries. A full
description of Case II will appear in the full version of
this paper.

6 Case III: Two failed vertices on xy

In this case both u and v are on the original shortest
path from x to y, where u is before v in xy. In Section 6.1
we consider the situation where |xu| or |vy| is a power
of 2; these queries are easily reducible to several Case
I queries. However, in general we will need to use
a fundamentally different approach to answering such
queries. In Section 6.2 we introduce a binary partition
data structure that is tailored to Case III queries and
in Section 6.3 we give the complete Case III query
algorithm.

6.1 If |xu| or |vy| is a power of 2 W.l.o.g, we
only consider the case where |xu| is a power of 2 and
v ∈ xy � u. As in Section 4.2, we find vl = ρv(∇v) and
vr = ρv(vy), where ∇ is the convergence point of the
paths xy �u and xy. The shortest detour belongs to one
of the following types:

1. The detour that avoids u and the range [vl, vr] in
xy � u.

2. The detour that reaches some points in (v, vr].
3. The detour that reaches some point in [vl, v), but

does not reach (v, vr].

The first and second types are the same as in
Section 4.2, and the third type is reducible to Case I
since |vlv| is a power of 2.

6.2 The binary partition structure When both
failed vertices lie on the shortest path xy we need to
consider the possibility that the optimal detour departs
from xy before u and returns to xy between u and v,
possibly departing and returning several times. If we
could identify with certainty just one vertex m between
u and v that lies on xy � {u, v}, we could reduce our
Case III query to two Case II queries: xm � {u, v} and
my � {u, v}. The binary partition structure allows us to
answer a Case III query directly or reduce it to Case II
queries. For each x, y and i, j ≤ blog |xy|c, we store the
following structure Ci,j(x, y):

Let [x′, y′] = [x ⊕ 2i, y 	 2j]. Define the following
points on [x′, y′]:

mq,r ∈ x′y′, such that |x′mq,r| =
⌊ r

2q
|x′y′|

⌋
,

for all 1 ≤ q ≤ dlog |x′y′|e, 0 ≤ r ≤ 2q

These points define the following ranges:

Rq,0 = [mq,0,mq,1],∀1 ≤ q ≤ dlog |x′y′|e

and

Rq,r = (mq,r,mq,r+1],∀1 ≤ q ≤ dlog |x′y′|e, 1 ≤ r ≤ 2q−1

yx x' y'

j2i2

. . .

m1,1

m2,1 m2,2 m2,3

m3,1 m3,2 m3,3 m3,4 m3,5 m3,6 m3,7

Figure 6: Different levels of the binary structure

where Rq,2q−1 is truncated at y′. See Figure 6.
Thus, in level q, we have 2q disjoint ranges

Rq,0, Rq,1, ..., Rq,2q−1, and their union is the whole range
[x′, y′]. For every level q, we store in Ci,j(x, y) the length
and number of vertices of the following paths. (Below
the superscripts are mnemonics, where e, o, l, f, and b
are for even, odd, last, first, and backwards.) The space
needed for this structure is O(n2 log3 n).

1. pe
q:

pe
q = min

r∈[0,2q)
r even

xy � (x′y′ \Rq,r)

Let re
q be the index r for pe

q. That is, among all
paths from x to y that intersect only one of the even
intervals, we store the one with minimum length.
Define leq to be the leftmost vertex of pe

q in the range
Rq,re

q
, that is, leq ∈ pe

q ∩Rq,re
q

that minimizes |xleq|.

2. po
q:

po
q = min

r∈[0,2q)

r odd

xy � (x′y′ \Rq,r)

Let ro
q be the index r for po

q. Store so
q as the

rightmost vertex of po
q in the range Rq,ro

q
.

3. pel
q : Define the last vertex on pe

q which is in the
subrange Rq,re

q
as Le

q. Store the path:

pel
q = xy � (x′y′ \ (Le

q,mq,re
q+1])

i.e., pel
q may only use vertices in the range

(Le
q,mq,re

q+1].

