Proceedings of the 2002 International Symposium on aoét\Reliability Engineering

The Impact of Recaovery Mechanisms on the Lilelihood of Saing Corrupted State

Subhachandra Chandra
CoSine Communications
subhatanda@computeorg

Abstract

Recwery systemsnustsavestate before a failure occurs
to enablethe systemnto recover fromthe failure. However,
recovery will fail if the recorery systemsavesany state
corruptedby the fault. Thefrequencyand compehensive-
nessof how a recovery systemsavesstate has a major
effect on how often the recovery systeminadvertently
savescorruptedstate This paper explores and measues
that effect. We measue how often softwae faults in the
applicationand opemting systemcausereal applications
to savecorruptedstatewhenusingdifferenttypesof recos-
ery systems\\e find that genericrecorerytechniquessud
as chedpointing and logging, work well for faultsin the
opefating systemHowever, we find that they do not work
well for faultsin the applicationbecausehe very actions
taken to enable recovery often corrupt the state upon
which successfulecorery depends.

1. Intr oduction

Recaoering from software faults is a difficult and
complicatedtask.On onehand,the recorery systemmust
save enoughstatebeforethe failure occursto enablethe
systemto recover. On the otherhand,the recorery system
must not save ary statecorruptedby the fault, sincethat
would presere the effectsof thefailurein all futurerecor-
ery attemptsIn addition,the recosery systemmustdetect
the failure beforeit corruptscritical stateor sendsincor-
rect information to other processors.Prior recovery
researcthasfocusedprimarily on savzing enoughstateto
enablerecovery. Much less attentionhas beengiven to
savzing only uncorruptedstate(otherthan minimizing the
lateng of error detection).Becauseof this emphasison
savzing enoughstate, most recovery systemsignore the
impact their own actionsmay have on the likelihood of
saving corrupted state.

In reality, the methodusedto recover from failures
hasa marked effect on the likelihoodthat a programwiill

Peter M. Chen
EECS Department
University of Midigan
pmden@umib.edu

save corruptedstate, andthusonthelikelihoodthatrecor-
ery will succeedFor example,logging eachapplication
event ensuresthat an applicationfailure will effectively
save corruptedstate[10]. Recovery systemsthat ignore
this effect reducethe scopeof failures for which they
recover.

The goal of this paperis to explore the interactionof
recovery protocolsandthe lik elihood of saving corrupted
statein the presencef softwarefaults(bothin theapplica-
tion and the operatingsystem).We begin by discussing
somefactorsthat influencewhetherthe recovery systems
will save corruptedstate:the comprehensienessandfre-
queng of the recovery system,the location of the fault,
andthe quality of error detectionpresentin the program.
After describingthe setup usedin our work, we then
presenexperimentakesultsfrom severalreal applications
in orderto quantify the interactionbetweenthe recovery
method and the liihood of saing corrupted state.

2. Factors that influence the lilelihood of
saving corrupted state

Four mainfactorsaffect thelikelihoodthatthe recov-
ery systemwill save corruptedstate:the comprehensie-
nessof statesaved by the recovery system the frequeng
of statesaved by the recovery system the location of the
fault,andthe quality of errordetectionln this section,we
discuss each of these foarcfors.

The first two factorsrelate to the systemusedto
recover after a failure. Recaovery methodsare built into
applicationor systemsoftwareto shieldthe userfrom the
effects of a failure and to presere the users data. The
recovery systemmust periodically save the state of the
programsoit canrestartthe programfrom anappropriate
point aftera failure. Therearetwo maintypesof recovery
systems: application-generic and application-specific.
Application-generiagecorery systemssuchasthosebased
on checkpointingandlogging,operateéndependentlyrom
the programbeingrecovered[6]. Thatis, they requireno



informationaboutthe semanticsf the statebeing sared,

andthey requireonly basicinformationaboutthe eventsin

the program,suchaswhich eventsarevisible outsidethe
program(“outputevents”)andwhich eventsarenon-deter-
ministic [10]. In contrastan application-specificecovery
systemis written for a specific program and utilizes
semanticinformation specific to that application. Most
applications today include program-specific code to

recover afterafailure,while relatively few rely on generic
methods of reogery.

The next two subsectionsxplore how the compre-
hensvenessaandfrequeny of the recorery protocolaffect
thelikelihoodof saving corruptedstate For boththesefac-
tors, thereare trade-ofs betweenfailure transpareng for
theuser theamountof work to be doneby the application
programmerand the likelihood of saing corrupted state.

2.1. Comprehensiveness of state saved by recovery
system

One key designdecisionwhen building a recovery
systemis how much stateto save. Saving statebeforea
failure preseres the users work and enablesrecovery
from that point.

Application-specificrecosery systemscan choosea
variety of stratgies for saving different piecesof state.
The recovrery system can chooseto discard (i.e. not
recover) somestateif the userof a programdoesnot mind
thelossof thatstate;for example few editorssave thecur-
rent cursor position. Or, an application-specifiaecovery
systemmay chooseto invoke a program-specifiéunction
to reconstruct pieceof statebasedon other saved state;
for example,a web browsermay re-fetchthe mostrecent
webpagebasedon a URL history Finally, anapplication-
specificrecovery systemmay chooseto save a piece of
stateandrestoreit to the saved valueduring recorery; for
example, the URL history may be sared in a log and
recovered from that log.

In contrast, application-genericrecosery systems
lack informationaboutthe semantic®f differentpiecesof
state.Becausehey do notknow which statecanbelost or
how to recover statein an application-specifiomanner
application-generigecovery systemsmust save all state
andrestoreit duringrecovery. Saving statein this manner
can be done with either checkpointing or logging.

