
Storage Performance-Metrics and Benchmarks
PETER M. CHEN AND DAVID A. PAmRSON, FELLOW, IEEE

An ever-widening mismatch between storage and processor
performance is causing storage pe$ormance evaluation to become
increasingly more important. In this paper, we discuss the metrics
and benchmarks used in storage performance evaluation. We first
high fight the technology trends taking place in storage system,
such as disk and tape evolution, disk arrays, and solid-state disks.
We then describe, review, and run today’s popular I/O benchmarks
on three system: a DECstation 5000/200 running the Sprite
Operating System, a SPARCstation I + running SunOS, and an HP
Series 700 (Model 730) running HP-UX. We also describe two new
appmaches to storage benchmarks-UDDIS and A Self-scaling
Benchmark with Predicted Pegormance.

I. INTRODUCTION
In the last decade, innovations in technology have led

to extraordinary advances in computer processing speed.
These advances have led many of those who evaluate a
computer’s performance to focus their attention on mea-
suring processor performance to the near exclusion of all
other metrics; some have even equated a computer system’s
performance with how well its CPU performs. This view-
point, which makes system-wide performance synonymous
with CPU speed, is becoming less and less valid. One
way to demonstrate this declining validity is illustrated in
Fig. 1, where IBM disk performance, represented by the
throughput of accessing a random 8-kb block of data, is
contrasted with IBM mainframe CPU performance [181. For
the sake of comparison, both CPU and disk performance are
normalized to their 1971 levels. As can readily be seen, over
the past two decades, IBM mainframe CPU performance
has increased more than 30-fold, while IBM disk perfor-
mance has barely doubled. Microprocessor performance
has increased even faster than mainframe performance
[12],[41]. If CPU performance continues to improve at
its current pace and disk performance continues to obtain
more moderate improvements, eventually the performance
of all applications that do any input or output (YO) will be
limited by that YO component-further CPU performance
improvements will be wasted [I].

In light of this developing trend toward I/O-limited
applications, storage performance and storage architecture

Manuscript received May 13, 1993.
The authors are with the Computer Science Division, Department of

Electrical Engineering and Computer Science, University of California,
Berkeley, CA 94720.

IEEE Log Number 92 I I348

501

45 -I
N I

m

i
IBM-mainframe-CPU

I ez 3 o i

P 251
e l /
;
0
r
m
a
n

e
C

,3390

1970 1975 1980 1985 1990
Year

Fig. 1. Contrasting trends of CPU and disk performance improve-
ments. Over the past two decades, CPU performance improvements
have far outstripped disk performance improvements. In this graph,
CPU performance refers to IBM mainframe performance; disk
performance refers to IBM disk (33x0 series) throughput on a
random 8-kb access. Both are normalized to their 1971 level. The
IBM mainframe performance comes from [18, p. 4, fig.l.l].

become increasingly more crucial to overall system perfor-
mance. In this paper, we use the terms U0 performance and
storage performance interchangeably.

In this paper, we first discuss common metrics used
in evaluating storage. systems. Next, we highlight several
trends in storage systems and how these trends affect
storage performance evaluation. After addressing metrics
and trends in storage systems, we devote the rest of the
paper to discussing benchmarks used in evaluating VO
performance. We list desirable characteristics of an VO
benchmark, survey and run current VO benchmarks, and
discuss two new U 0 benchmarks-one an evolutionary
step in VO benchmarks, the other a new approach to VO
benchmarks.

0018-9219/93$03.00 0 1993 IEEE

PROCEEDINGS OF THE IEEE, VOL. 81. NO. 8, AUGUST 1993 1151

11. METRICS
More than other areas of computer performance eval-

uation, storage evaluation involves many varied types of
metrics. In this section, we present an overview of some
of the metrics commonly used today in choosing and
evaluating storage systems. The value of most metrics
depend strongly on the, workload used, hence the dual
emphasis on metrics and benchmarks in this paper.