4. pof
q : Define the first vertex on po

q which reaches the
subrange Rq,ro

q
as F o

q . Store the path:

pof
q = xy � (x′y′ \ (mq,ro

q
, F o

q))

Parts 5-9 will use the following notation:

Let S and T be two disjoint adjacent subpaths in
x′y′, where S precedes T , and let X = xx′, Y = y′y.
Let X ′ be the subpath between X and S and Y ′

be the subpath between T and Y . See Figure 7.

yx x' y'

X X' S T Y' Y

s tm

Figure 7: The form of the path D(S, T). Here S, T are
arbitrary adjacent intervals on xy and X = xx′ and
Y = y′y.

Obviously X, X ′, S, T, Y ′, Y are disjoint and form
the path xy. Define the path D(S, T) to be:

D(S, T) = min
s∈S,t∈T

(xt � (X ′ ∪ S))

·(ts � (st \ {t, s})) · (sy � (T ∪ Y ′))

That is, D(S, T) is the shortest path from x to
y that passes through T then S, and that never
returns to T and avoids all other vertices in x′y′.

5. pb
q:

pb
q = min

r∈[0,2q−2]
r even

D(Rq,r, Rq,r+1)

Let rb
q denote the index r for pb

q. Store lbq and sb
q

as the leftmost and rightmost vertex of pb
q in the

range Rq,rb
q
∪Rq,rb

q+1.

6. pbf
q : Define the first vertex on pb

q which reaches the
subrange Rq,rb

q+1 as F b
q , and store

pbf
q = D(Rq,rb

q
, (mq,rb

q+1, F
b
q))

I.e., it further avoids the range [F b
q ,mq,rb

q+2] from
pb

q. Store lbf
q as the leftmost vertex of pbf

q in the
range Rq,rb

q
.

7. pbfl
q : Let the last vertex on pbf

q in the subrange
Rq,rb

q
be Lbf

q and store the path:

pbfl
q = D((Lbf

q ,mq,rb
q+1], (mq,rb

q+1, F
b
q))

Figure 9 in Section 6 illustrates this path.

8. pbl
q : Let the last vertex on pb

q in the subrange Rq,rb
q

be Lb
q and store the path:

pbl
q = D((Lb

q,mq,rb
q+1], Rq,rb

q+1)

Store sbl
q as the rightmost vertex of pbl

q in the range
Rq,rb

q+1.

9. pblf
q : Define the first vertex on pbl

q which is in the
subrange Rq,rb

q+1 to be F bl
q , and store:

pblf
q = D((Lb

q,mq,rb
q+1], (mq,rb

q+1, F
bl
q)).

6.3 General Cases We find ul = ρu(xu) and vr =
ρv(vy) in constant time. The optimal detour can belong
to one (or more) of the following types:

• III.1 The detour that reaches some point in (v, vr].

• III.2 The detour that reaches some point in [ul, u).

• III.3 The detour that avoids [ul, vr]

• III.4 The detour that avoids [ul, u] and [v, vr] in xy,
but reaches some vertex between (u, v).

The first and second are considered in Section 6.1.
The third one can also be covered by finding x′ = ρx(xu)
and y′ = ρy(vy) and then returning xy � [x′, y′] ∈
B1(x, y). However, things become more complicated
when we consider the fourth case, which means the
detour leaves xy before ul and merges with xy after vr

and goes through some vertex between u and v. To
deal with this case, we will need the binary partition
structure introduced in the previous subsection.

Now consider the positions of u and v. Find the
smallest level q in Ci,j(x, y) (i = log |xx′|, j = log |y′y|)
in which u and v are not in the same subrange. (This
can be achieved by computing |xu| and |xv|.) Let
u ∈ Rq,r and v ∈ Rq,r+1, where r is even. (If r is
odd, then u and v are also in different subranges in
level q − 1.) Denote the rightmost vertex of Rq,r by m.
There are 4 possible types for detour III.4 :

• III.4.a The shortest detour only goes through the
vertices in Rq,r.

• III.4.b The shortest detour only goes through the
vertices in Rq,r+1,

• III.4.c The shortest detour goes through some
vertices in Rq,r, then to some vertices in Rq,r+1.