Saving all statevia genericmethoddik e checkpoint-
ing andlogging hastwo benefitsandtwo dravbacks.The
first benefitis that saving more statemakesfailuresmore
transparento the user becausehe useris lessaffectedby
thefailure. The secondbenefitis thatsaving all statefrees
the applicationprogrammeifrom writing codeto recover

state. However, saving more comprehensee state hurts
performanceandit increaseshe chancehata failure will
lead to the recovery systemsaving corruptedstate. The
morecomprehensie the statethatis saved,themorelikely
it is thatstatecorruptedby thefaultwill beincludedin the
saved state.Statesaved by application-specifiaecosery
mechanismalso may have beencorruptedby the failure.
However, thesesystemgendto save lessstatethangeneric
recovery systems.Becauseapplication-generiaecovery
systemanustsare a morecomprehensi setof statethan
application-specificecovery systemswe expecta higher
fraction of failuresto save corruptedstatewhen using a
generic receery system.

2.2. Frequency of state saves by recovery system

A secondkey designdecisionwhenbuilding arecor-
ery systemis how frequentlyto save state.As with com-
prehensieness,the frequeng at which state must be
savedis determinedn large partby whetherthe recovery
system has application-specificknowledge. In essence,
recovery systemghat know nothingaboutthe application
must sase statewheneer the applicationexecutesevents
that are visible outsidethe program[10]. Recovery sys-
temsthatunderstandpplicationsemanticcansometimes
avoid saving stateat thesetimes.For example,moving the
cursoris visible outsidethe program,but an application-
specificrecovery systemmay know thatthe programdoes
not need to remember thiganmt after receery.

Increasingthe frequeng of saving stateinvolvesthe
sametrade-ofs as increasingthe comprehensienessof
the statethatis saved. Saving statemorefrequentlymakes
failuresmoretransparento the user becausdesswork is
lost during a failure. If stateis saved so frequently that
eachvisible event leadsto a statesave, then application
programmersneed not be concernedwith specifying
eventsthat canbe lost, sotheir job becomesasier How-
ever, savzing statemorefrequentlyincreaseshelikelihood
thata failure will leadto the recovery systemsaving cor-
rupted state. The greaterthe frequeng at which stateis
saved,thegreatetthelik elihoodthatstateis savedbetween
thefault activationandthe halting of theprogram.In other
words,morefrequentsavesallow lesstime for errordetec-
tion mechanismso detectthe errorandstopthe program.
A failure will sare corruptedstateif the recosery system
savesstateafterthe fault activation andthat stateincludes
corruptionsnducedby the fault activation. Becauseppli-
cation-generigecovery systemanustsave statemorefre-
quently than application-specificrecovery systems,we
expecta higherfraction of failuresto save corruptedstate
when using generic regery systems.



2.3. Fault location

Another factor that affects how frequently failures
save corruptedstateis the layer of the fault relative to the
recovery systemWe view therecovery systemasoccupy-
ing a specificlayerin the system.ts job is to recover the
layersabove it, while leaving therecovery of layersbelow
it to otherpartsof the system For example,a checkpoint-
ing library seekgo recover asingleapplication but it does
not seekto recover the operatingsystembelow thatlibrary
[12]. Recovery systemsbelon the operatingsystemseek

to recwver the operating system and all applications [2].

Basedon this view, we can classify faultsas occur-
ring above, below, or within the recovery system.Faults
that occur above the recovery systemdirectly affect the
stateof the programthatis beingrecovered.Thatis, these
faults will always leadto corruptedstatein the domain
beingrecovered,therebymakingit possiblefor the recor-
ery systemto save corruptedstate.Onereasonthat appli-
cation faults are so difficult to recover from is that they
occur above the recovery systemand can lead easily to
corrupted state being\sd.

In contrast faultsthat occurbelow the recovery sys-
tem often do not affect stateabove the recorery system.
Faults belov the recovery systemcan affect statein the
domainbeingrecoveredonly if the corruptionpropagtes
up throughthe intervening layers. Considera userlevel
checkpointindibrary asan example.Faultsin the operat-
ing systemcancrashthe systemwithout ever affectingthe
state of the application linked with the checkpointing
library. If no stateis corruptedin the domainbeingrecor-
ered,thenthe recovery systemcannotpossibly save cor-
rupted state. It is still possiblefor an operatingsystem
faultto corruptapplicationstate(e.g.by corruptinga sys-
tem-call return &lue), lut it is relatively infrequent.

Faults may also occur within the recovery system
itself. For example,a fault within the operatingsystems
file-systemcodemay causea checkpointindibrary to save
incorrectcheckpointdata. Faultswithin the recovery sys-
temaresimilar to thosebelov therecovery systemin that
they may or may not affect stateabove the recovery sys-
tem.

2.4. Quality of error detection

The final factorthat affects whetheror not a failure
leadsto corruptedstatebeing saved is the quality of the
error detectionpresentin the systemandapplication.One
goalof errordetectionis to stopa faulting programbefore
it saves corruptedstateto stablestorage.The longerthe
latengy betweenfault activation and error detection,the
more likely it is that corrupted state will beveal.