The most basic metric for VO performance is throughput.
Throughput is a measure of speed-the rate at which the
storage system delivers data. Throughput is measured in
two ways: VO rate, measured in accessedsecond, and data
rate, measured in byteshecond (B h) or megabytedsecond
(MBh). The VO rate is generally used for applications
where the size of each request is small, such as transaction
processing [2]; data rate is generally used for applications
where the size of each request is large, such as scientific
applications [38].

Response time is the second basic performance metric
for storage systems. Response time measures how long
a storage system takes to access data. This time can be
measured in several ways. For example, one could measure
time from the user’s perspective, the operating system’s
perspective, or the disk controller’s perspective, depending
on what you view as the storage system.

Usefulness for a storage system not only includes how
fast data can be accessed, but also how much data can
be stored on the storage system. Capacity is not normally
applied as a metric to nonstorage components of a computer
system, but it is an integral part of evaluating an U 0
system. If capacity were ignored as a metric, tape, and disk
manufacturers would soon find their customers switching
to solid-state (memory-based) storage systems, which offer
much higher performance but less capacity per dollar.

Because users store valuable data on U 0 systems, they
demand a reliability level much higher than for other parts
of the computer. If a memory chip develops a parity error,
the system will (hopefully) crash and be restarted. If a
storage device develops a parity error in a database of bank
accounts, however, banks could unwittingly lose billions of
dollars. Thus reliability is a metric of great importance to
storage systems.

Cost, of course, applies to all components in computer
systems. Disk subsystems are often the most expensive
component in a large computer installation [3]. Cost is
usually expressed as a composite metric, such as capacity
cost, or throughput cost.

Various combinations of these five metrics in storage
system evaluation, throughput, response time, capacity,
reliability, and cost, are common. One popular combination
is a response time versus throughput graph (Fig. 2). Such
graphs vary a parameter, such as the number of users
on the system, to display the tradeoff between improving
throughput and degrading response time. More users gen-
erate higher system utilization and increase throughput. On
the other hand, higher utilization leads to slower response
times. Because a single performance number is easier to use

Mehc

e
S s ; 300-

y 200-

e

T

,BM 3390 Redundant Disk Array of
IBM 0661 disks

t

Max Read Data Rate
Min Response Time

Capacity
Mean Time (0 Data Loss

Cost (estimated)

faster 1 , , , ,
0
0.0 0.2 0.4 0.6 0.8 1.0

Throughput (MEVs)

lower higher

Fig. 2. Example response time versus throughput graph. Increas-
ing the utilization of a system usually leads to higher throughput
but slower response time. This figure was adapted from [6].

15 ME per second 130 MLI p& second
20 ms U) ms
23 GB 22 GB

6-28 years 753 years
$67.ooo - ? $156.000 - $260,WO

Fig. 3. Metria for two storage systems. Here we show the
differences in the values of several types of metrics for an IBM
3390 disk system and a redundant disk array made of IBM 0661
3.5 in drives [23]. This table was adapted from [13].

than a full graph, many evaluators combine throughput and
response time by reporting throughput at a given response
time [2], [6]. For example, the TPC-B benchmark reports
maximum throughput with 90% of all requests completed
within 2 s [65].

Another composite metric is data temperature, defined
as VO rate divided by capacity [26]. Data temperature
measures how many VO’s per second a storage system can
support for a fixed amount of storage. Users who are limited
by VO rate rather than capacity should buy systems with
high data temperature.

A general parameterizable composite metric can be for-
mulated for any combination of the above metrics. For
example, one could imagine a system administrator who
wanted a system with the highest capacity per dollar, as
long as it satisfied minimum reliability, throughput, and
response time demands.

Figure 3, adapted from [131 shows the values of the above
metrics for two different disk systems.

111. TRENDS IN STORAGE SYSTEMS

In this section we highlight some of the current trends
in storage systems. We discuss advances in magnetic disk
technology, arrays of disks, file caching and solid-state
disks, magnetic tape, and log-structured file systems.