• III.4.d The shortest detour goes through some
vertices in Rq,r+1, then to some vertices in Rq,r

but does not reach m.

In Case III.4.a there are some possible subcases
depending on the relative positions of u and the path
pe

q. See Figure 8.

• III.4.a.i If pe
q does not go through Rq,r in Ci,j(x, y),

then there exists another path that only goes
through Rq,re

q
disjoint to Rq,r but shorter than any

l yx vu L m

Figure 8: The illustration of the positions of u, L and
m.

path only going through Rq,r. So pe
q goes through

some vertices in [x′, y′] but does not touch the range
[u, v] in xy. Thus, it has already been covered by
Cases III.1 or III.2, as we discussed above.

• III.4.a.ii If Le
q is before u in xy, then pe

q must be
longer than ‖xLe

q‖ + ‖Le
qy � [u, v]‖, which will go

through ul. This possibility was dealt with in Case
III.2.

• III.4.a.iii If u is before leq, pe
q is the shortest detour

for Case III.4.a. (Remember here leq is the leftmost
vertex of pe

q in the range Rq,re
q
.)

• III.4.a.iv If u ∈ [leq, L
e
q], there are two types of

detours depending on whether it goes through the
range (u, Le

q]. From the definition of pe
q, a shortest

path that travels through some vertices in (u, Le
q]

must travel through Le
q. Thus, xy � {u, v} will be

the concatenation of the paths from x to Le
q and

from Le
q to y avoiding u and v, which are both

in Case II. For the detours not going through the
range (u, Le

q], pel
q can cover this case.

The Case III.4.b is symmetric to Case III.4.a: just
replace pe

q by po
q, Le

q by F o
q , leq by so

q, and Rq,r by Rq,r+1.
For the Case III.4.c, the shortest detour must go

through the vertex m which separates these two ranges
Rq,r and Rq,r+1. Just find the paths from x to m and
from m to y avoiding u and v, which are both in Case
II.

For Case III.4.d, there are some possible subcases
depending on the relative positions of u, v and the path
pb

q. See Figure 9:

• III.4.d.i If pb
q does not go through Rq,r or Rq,r+1,

i.e., r 6= rb
q, then the shortest detour has already

been covered by Cases III.1 or III.2

• III.4.d.ii If Lb
q is before u or F b

q is after v in xy,
we have already considered this situation in Cases
III.1 and III.2.

l yx su L m F v

yx L F

Figure 9: The fourth type in Case III

• III.4.d.iii If u ∈ [lbq, L
b
q], then any detours that

reach some vertex in (u, Lb
q] will go through Lb

q.
To cover the possibility that the shortest detour
goes through some vertices in (u, Lb

q], we find the
detours from x to Lb

q and from Lb
q to y avoiding

u and v, which are both in Case II. To cover the
possibility that the shortest detour avoids (u, Lb

q],
we can see pbl

q satisfies this condition. Then in the
path pbl

q , there are some subcases:

– If v is after sbl
q in xy, pbl

q is the shortest detour
for this case.

– If F bl
q is after v in xy, pbl

q must be longer then
‖xF bl

q � [u, v]‖+‖F bl
q y‖, which will go through

vr. This situation has been covered by Case
III.2.

– If v ∈ [F bl
q , sbl

q], then any detours which reach
some vertex in [F bl

q , v) will go through F bl
q , so

it can be covered by xF bl
q �{u, v}·F bl

q y�{u, v},
which are both in Case II. Furthermore we can
use the path pblf

q to cover the case that it does
not go through F bl

q .

• III.4.d.iv If v ∈ [F b
q , sb

q], it is symmetric to the Case
III.4.c.iii.

• III.4.d.v If u is before lbq and v is after sb
q, then pb

q

is just the shortest detour for III.4.d.

This concludes the query algorithm for Case III.
The total running time will be O(log n), which comes
from the auto-reductions in Case I.

7 Conclusion

We have shown that dual-failure distance queries can
be answered in near-constant time with a data struc-
ture of nearly minimal space. The complexity of our so-
lution suggests that any feasible distance oracle for the
f -failure problem (for arbitrary f = O(1)) should be dif-
ferent than ours in some fundamental way. A promising

avenue for further research is to consider weaker or more
restrictive versions of the problem. For example, little
is known about the complexity of the problem on un-
weighted undirected graphs, or in unweighted directed
graphs when only connectivity queries are supported.