3. Experimental apparatus

In this paper we evaluatethe effect of varying the
comprehensenessandfrequeny of therecovery system.
We explore both application-generi@and application-spe-
cific recorery systemsand we evaluatefaults belov and
above the recovery system.The programswe evaluate
detecterrorswith adhocredundang (primarily assertions
and memoryaddresgangechecks).Our generalstrategyy
is to (1) run a variety of general-purposeapplications
(describedin Section3.1), (2) inject faults (describedn
Section3.2) into an applicationor the operatingsystem
until it fails, (3) recaver and continuethe applicationand
systemusing a variety of recorery schemegdescribedn
Section3.3),then(4) evaluatewhetheror notthe recovery
system seed corrupted state (described in Sections 4-6).

3.1. Applications

We usethreegeneral-purposeapplicationsto conduct
our experiments:nvi, Postgresand oleo. nvi is a com-
monly usedUnix text editor and consistsof about87,000
lines of code.Postgreds a databasenanagemensystem
developedat U.C. Berkeley andconsistof about327,000
lines of code.oleo is a terminal-basedspreadsheepro-
gramandconsistof about53,000linesof code.While our
resultsarespecificto the softwarebeingtestedwe believe
that examining several general-purpos@pplicationsthat
arein commonusecanhelpcontrituteto anunderstanding
of how faults behee in general.

Nvi is aninteractve applicationthat readsuserinput
anddisplaysits work onthe screenlt savesoutputto afile
when given a commandby the user We modified the
applicationto simulate user input by reading keyboard
input from a text file. This allowed us to automatethe
thousand®f experimentausedin this paper Thekeyboard
input we useconsistsof about8000 characterghat were
logged while we wrote the introduction to a paper

Postgrescan run in a variety of conditionsranging
from acceptingnput directly from the userto runningin a
client-serer configuration.We run Postgredn the mode
whereit readsSQL commandgrom afile. The SQL com-
mandsusedto drive Postgresare basedon the TPC-B
benchmarkpachtransactiorupdatessomedatain a bank-
ing database.

Oleois aninteractize applicationthatreadsuserinput
anddisplaysits work onthe screenlt savesthestateof the
spreadshedb a file whengiven a commandby the user
We modified oleo to readits input from a file. The key-
boardinput we useto drive oleo replaysthe keystrokes
usedto createthe budgetfor a grantproposalandconsists
of about 500 characters.



The operating system used in our experimentsis
FreeBSD2.2.7,which is a versionof Unix basedon the
BSD 4.4 kernel. We used a customized version of
FreeBSD(FreeBSD-Rio}hatincludedcodeto implement
reliablemain memory[11]. FreeBSD-Rioensureghatall
file cachedatais written to disk during an operatingsys-
temcrashwhich providesthe samedevel of datareliability
as a file systemthat synchronouslywrites all file-cache
data to disk.

3.2. Fault models

We evaluate the failure and recovery behaior of
applicationsin the presenceof applicationand operating
systemfaults. This sectiondescribeghe faults we inject
into the applicationor operatingsystem.The fault-injec-
tion mechanismaredescribedn moredetailin Chandras
dissertatior{3]. Our modelsarederivedfrom field studies
of commercialdatabaseandoperatingsystemg14, 13,9]
andfrom prior modelsusedin fault-injectionstudieq1, 8,
7]. Thefaultswe injectrangefrom low-level faultssuchas
flipping bits in memoryto high-level softwarefaultssuch
asmemorymanagemergrrorsanduninitializedvariables.
We trigger a fault in the running applicationor operating
systemat a random time in the programs execution.
Injectedfaultsfall into two cateyories:bit flips and high-
level software fults.

The first cateyory of faults flips randombits in the
applicationor operatingsystem$ heapand stack. These
faultssimulatethe corruptionof a processs addresspace
by wild pointers and hardave fults.

The secondcategory of faults introducesprogram-
ming errorsinto the applicationor operatingsystem.We
inject thesefaults by modifying the sourcecode,compil-
ing andrunningthe modified sourcecode,thentriggering
a fault dynamically while the programis running. We
modify the sourcecodeby usinga customparseithatiden-
tifies all potentialpiecesof codewherea particularfault
can be injected, then adds code to inject the fault on
demand.When the fault-triggering mechanismis acti-
vated, it setsa global variable that triggers one of the
instanceof faulty code.A brief descriptionof eachfault
type follows.

Memory-management faults: Thesefaults affect the
program$ dynamicmemoryallocationand de-allocation.
We modified the malloc() and free() routinesto free a
block of memorywhile the particularblock of memoryis
still in use.Our modified routineskeeptrack of allocated
memorythathasnot yet beenfreed. Whenthe fault injec-
tion routine is triggered,it prematurelyfreesone of the
allocated blocks of memory still in use.

Off-by-one faults: Thesefaultssimulatesoftwarebugs
wherethe programmetusesthe wrong conditionalopera-

tor to determinef aloop will executeanotheriterationor

terminate We insertthesebugs by replacingthe operator
“>" with “>=", and by replacingthe operator“<” with

“<=". Whenafaultis injected,it setsa globalvariablein

the programthat causeghe erroneouperatorto be used
instead of the original operator

Initialization faults: Thesefaults simulate software
bugs wherethe programmerfails to initialize a variable.
We insertthesebugshby changingtheinitialization codeso
that a variableis initialized with zeroor is left uninitial-
ized.

Incorrect branch faults: Thesefaults simulate soft-
ware bugs wherethe programmerdeclaresa conditional
branch statementinstead of an iteration statement.We
insertthesebugs by replacingthe keyword “while” with
an “if” statement.

Delete instruction faults: Thesefaults simulatesoft-
warebugswherethe programmeforgetsa simpleexpres-
sion statementWe insert thesebugs by skipping over a
simple expression statement.