Magnetic disks have long been the mainstay of storage
systems. But, since 1970, disk performance has improved

1152 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 8, AUGUST 1993

Metic I IBM 3330 I IBM 0661 I Average Yearly Immovement
AverageSxkTime I 30ms I 12.5 ms I 5%

Average Rofational Delay
Transfer Rate

8.3 ms 7 ms 1%
806 KB/s 1700 KB/s 4%

only modestly. In Fig. 4 we compare two disks, the IBM
3330, introduced in 1971, and the IBM 0661, introduced in
1989. The average yearly improvement in performance has
inched forward at a few percent a year. Cost per capacity,
on the other hand, has improved at a much faster pace,
averaging a 23% reduction per year from 1977 to 1986
[131. Disk size has also been gradually decreasing. The
most common disk diameter of the 1970’s and 1980’s was
14 in. Those disks are disappearing and are being replaced
with 5.25- and 3.5-in diameter disks. These smaller disks
have somewhat better performance than their larger, more
expensive predecessors.

The trend toward smaller, less expensive disks creates
an opportunity to combine many of these disks into a
parallel storage system known as a disk array. The concept
of constructing an array of multiple disks has been used
for many years for special purposes [24] but is only now
becoming popular for general use. The list of companies
developing or marketing disk arrays is quite long: Array
Technology, Auspex, Ciprico, Compaq, Cray, Datamax,
Hewlett-Packard, IBM, Imprimis, Intel Scientific, Intellis-
tor, Maximum Strategy, Pacstor, SF2, Storage Concepts,
Storage Technology, and Thinking Machines. Some ana-
lysts have projected the disk array market to expand to $8
billion market by 1994 [391.

The basic concept behind disk arrays is straightfor-
ward-combine many small disks and distribute data among
them (Fig. 5). This increases the aggregate throughput
available to an application. The array of disks can either
service many small accesses in parallel or cooperate to
deliver a higher data rate to a single large access [5], [6],
[13], [28], [32], [49], [54]. Disk arrays compensate for the
lower reliability inherent in using more disks by storing
redundant, error-correcting information. Current disk array
research is focusing on how to distribute (stripe) data
across disks to get optimal performance [5], [29], [30], how
to spread redundant information across disks to increase
reliability and minimize the effect of disk failures [13],
[20], [40], and how to reduce the penalties associated with
small writes in certain types of disk arrays [35], [63].

Disk arrays improve throughput by using more disks to
service requests. Requests which are serviced by a single
disk, however, see the same response time. File caches, disk
caches, and solid-state disks use dynamic RAM (random-
access memory) to decrease response time. Caches can
be placed in a variety of places in the system memory
hierarchy [62]. Two common places are the disk controller,
as in the IBM 3990 disk cache [34], and main memory,
as in the Sprite operating system’s file cache [42], [45].

Exabyte-120 Tap Library
M e t ” RSS-600 Taw Library

Fig. 5. Combining multiple smaller disks to improve perfor-
mance. Performance of single disks is not improving rapidly (Fig.
4); however, disks are rapidly becoming physically smaller and
cheaper. Disk arrays take advantage of this downsizing to provide
higher aggregate throughput by simultaneously operating many
small disks.

$8O/GB 5 G B ICOsec. 500 GB
8700 GB $62/GB 14.5GB 5Oscc.

Diloe DAT Slacker I IOGB I $527/GB I 1.308 I 75scc.

Response times for writes is decreased by writing the data
to RAM, acknowledging the request, then transferring the
data to disk asynchronously. This technique, called wrire-
behind, leaves the data in RAM more vulnerable to system
failures until written to disk. Some systems, such as the
IBM 3990, mitigate this reliability problem by storing the
cached data in nonvolatile memory, which is immune to
power failures [34]. As with any cache, read response time
is decreased if the requested data are found in cache RAM.