References

[1] M. A. Bender and M. Farach-Colton. The LCA
problem revisited. In Proceedings 4th Latin American
Symp. on Theoretical Informatics (LATIN), LNCS
Vol. 1776, pages 88–94, 2000.

[2] M. A. Bender and M. Farach-Colton. The level
ancestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004.

[3] A. Bernstein and D. Karger. Improved distance sen-
sitivity oracles via random sampling. In Proceedings
19th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 34–43, 2008.

[4] T. M. Chan, M. Pǎtraşcu, and L. Roditty. Dynamic
connectivity: Connecting to networks and geometry.
In Proceedings 49th IEEE Symposium on Foundations
of Computer Science (FOCS), 2008.

[5] C. Demetrescu and G. F. Italiano. A new approach to
dynamic all pairs shortest paths. J. ACM, 51(6):968–
992, 2004.

[6] C. Demetrescu, M. Thorup, R. A. Chowdhury, and
V. Ramachandran. Oracles for distances avoiding a
failed node or link. SIAM J. Comput., 37(5):1299–
1318, 2008.

[7] Y. Emek, D. Peleg, and L. Roditty. A near-linear
time algorithm for computing replacement paths in
planar directed graphs. In Proceedings 19th ACM-
SIAM Symposium on Discrete Algorithms (SODA),
pages 428–435, 2008.

[8] J. Hershberger and S. Suri. Vickrey prices and shortest
paths: what is an edge worth? In Proceedings 42nd
IEEE Symposium on Foundations of Computer Science
(FOCS), pages 252–259, 2001. Erratum, Proc. 43rd
FOCS, p. 809, 2002.

[9] J. Hershberger, S. Suri, and A. Bhosle. On the diffi-
culty of some shortest path problems. In Proceedings
20th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 343–354, 2003.

[10] D. R. Karger, D. Koller, and S. J. Phillips. Finding the
hidden path: Time bounds for all-pairs shortest paths.
SIAM J. Comput., 22(6):1199–1217, 1993.

[11] E. L. Lawler. A procedure for computing the K best
solutions to discrete optimization problems and its
application to the shortest path problem. Management
Sci., 18:401–405, 1971/72.

[12] K. Malik, A. K. Mittal, and S. K. Gupta. The k most
vital arcs in the shortest path problem. Oper. Res.
Lett., 8(4):223–227, 1989.

[13] E. Nardelli, G. Proietti, and P. Widmayer. A faster
computation of the most vital edge of a shortest path.
Info. Proc. Lett., 79(2):81–85, 2001.

[14] E. Nardelli, G. Proietti, and P. Widmayer. Finding
the most vital node of a shortest path. Theoretical
Computer Science, 296(1):167–177, 2003.

[15] N. Nisan and A. Ronen. Algorithmic mechanism
design. Games Econom. Behav., 35(1–2):166–196,
2001. Economics and artificial intelligence.

[16] M. Pǎtraşcu and M. Thorup. Planning for fast connec-
tivity updates. In Proceedings 48th IEEE Symposium
on Foundations of Computer Science (FOCS), pages
263–271, 2007.

[17] S. Pettie. Sensitivity analysis of minimum spanning
trees in sub-inverse-Ackermann time. In Proceedings
16th Int’l Symposium on Algorithms and Computation
(ISAAC), pages 964–973, 2005.

[18] L. Roditty and U. Zwick. Replacement paths and k-
simple shortest paths in unweighted directed graphs.
In Proceedings 32nd Int’l Colloq. on Automata, Lan-
guages, and Programming (ICALP), pages 249–260,
2005.

[19] B. Schieber and U. Vishkin. On finding lowest common
ancestors: simplification and parallelization. SIAM
J. Comput., 17(6):1253–1262, 1988.

[20] J. Y. Yen. Finding the K shortest loopless paths in a
network. Management Sci., 17:712–716, 1970/71.