Change destination variable faults: Thesefaultssim-
ulatesoftwarebugswherethe programmemssignsa value
to thewrongvariable.We insertthesebugsby replacinga
destination variable in an assignmentstatementwith
another ariable.

3.3. Recoery systems

As describedn Section2, the designof the recovery
systemaffectsthe likelihoodthat failurescausecorrupted
stateto be saved. This sectiondescribesthree recorery
systemsawve useto evaluatetheseeffectsquantitatvely. We
describehow andwheneachof our threerecorery system
saves andrecovers state,and we describehowv we detect
saved corruptedstatewhen using eachrecovery system.
The first recovery systemexemplifies a typical applica-
tion-specificrecovery system,while the secondrecovery
systemexemplifiesa typical application-genericecovery
system.The third recovery systemrepresent&n interme-
diate point alongthe continuumbetweenapplication-spe-
cific and application-generic regery.

Application-specificrecovery. Most applicationsprovide
an application-specificrecovery system. This type of
recovery systemis written by the applicationprogrammer
who cantake advantageof his/herknowvledgeof program
semanticsand user requirementsto minimize both the
amountof statesaved and the frequeng of saving that
state.Thescopeandfrequeny of statesaredvariesfor our
three applications.Nvi saves the state of the file being
editedwhendirectedby the userandalso savesrecovery
stateto a temporaryfile when triggeredby the built-in
auto-sae mechanismPostgressommitsthe stateof each



transactionto the databasefile at the end of each
transaction Oleo saves the stateof the spreadsheebnly
whentheuserissuesa save commandunlike nvi, oleohas
no auto-see mechanism.

We detectwhen an applicationor operating-system
failure savescorruptedstateby examiningthe stateof file
data(stablestorage)fterthe applicationor operatingsys-
temcrashesWe comparehe crashstateof thesefiles with
asetof referencestatedor thesefiles. The setof reference
stateds generatedy runningthe applicationwithout ary
faultsandarchving the completehistory of the setof files
(i.e. all versionsthat the set of files goesthroughduring
the programs execution).After a failure, we comparethe
crashstateof thefiles againsteachversionin thereference
set.If the crashstateof the files matchesary of the ver-
sionsin thereferenceset,thenthefailurehasnot corrupted
thedataon stablestoragecomparedo afault-freerun. For
thesefaults,therunwill completesuccessfullyafterrecor-
eryif theusercontinuesnteringinput from the pointrep-
resentedby the matchedstateand the fault doesnot re-
occur However, if the crashstateof the files does not
matchary of the versionsin the referenceset, then the
failure has causedthe applicationto commit incorrect
state,andthis statewill be visible to the applicationafter
recovery.

Postgresncludesa mechanisnto aborttransactions
thatwerein-progressat thetime of the crash.This mecha-
nismrolls backchangego the databasédile thatwerenot
yetcommittedatthetime of the crash We male full useof
Postgres application-specificrecorery mechanismby
rolling back uncommittedtransactiondefore comparing
acainst the set of referencestates.Prior resultsindicate
that the transactionmechanisnsignificantly reducesthe
number of &ilures that sz corrupted state [4].

Application-generic recovery. This recorery systemuses
an application-genericcheckpointing library (Discount
Checking)to recover the application[10]. Checkpointing
systemslike Discount Checking are unavare of the
semantic®f applicationdataandoutputevents,andhence
they must be conserative in how frequently and
comprehensely they sae state. Application-generic
recovery systemsmust save all applicationstatethrough
checkpointingor logging at eacheventvisible to the user
(theseare commonly called “output commits” [6]). We
expect application-genericrecovery systemsto save
corruptedstatemore often due to their higher frequeny
and greater comprehewsness of sang state.

We detectwhen an applicationor operating-system
failure savescorruptedstateby having DiscountChecking
recover the applicationfrom its lastcheckpointandtrying
to completethe programs execution. We deactvate the
fault injection mechanisnduring recovery sothatno nev

faults are injected. As a result, the recovering run will
completesuccessfullyif and only if the last checkpoint
beforethe crashcontainsno corrupteddata.As described
in Section 2, an application-leel fault saves corrupted
stateif a checkpoint(which savesall applicationstate)is
taken after the fault was activated. An operatingsystem
fault saves corruptedstateif it leadsto applicationstate
being corrupted,and an applicationcheckpointis taken
after the corruption.

Low-frequency application-generic recovery. This
recovery system is similar to an application-generic
recovery system,but takes checkpointsonly when an
application-specificecorery systemwould save state.As
with application-genericrecovery, we use Discount
Checking to save the complete state of the process.
However, we modify DiscountCheckingin this systemto
take checkpoints only when the application-specific
recovery system would save state. We detect saved
corruptedstatefor this stratgy in the samemanneraswe
do for application-genericj.e. by recovering from the
most recent checkpoint.