Solid-state disks are similar to caches in that they im-
prove response time by storing requests in RAM rather
than on magnetic disks. The principal difference between
solid-state disks and caches is that solid-state disks speed
up all accesses while caches speed up access only to the
most commonly requested data. Solid-state disk is much
more expensive than magnetic disk for equal capacity but is
dramatically faster. Response times for solid-state disks are
commonly less than 3 ms [4], [25], while response times
for magnetic disks are approximately 10-30 ms. On the
other hand, solid-state disks cost 50-100 times more than
magnetic disks for the same capacity [13].

Two storage metrics have been addressed-throughput
and response time. Dramatic improvements to capacity per
cost have occurred in magnetic tapes (Fig. 6). A new
method of reading and writing tapes, helical scan, has
increased the capacity of a single tape from 0.1-0.2 GB
to 5-20 GB [27], [66], [68]. Tapes are extremely slow,
however, with response times of 20 s to a few minutes.
Throughput for these devices is less dismaying, ranging
from 0.1-2.0 MB/s. Current research related to tape devices
addresses the questions of how to migrate data from tape to
faster storage [15], [17], [37], [61], [67], how to increase
tape throughput using striping [27], and how to decrease
response time by prefetching and caching 191, [14].

Reported disk reliability has improved dramatically over
the past ten years, though actual reliability has improved
more slowly. The most common metric for reliability,

CHEN AND PATTERSON: STORAGE PERFORMANCE I153

mean-time-to-failure, has increased from 30 OOO to 150
000-200 000 h. This jump in apparent reliability comes
mostly from changing the method of computing mean-time-
to-failure and is not expected to continue improving as
quickly [131.

Innovation is also taking place in the file system. A good
example of how file systems have improved VO system
performance is the Log-Structured File System (LFS) [46],
[50]. LFS writes data on the disk in the same order that they
are written. This leads to highly sequentialized disk writes
and thus improves the sustainable disk write throughput.

Although the raw performance in storage technology
has improved much slower than processor technology,
innovation such as file caches, disk arrays, robot-driven tape
systems, and new file systems have helped close the gap.

IV. YO BENCHMARKS
These developments in disks, disk array, file caches,

solid-state disks, tapes, and file systems create new chal-
lenges for storage system evaluation. Benchmarks used
in the evaluation process must evolve to comprehensively
stress these new YO systems. For example, disk arrays are
able to service many VO’s at the same time; benchmarks
therefore need to issue many simultaneous VO’s if they
hope to stress a disk array. Caches create distinct perfor-
mance regions based on the size of the file space touched
by a program; benchmarks likewise should measure these
different performance regions.

The rest of this paper is devoted to discussing bench-
marks used in evaluating VO performance. We first list
standards used to critique VO benchmarks. We then review,
run, and evaluate VO benchmarks in use today. Last, we
discuss two new U 0 benchmarks being proposed.

In this paper, we use I/O benchmarks to measure the
data VO performance seen by a program issuing reads and
writes. Specifically, we are not using VO benchmarks to
measure the performance of file system commands, such as
deleting files, making directories, or opening and closing
files. While these are perfectly valid and important metrics,
they are more a measure of the operating system and
processor speed than they are of the storage components.

V. THE IDEAL I/O BENCHMARK
In purchasing and evaluating an U 0 system, most people

unfortunately use trivial benchmarks. These include, for
example, the time to write 1 MB to disk, the average
disk access time, or the raw disk transfer rate. These
metrics are similar to the CPU clock rate in processor
performance evaluation; they provide some insight but do
not translate easily into performance visible to the end user.
In this section we list some desirable characteristics of U 0
benchmarks.

First, a benchmark should help system designers and
users understand why the system performs as it does.
Computer architects and operating system programmers
need to have benchmarks to evaluate design changes and
isolate reasons for poor performance. Users should be also

-

able to use benchmarks to understand optimal ways to use
the machine. For instance, if a user wanted to have his
application fit within the file cache, the ideal VO benchmark
should be able to provide information on the file cache
size of a machine. This criterion may require reporting
results for several different workloads, enabling the user
to compare these results. These multiple workloads should
require little human interaction to run.