This recovery systenrepresentganintermediatgoint
betweenpure application-specifiand application-generic
recovery systemsWe measurats behaior to try to sepa-
rate out the two factors (comprehensenessand fre-
quengy) that differ between application-specific and
application-genericecorery systemsWe cangetanidea
of the effect of the increasedcomprehensienessof an
application-genericrecovery system by comparing the
low-frequeny application-generiaecovery systemwith
the application-specificecorery system(sincethey differ
only in comprehenseness)Lik ewise,we cangetanidea
of the effect of the increasedrequeng of anapplication-
genericrecovery systemby comparingthe low-frequeng
application-genericecovery systemwith the application-
genericrecovery system(since they differ only in fre-

queng).
4. M easurement methodology

Our main goal is to comparethe impactof different
recovery systemson the likelihood of saving corrupted
state. To enablea direct comparison,we would like to
comparehow different recorery systemsbehae on the
samefault. A naturalway to accomplistthisis to runthree
fault-injectionexperimentswhereeachexperimentinjects
the samefault at the samepointin executionbut usesdif-
ferent systemsto recover after the failure. However,
becausethe randomtimer mechanismwe use to inject
faultsis non-deterministicywe cannotrepeatablynjectthe
samefault at the samepoint in executionacrossmultiple
runs.Insteadwe enablea direct comparisoron the same



Runs That Sa ve Corrupted State
Fault I;aulty Low-Freq Ungetected
uns App-Specific App-Generic App-Generic rrors
Stack 50 0 0 0 0
Alloc 50 24 40 50 0
Heap 50 12 35 8
Off by One 50 6 7 9 12
Init Errors 50 2 0
Delete Branch 50 25 27 34 8
Delete Inst 50 12 14 24 3
Change Dest Var 50 1 5 8 5
Total 400 74 (19%) 107 (27%) 162 (41%) 36 (9%)

Table 1. Results for nvi (application faults). Only faulty runs are represented (runs that either crashed or ran
to completion with incorrect results). The Undetected Errors column gives the number of faulty runs in which the
fault was never detected and the program ran to completion with incorrect results. The middle columns show the
number of runs that saved corrupted state and thereby could not recover correctly. The remainder of the runs

crashed then recovered successfully.

fault by applyingall threerecovery systemsduring a sin-

gle fault-injectionrun and evaluating separatelywhether
eachrecovery systemsaved corruptedstatefor that fault.

This techniqueallows us to comparedifferent recosery
systemsn the samefault, andit alsospeedsip our exper-
imentssignificantly Evenwith this optimization,thefault-

injection experimentsfor this papertook mary machine-
months.

The following describeshow we use a single fault-
injectionrun to evaluateall threeof our recorery systems.
We run an experimentwith the applicationlinked with
Discount Checkingsaving stateat the higher frequeng.
We detectwhen application-generiadecovery saves cor-
ruptedstatesimply by having DiscountCheckingrecover
from the mostrecentcheckpoint.We also measurewvhen
low-frequeny application-genericrecorery saves cor-
rupted state from that sameexperimentby having Dis-
count Checkingrecover from the checkpointthat would
have been taken most recently under a low-frequeng
recovery system.We measurewhen application-specific
recovery savescorruptedstatefrom that sameexperiment
by examining the crashstateof the files as describedin
Section 3.3.

In eachfault-injection run, there are three possible
outcomeskFirst, theprogrammayfinish executionwith the
correctfinal result. This outcomeindicatesthat the fault
injectedin this experimentdid not causean error, either
because¢hefaultwasnotactivatedor becaus¢hefaulthad
no lastingeffect (e.g.it changecda variablethatwasover-
written beforebeingread).We areinterestedn evaluating

the behaior of failures,sowe discardtheseruns.Second,
the programmay finish executionbut have thewrongfinal
result. This outcomeindicatesthat the system$ and pro-
gram’s error checking overlooked the failure. Because
theseruns are not detectedas errorsby the normal error
detectionmechanismsthey do not trigger recovery. Like
the runsthat save corruptedstate,theseruns prevent the
programfrom finishing correctly (i.e. they finish incor-
rectly). Third, the programor operatingsystemmay fail
andrecover. We are primarily interestedn this third out-
come,asit is the only outcomewhosebehaior depends
on the recavery system We usethe methodsdescribedn
Section3.3 to evaluatewhethera run with this outcome
saves corrupted state (and hence cannotvego

5. Results of application-level faults

We first measurahe behaior of faultsoriginatingin
the application. As mentionedabove, we only consider
runsthatfinish with awrongfinal resultor thatfail before
finishing. About 3-4% of all the runsinto which we inject
faultsfall into oneof thesetwo cateyories.For eachappli-
cation,we repeatthe fault-injectionexperimentsuntil we
obtain50 faulty runs(i.e. failuresor undetectearrors)for
eachfaulttype. This givesusa total of 400 datapointsfor
each of the three applications.

Table 1 shaws the resultsfor nvi. 9% of the runswe
considercompleteincorrectlywithouttriggeringthe error
detectionmechanismTheserunsare shavn in the right-
mostcolumnof all tables.For runsin which anerrorwas



Runs That Sa ve Corrupted State
Fault I;iulty Low-Freq Ungetected
uns App-Specific App-Generic App-Generic rrors
Stack 50 0 16 17 1
Alloc 50 0 22 24 0
Heap 50 0 0 44 2
Off by One 50 0 0 0 8
Init Errors 50 0 2 3 2
Delete Branch 50 0 0 38 6
Delete Inst 50 1 2 6 5
Change Dest Var 50 2 2 3 0
Total 400 3 (1%) 44 (11%) 135 (34%) 24 (6%)
Table 2. Results f or Postgres (application faults).
Runs That Sa ve Corrupted State
Fault Frjulty Low-Freq Ungetected
uns App-Specific App-Generic App-Generic rrors
Stack 50 0 0 3 0
Alloc 50 0 2 34 9
Heap 50 0 0 12 19
Off by One 50 0 0 10
Init Errors 50 0 3 15 8
Delete Branch 50 0 0 19 7
Delete Inst 50 0 2 9 18
Change Dest Var 50 3 3 5 20
Total 400 3 (1%) 10 (3%) 107 (27%) 88 (22%)