Second, to maintain the focus of measuring and under-
standing VO systems, the performance of an VO benchmark
should be limited by the U 0 devices. The most intuitive
test of being VO-limited is the following: if the speedup
resulting from taking out all VO from an application is
greater than the speedup resulting from taking out all
CPU operations (leaving only YO), then the application
is VO-limited. Unfortunately, this test is quite hard to
perform in practice-almost any nontrivial application will
not function when its U 0 is eliminated. Instead, we test for
how VO-limited an application is by measuring the fraction
of time spent in doing data YO.

Third, the ideal VO benchmark should scale gracefully
over a wide range of current and future machines. Without
a well planned-out scaling strategy, VO benchmarks quickly
become obsolete as machines evolve. For instance, ZOSrone
tries to exercise the memory hierarchy, but touches only 1
MB of user data. Perhaps at the time IOStone was written,
1 MB was a lot of data, but this is no longer true. Another
example of an U 0 benchmark’s need to scale is provided by
disk arrays. As mentioned above, disk arrays allow multiple
VO’s to be in progress simultaneously. Most current VO
benchmarks do not scale the number of processes issuing
YO, and hence are unable to properly stress disk arrays.
Unfortunately, it is difficult to find widespread agreement
on a scaling strategy, especially for benchmarks intended
for a wide range of audiences.

Fourth, a good U 0 benchmark should allow fair compar-
isons across machines. This comparison has two aspects.
First, a fair comparison across machines should be able
to be made for VO workloads identical to the benchmark.
However, users rarely have the same workload as a standard
benchmark. Thus the results from a benchmark should
predict performance for workloads that differ from the
benchmark.

Fifth, the ideal YO benchmark would be relevant to a
wide range of applications. It is certainly easier to target
a benchmark to a specific audience, and benchmarks that
do a good job representing their target applications are
invaluable for those applications. But, it would be even
better for a benchmark to be usable by many audiences.

Finally, in order for results to be meaningful, benchmarks
must be tightly specified. Results should be reproducible
by general users; optimizations which are allowed and
disallowed must be explicitly stated; the machine envi-
ronment on which the benchmarking takes place must be
well-defined and reported (CPU type and speed, operating
system, compiler, network, disk, other load on the system)
the starting state of the system (file cache state, data layout
on disk) should be well-defined and consistent, and so on.

1 I54 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 8, AUGUST 1993

Fig. 7. System platforms. This table shows the three systems on
which we run benchmarks. The DECstation uses a three disk RAID
disk array [49] with a 16-kE% striping unit [6] and is configured
without redundancy. The SPECint rating is a measure of the integer
speed of the processor. Ratings are relative to the speed of a VAX
1 ln80. The full name of the HP 730 is the HP Series 700 Model
730.

DECstation so00
HP 730

In summary, the six characteristics of the ideal VO
benchmark are as follows: it should help in understanding
system performance; its performance should be VO-limited;
it should scale gracefully over a wide range of current
and future machines; it should allow fair comparisons
across machines; it should be relevant to a wide range of
applications; it should be tightly specified.

20 sec. (10%) 67 sec. (3%) 87 sec. (4%)
17 sec. (27%) 28 sec. (6%) 45 sec. (13%)

VI. SYSTEM PLATFORMS

In running benchmarks in this paper, we use three sys-
tems. All are high-performance workstations with differing
VO systems. Figure 7 summarizes their characteristics.
Note that these computers were introduced in different
years-our study is not meant to be a competitive market
analysis of the competing products.

In order to better understand these benchmarks, we
slightly modified their software. For example, we compiled
in special VO routines which traced VO activity. Hence,
we used publicly available code for as many programs
as possible. In general, we used GNU (Gnu’s Not Unix)
code developed by the Free Software Foundation. To make
results directly comparable between machines for bench-
marks which used the compiler, we took the same step as
Ousterhout [47] in having the GNU C compiler generate
code for an experimental CPU called SPUR [19].

VII. OVERVIEW OF CURRENT Yo BENCHMARKS
In this section, we describe, critique, and run five com-

mon benchmarks used in VO system evaluation: Andrew,
TPC-B, Sdet, Bonnie, and IOStone. Figure 14 contains
information for obtaining these benchmarks. We categorize
them into two classes: application benchmarks and synthetic
benchmarks.

A. Application Benchmarks
Application benchmarks use standard programs, such as

compilers, utilities, editors, and databases, in various com-
binations, to produce a workload. Each benchmark targets
a single application area, such as transaction processing or
system development. Application benchmarks usually do a
good job of accurately representing their target application
area. But, as we shall see, they are often not VO-limited.

I) Andrew: The Andrew .benchmark was designed at
Carnegie-Mellon University to be a file system bench-

System I CODV Phase /% 1/01 1 Compile Phase /% VO) I Total (% I/O
SPARCstation I + I 82 sec. (4%) I 137 sec. (7%) I 219 sec. (6%)

mark for comparatively evaluating the Andrew File System
against other file systems [21]. It was originally meant to be
only a convenient yardstick for measuring file systems, not
necessarily as a representative workload for benchmarking.
Despite this intent, it has become a widely used defacto
benchmarking standard [47].

Andrew is meant to represent the workload generated
by a typical set of software system developers. It copies a
file directory hierarchy, examines and reads the new copy,
then compiles the copy. The file directory contains 70 files
totaling 0.2 MB. CMU’s experience in 1987 suggests the
load generated roughly equals that generated by five users.

In Fig. 8, we list results from Andrew on our three system
platforms. As in [47], we divide Andrew into two sections:
the copy phase, consisting of the copy, examination, and
reading stages; and the compile phase. Note that on all
machines Andrew spends only 6%-13% actually doing data
reads and writes. The HP 730, which has the fastest CPU,
spends a higher fraction of time in YO than the others. This
supports our contention that systems with faster and faster
CPU’s will become more and more VO-limited.

2) TPC-B: TPC-B measures transaction processing per-
formance for a simple database update [65]. The first
version, TPl, first appeared in 1985 [2] and quickly be-
came the de facto standard in benchmarking transaction
processing systems. TPC-A’ [64] and TPC-B [65] are
more tightly specified versions of TP1 and have replaced
TPl as the standard transaction processing benchmark.
As a transaction processing benchmark, TPC-B not only
measures the machine supporting the database but also the
database software.

TPC-B repeatedly performs Debit-Credit transactions,
each of which simulates a typical bank account change on a
bank database. The database consists of customer accounts,
bank branches, and tellers. Using a random customer re-
quest, a Debit-Credit transaction reads and updates the
necessary account, branch, and teller balances. Requests
are generated by a number of simulated customers, each
requesting transactions as quickly as possible.

TPC-B’s main metric is maximum throughput measured
in transactions-per-second, qualified by a response time
threshold demanding that 90% of all transactions complete

‘The main difference between TPC-A and TPC-B is the presence of
real terminals. TPC-A demands the test be done with actual terminals
providing input at an average rate of one request every 10 s. TPC-B
generates requests with intemal drivers running as fast as possible. This
paper discusses only TPC-B.