Table 3. Results f or oleo (application faults).

detectedmary still saved corruptedstateandhencecould
not recover successfully Application-specific recovery
hadthe lowestfraction of runsthat saved corruptedstate
(19%). The fraction of runs that saved corrupted state
increasedto 41% when using an application-generic
recovery scheme.This dramaticincreaseis due to the
increasedcomprehensenessand frequeny of sasing
statewhen using an application-genericecosery system.
We attemptto isolatethe effectsof thesetwo factors(com-
prehensienessandfrequeng) by usingthelow-frequeng
application-generiececovery system.Under this recovery
system,27% of faulty runsdo not completesuccessfully

which is slightly closerto the application-specifiegesults
thanto the application-genericesults.Lowering the fre-
queny at which stateis saved significantly reducesthe
fraction of runsthatdo not completecorrectly evenif the
recovery system still saes all application state.

Table2 shows theresultsfor PostgresThe fraction of
runs that saved corruptedstateis much smallerthan for
nvi. We attribute this to two factors.First, Postgreshas
very thorougherror detection,in partbecausets applica-
tion domain (databasesplacesa high premiumon stop-
ping the system before data integrity is compromised.
SecondPostgresipdatesiatawithin atomictransactions,



Runs That Sa ve Corrupted State
Fault IiRauIty Low-Freq Ungetected

uns App-Specific App-Generic App-Generic rrors
Stack 50 0 1 6 0
Alloc 50 1 5 19 0
Heap 50 2 3 4 0
Off by One 50 0 6 11 0
Init Errors 50 3 2 8 1
Delete Branch 50 1 2 12 0
Delete Inst 50 0 1 6 0
Change Dest Var 50 2 0 5 0

Total 400 9 (2%) 20 (5%) 71 (18%) 1 (0%)

Table 4. Results f or nvi (operating system faults).

andthis allows Postgredo oftenroll thecomputatiorback
to a point beforethe fault wasinjected(whenusingappli-
cation-specific recovery). Postgres’ application-specific
recovery only savzescorruptedstate3 timesin our experi-
ments.However, note that the numberof runs that save
corruptedstateincreasesfrom 3 to 135 when switching
from application-specifi¢o application-genericecovery!
As with nvi, lowering the frequeny of saving stategains
much of the benefitof application-specificecovery. This
is because¢hefrequeng of savesin Postgress very small,
thusthereis a high probability thatthe fault wastriggered
afterthe last statecommit. In thesecasesno stateis cor-
rupt at the time of the last checkpoint,andincreasingthe
comprehensienessof statesaved cannotcausecorrupted
state to be se&d.

Table 3 shaws the resultsfor oleo using our three
recovery systems.oleo’s application-specificrecovery
savescorruptedstateonly 3 timesin our experimentsAs
with Postgreswe attribute this to the low frequeng of
saving statein oleo—stateis saved only when the user
issuesa save command.This view is supportedby the
resultswith low-frequeng application-generiaecorery,
which shavs that saving a comprehensee set of state
increase®nly slightly the runsthat saved corruptedstate,
aslong asthe stateis saved at a low frequeng. However,
the higher frequeny of saving state under application-
generic recovery dramatically increasesthe fraction of
runs that save corruptedstateto 27%. For oleo, a very
large fraction of faulty runs (22%) completeincorrectly
without triggeringary errordetectionmechanismAppar-
ently this applicationhasvery sparseerror detection.This
large numberof undetectedtrrorslimits the effectiveness
of ary recovery scheme.

6. Results of operating system faults

We next measurehe behaior of faultsinjectedinto
the operatingsystem.As mentionedabove, we only con-
siderrunsthat finish with a wrong final resultor runsin
which the target programor operatingsystemfails before
the applicationfinishes. About 10% of all the runs into
which we injectedfaultsfell into oneof thesetwo catego-
ries. We repeatthe fault-injection experimentstill we
obtain 50 candidaterunsfor eachfault type per applica-
tion. This givesusatotal of 400runsfor eachof thethree
applications.Before recovering the programfrom a fail-
ure,we first reboota versionof the operatingsystemwith-
outary of ourinjectedfaults;this ensureghatary failures
after recovery are due to corruptedstatethat was saved
before thedilure. W& also reboot before each run.

Table 4 shaws the results for nvi when faults are
injectedinto the operatingsystemNotethatthefractionof
runsthat save corruptedstate(for all threerecovery sys-
tems)is muchlowerwhenfaultsareinjectedinto theoper-
ating system than when faults are injected into the
application.The fraction of runsthat save corruptedstate
with application-specificecovery dropsfrom 19%to 2%;
the fraction with application-genericecovery dropsfrom
41%to 18%;andthefractionwith low-frequeny applica-
tion-specificrecovery dropsfrom 27% to 5%. Thesebig
dropsin the numberof runsthat save corruptedstateare
dueto the fault being below the recovery system,asdis-
cussedn Section2.3.For anoperatingsystento save cor-
ruptedstatein the application,it mustfirst leak out of the
operatingsystemand corruptthe stateof the application.
The primary interactionpath betweenan applicationand
the operatingsystemis the system-callinterface. These



Runs That Sa ve Corrupted State
Fault I;'Jlulty Low-Freq Ungetected

uns App-Specific App-Generic App-Generic rrors
Stack 50 0 5 5 0
Heap 50 1 3 3 0
Off by One 50 0 0 0 0
Init Errors 50 0 0 0 0
Delete Branch 50 1 2 2 0
Delete Inst 50 0 1 2 0
Change Dest Var 50 0 0 0 1

Total 350 2 (1%) 11 (3%) 12 (3%) 1 (0%)

Table 5. Results for Postgres (operating system faults). No results are reported for Alloc faults because
running the Postgres workload with operating system faults did not trigger any crashes or undetected errors.