CHEN AND PA’ITERSON: STORAGE PERFORMANCE 1 I55

\

80 -
%

O f 70

T 60 -

SPARCstation 1+
1001

peak throughput 9.1 transactions/second

(concurrency of 2)

average response time 166 ms

"1
80 ~

%

O f 'O

T 60 -
r
," 50.

peak throughput 13.2 transactionshecond

(concurrency of 2)

average response time 98 ms

90% response time 200 ms

r I

9b

'O

T 60 -
r 4 5o J A 90% response time 200 ms

peak throughput 11.0 transactiondsecond

(concurrency of 2)

average response time 126 ms

n II I

I O

04 t
0.0 0.5 1 .o 1.5

Response Time (seconds) ~

DECstation 5000/200
lo0l

"1

201 I O \
0.0 0.5 1 .o 1.5

Response Time (seconds)

(a) (b)

Fig. 9. TPC-B Results. These figures show TPC-B results for our three experimental systems. As
a database program, we used Seltzer's simple transaction processing library LIBTP [57]. Due to
software limitations, we were unable to run at concurrencies higher than 2, reflected by response
times much faster than those required by TPC-B.

within 2 s. TPC-B also reports price for the system and
required storage. The number of accounts, branches, and
tellers specified by TPC-B is proportional to through-
put-for each additional transaction-per-second of perfor-
mance reported, the test system database must add 10 MB
more account information. Using this database size, TPC-B
reports a graph of throughput versus the average number of
outstanding requests and a histogram of response times for
the maximum throughput. In Fig. 9, we show the TPC-B
response time characteristic on our three systems, using
Seltzer's simple transaction supporting package LIBTP
W l .

3) Sdet: The System Performance Evaluation Coopera-
tive (SPEC) was founded in 1988 to establish independent
standard benchmarks [56]. Their first set of benchmarks,
SPEC Release 1, primarily measures CPU performance.
Their second set of benchmarks, System Development
Multi-tasking (SDM) Suite, measures overall system per-
formance for software development and research environ-
ments. SDM consists of two benchmarks, Sdet [lo], [111
and Kenbusl [33]. Sdet and Kenbusl are quite similar in
benchmarking methodology; their main difference is the
specific mix of user commands. We limit our discussion to
Sdet, which does more U 0 than Kenbus 1.

Sdet's workload consists of a number of concurrently
running scripts. Each script contains a list of user com-
mands in random order. These commands are taken from
a typical software development environment and include
editing, text formatting, compiling, file creating and delet-
ing, as well as miscellaneous other UNIX utilities [52]. Sdet
increases the number of concurrently running scripts until it
reaches the system's maximum throughput, measured as the
script completion rate (scripts per hour). Sdet reports this
maximum rate, along with the graph of throughput versus

Hp 730
lo0l

"i

the script concurrency (Fig. 10). Once again, only a small
percentage of time, 10%-22%, is spent in UO.

B. Synthetic Benchmarks
Synthetic benchmarks exercise an VO system by directly

issuing read and write commands. In contrast, application
benchmarks use standard programs, which in turn issue VO.
By issuing reads and writes directly, synthetic benchmarks
are able to generate more U 0 intensive workloads. But,
synthetic benchmarks often yield less convincing results
because they, unlike application benchmarks, do not per-
form useful work. We review three synthetic benchmarks
here. Two popular benchmarks are Bonnie and IOStone;
we also create a third synthetic benchmark to demonstrate
a typical scientific VO workload.

1) Bonnie: Bonnie measures VO performance on a single
file for a variety of simple workloads. One workload
sequentially reads the entire file a character at a time;
another writes the file a character at a time. Other work-
loads exercise block-sized sequential reads, writes, or reads
followed by writes (rewrite). The final workload uses
three processes to simultaneously issue random VO's. The
size of the file is set by the evaluator and should be
several times larger than the system's file cache size, thus
preventing the entire file from fitting in the cache. For each
workload, Bonnie reports throughput, measured in kilobytes
per second or VO's per second, and CPU utilization. We
show results for the three systems in Fig. 11. Most of
Bonnie's workloads are UO-limited, however, the character
reads and writes are CPU-limited.