Runs That Sa ve Corrupted State
Fault I;aulty Low-Freq Ungetected

uns App-Specific App-Generic App-Generic rrors
Stack 50 4 0 3 0
Alloc 50 0 0 0 0
Heap 50 1 1 1 0
Off by One 50 3 0 0 0
Init Errors 50 0 1 1 0
Delete Branch 50 1 3 4 0
Delete Inst 50 5 0 1 0
Change Dest Var 50 3 4 4 0

Total 400 17 (4%) 9 (2%) 14 (3%) 0 (0%)

Table 6. Results f or oleo (operating system faults).

interfacesare narrov and are usedless frequently than
normal application instructions,so it is commonfor a
faulty operatingsystemto crashbeforecorruptingapplica-
tion state.However, notethatcomprehensie andfrequent
saving of state,asis donein application-genericecovery,
dramaticallyincreaseghe likelihood of saving corrupted
state,even when faults are injected belov the recovery
layer

Table5 shaws theresultsfor Postgresvhenfaultsare
injectedinto the operatingsystem As with nvi, operating-
systemfaults causefewer undetectedapplication errors
and runs that save corruptedstatethan application-leel

faults. As with application-leel faults, operating-system
faultssave corruptedstatelessfrequentlyfor Postgreshan
they do in nvi, which is probablydueto Postgres more
robust error detection.For Postgresapplication-generic
recovery and low-frequeng application-genericecovery
both causea similar increasein the numberof runsthat
save corruptedstate when comparedto application-spe-
cific recarery. Onereasorfor therelatively smallincrease
for application-genericecovery is thatour Postgresvork-
load makesfewer systemcallsthanour input-intensve nvi
workload (65,000 versus 147,000), and this limits the



opportunityfor operating-systerfaultsto corruptapplica-
tion state.

Table 6 shaws the resultsfor oleo when faults are
injectedinto the operatingsystem.The resultsare similar
to the other applicationsin the reductionof undetected
errorsandrunsthatsave corruptedstaterelative to applica-
tion faults. One anomalyin the resultsfor oleo is that
application-specificecovery actuallysarescorruptedstate
slightly more frequently than when using application-
generic recovery. Becauseapplication-genericrecovery
saves state more frequently and comprehensely than
application-specificecovery, our intuition is thatall runs
that save corruptedstateunderapplication-specificecor-
ery should also save corruptedstate under application-
genericrecovery. After investicating the runsthat contra-
dictedthis intuition, we discoveredthat, for eachof these
runs, the corruptedstatebeing saved in application-spe
cific recoveryis causedy anoperating-systerarrorwhen
oleois writing thefiles usedby application-specificecos-
ery. In contrast,application-genericecovery usesDis-
countChecking,which saresstatevia a memory-mapped
file, andthisinterfaceusedessoperating-systerfunction-
ality thandirect file systemoperationsHencethe lower
number of corrupted state sases in application-generic
recovery is dueto a more robust methodof saving state
comparedto application-specificrecovery. We also see
this effect in a few runs of nvi (Table 4, Init errorsand
Change Dest &).

7. Related work

While mary researcherdave designedand imple-
mentedvariousrecovery schemeswe know of nonewho
hasevaluatechow thetypeof recovery systemchangeshe
likelihood of corrupted state being saved (and hence
changesthe likelihood of recorery completing success-
fully).

An earlierpaperby Chandraand Chen[4] presented
an initial study on how often software faults violate the
fail-stop model (by saving corruptedstate)for a single
application(Postgres)ynderapplication-specificecorery.
The methodologyand scopeof the earlier study differs
from the currentpaper The earlier study evaluatesfail-
stop behaior only for application-l@el faults and uses
only application-specificrecovery, whereasthe present
paperevaluatesaultsin the operatingsystemandapplica-
tion, andusesthreedifferentrecovery systemsTheearlier
studyis alsolessaccurateat determiningwhenarun saves
corruptedstate becausét takesonly periodicsnapshotsf
thefile state,whereaghe currentpaperarchivesthe com-
plete history of the set of application files.

Costa, et al. evaluatedthe impact of hardware and
softwarefaultsin the Oracledatabas¢5]. They foundthat

1% of therunsresultedn datacorruption,i.e. datathatdid

not matchthe TPC-C consisteng checksfor their work-

load. Thisfigureis a percentagef all runs,mostof which

did notleadto afailure;the percentagef faulty runsthat
resultedin datacorruptionwould be several timeshigher

Theseexperimentsrepresentlatacorruptionswhile using
application-specificrecovery. Our researchdiffers from

this researcltby investigating the effect of otherrecovery

systemsaswell asby investigating several applications,
and including operating systermuits.

Lowell, et al. explore genericrecovery and describe
two invariantsneededo ensurethat recovery is possible
andtransparenf{l0]. The paperusessomeof the experi-
mentsincludedin the presenipaperto evaluatehow often
theseinvariantscanbe upheldsimultaneouslyThe present
paperdiffers by measuringand comparingboth applica-
tion-specificand application-genericecovery, aswell as
anintermediatgointbetweerthesestylesof recovery sys-
tems.

8. Conclusions

Ourgoalwasto studyhow arecovery systems mech-
anismfor saving stateaffectsthe likelihoodthat the sys-
tem will save corrupted state and thereby prevent
successfutecovery. Becauseecovery systemsdependon
the statethey save, ary corruptionsto that statewill pre-
ventrecovery from succeedingGenericrecovery systems
that work for generalapplicationsare especiallyvulnera-
ble, becauseheir lack of knowledgeaboutthe application
causeshemto save amorecomprehensie setof stateata
higherfrequeng thanwhatis neededo recover a specific
application.This increasedrequeny andcomprehensie-
nessof saving stateincreaseghelikelihoodthatthey will
save thestateof thefaultitself. Our experimentssompared
application-specifiand application-genericecovery and
also examinedthe separateesffects of increasedcompre-
hensveness and increased frequenc

For application-l@el faults, we found that using the
error detection and recovery built into the application
causedL-19%of faulty runsto save corruptedstate.Using
a genericrecovery systemincreasedhe fraction of runs
that saved corruptedstateto 27-41%, with more of the
increasadueto a higherfrequeng of saving statethanto a
more comprehense set of statebeing saved. This high
frequeng of saving corruptedstatecallsinto questionthe
viability of usinggenericrecovery to survive application-
level software fults.

Resultswere more encouragingvhenwe considered
faults belov the recovery system,such as faults in the
operatingsystem.For thesefaultsto save corruptedstate,
they mustfirst propagteinto statesaved by the recovery
system.Our resultsshaved that only a few percentagef



operating-systenfaults savzed corrupted state for most
applications and rewery systems.

Theseresultsshedlight on the relationshipbetween
thestate-saing methodausedby recovery systemsandthe
likelihood that recovery will completesuccessfully Our
hopeis thatthis work will encouragehe designof better
fault detectionandrecovery mechanismsRecorery mech-
anismsshouldtake careto minimize the chanceof saving
corruptstate.Futurerecorery systemamay requireappli-
cation knowledge to save less state less frequently We
believe a fruitful areafor future researchto be hybrid
application-specifi¢ application-genericecovery systems
that can accomplishthis without undue burden on the
application programmer

9. References

[1] JamedH. Barton, EdwardW. Czeck, ZaryZ. Segall, and
DanielP. Siewiorek.FaultinjectionexperimentsisingFIAT.
IEEE Transactions on Computers, 39(4):575-582,April
1990.

[2] ThomasC. Bressoudand FredB. Schneider.Hypervisor-
BasedFault-Toleranceln Proceedings of the 1995 Sympo-
sium on Operating Systems Principles, pagesl-11,Decem-
ber 1995.

[3] Subhachandr&€handra.An Evaluation of the Recovery-Re-
lated Properties of Software Faults. PhDthesisUniversityof
Michigan, September 2000.

[4] Subhachandr&handraand PeterM. Chen.How Fail-Stop
areFaulty Programs™n Proceedings of the 1998 Symposium
on Fault-Tolerant Computing (FTCS), pages240-249 June
1998.

[5] DiamantinoCosta,TiagoRilho, andHenriqueMadeira.Joint
Evaluation of Performanceand Robustnessof a COTS
DBMS throughFault-Injection.In Proceedings of the 2000
International Symposium on Fault-Tolerant Computing, June
2000.

[6] E.N.ElnozahylorenzoAlvisi, Yi-Min Wang,andDavid B.
JohnsonA Surveyof Rollback-Recoveryrotocolsin Mes-
sage-Passin@ystems.Technical Report CMU-CS-99-148,
Carnegie Mellon University, June 1999.

[7] GhaniA. Kanawati,NasserA. Kanawati,andJacobA. Abra-
ham.FERRARI: A Flexible Software-BaseéFaultandError
Injection System. IEEE Transactions on Computers,
44(2):248-260, February 1995.

[8] Wei-LunKao,RavishankakK. lyer,andDongTang.FINE: A
Fault InjectionandMonitoring Environmentfor Tracingthe
UNIX SystemBehaviorunderFaults.|EEE Transactions on
Software Engineering, 19(11):1105-1118, November 1993.

[9] InhwanLeeandRavishankaK. lyer. Faults,Symptomsand
SoftwareFaultTolerancan the TandemGUARDIAN Oper-
ating System.n Proceedings of the 1993 International Sym-
posium on Fault-Tolerant Computing (FTCS), pages20-29,
1993.

[10] DavidE. Lowell, SubhachandraChandra,and PeterM.
Chen.Exploring Failure Transparencyndthe Limits of Ge-
neric Recovery.In Proceedings of the 2000 Symposium on
Operating Systems Design and |mplementation (OSDI), pag-
es 289-304, October 2000.

[11] WeeTeckNg andPeterM. Chen.The DesignandVerifica-
tion of theRio File CachelEEE Transactions on Computers,
50(4):322-337, April 2001.

[12] JamesS. Plank,Micah Beck, and Gerry Kingsley. Libckpt:
Transparen€heckpointinginderUnix. In Proceedings of the
Winter 1995 USENIX Conference, pages213-224,January
1995.

[13] Mark Sullivan and R. Chillarege. Software Defects and
Their Impacton SystemAvailability—A Study of Field Fail-
uresin OperatingSystemsin Proceedings of the 1991 Inter-
national Symposium on Fault-Tolerant Computing, June
1991.

[14] Mark SullivanandRam Chillarege. A Comparisorof Soft-
wareDefectsin DatabaséManagemengystemsandOperat-
ing Systems.In Proceedings of the 1992 International
Symposium on Fault-Tolerant Computing, pages475-484,
July 1992.