2) IOStone: IOStone is a synthetic U 0 benchmark [48]
based on system traces of Unix minicomputers and work-
stations [22], [44] and IBM mainframes [59], [60]. Using
400 files totaling 1 MB, IOStone reads and writes data in

1 I56 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 8, AUGUST 1993

T
h
r

80-

6 e
4

7

t 60-

C

r i 40-

i 0 20
U
r
1

0

(a)

Fig. 10. Sdet results. These figures show results

peak 26.7 scriptshour (6 scripts)

10% time spent in I/O (6 scripts)

-7

0 5 I O 15
Number of Concurrent Scripts

DECstation 5000/200

1 7 /------

6 E
t 60-

4
C

I
peak 96.8 scriptshour (5 scripts)

10% time spent in I/O (5 scripts)

r i 40-

P

; 20-

S
I

U
r
1

0 5 IO I5

f%,
Number of Concurrent Scripts

(b)

from the SPEC SDM benchmark Sdet.

Sequential Sequential Sequential
System Char Write Block Write Block Rewrite.

KB/s (% CPU) KB/s (5% CPU) KBh (% CPU)
SPARCstation I + 229 (99%) 558 (37%) 230 (26%)
DECstation5000 300(77%) . 663 (14%) 297(14%)

HP 730 1285 (98%) 1777 (16%) 604(13%)

loo 1

Sequential Sequential Random
Char Read Block Read Block Read

KB/s (9% CPU) KB/s (46 CPU) IO/s (46 CPU)
193 (98%) 625 (37%) 31 (22%)
253 (60%) 781 (18%) 32(14%)
995 (85%) 2023 (13%) 39 (5%)

HP 730

DECstation 5000
HP 730

q 0 80
U

82 MBh 1.28 MB/s
1.98 MB/s 1.86 MB/s

peak 46.3 scriptshour (2 scripts)

22% time spent in I/O (2 scripts)

DECstation 5000
HP 730

?
7 ; 20-

U r

50905 26%
20409 81%

IO
Number of Concurrent Scripts

(C)

System I IOStones/second I Percent Time Swnl in I/O
SPARCstation I + I 11002 I 61%

patterns which approximate the locality found in [44]. One
process performs all the accesses-no U 0 parallelism is
present. IOStone reports a single throughput result, IOS-
tones per second (Fig.12). IOStone runs much faster when
the system’s file cache is large enough to contain the small
data space of the benchmark. Thus the Sprite DECstation,
with a maximum file cache of 25 MB, runs IOStone 2 4
times faster than the SPARCstation or the HP 730.

3) ScientiJic: Andrew, SDM, IOStone, and Bonnie all
target system development or workstation environments.
Other application areas, such as scientific or supercom-
puting code, have substantially different workload char-
acteristics [38]. Typical scientific applications generally
touch much more data and use much larger request sizes
than workstation applications. To illustrate U0 performance
for a supercomputing environment, we define two simple
workloads: a large file read, in which we read a 100-MB
file in 128-kB units, and a large file write, in which we
write a 100-MB file in 128-kB units. In Fig. 13, we show
results for our three system platforms.

VIII. CRITIQUE OF CURRENT BENCHMARKS
In applying our list of benchmark goals from Section

V to current VO benchmarks, we see that there is much

System I Lame File Reads (MBh) I Large File Writes (MB/s)
.%I MB/s I .64 MB/s SPARCstation I + I

Fig. 14. List of contacts for various benchmarks.

room for improvement. We show a qualitative evaluation of
today’s U0 benchmarks in Fig. 15 and make the following
observations:

Many I/O benchmarks are not I/O-limited. On the
DECstation 5000/200, Andrew, Sdet,2, and IOStone
spend 25% or less of their time doing UO. Further,
many of the benchmarks touch very little data. IOStone
touches only 1 MB of user data; Andrew touches only
4.5 MB. The best of the group is Bonnie, but even
Bonnie had some tests which were CPU-bound.
Today’s I/O benchmarks do not help in understanding
system performance. Andrew and IOStone give only a
single bottom-line performance result. TPC-B and Sdet

2This refers to Sdet running at the peak throughput concurrency level
of 5.

CHEN AND PATTERSON: STORAGE PERFORMANCE 1157

U 0 limited
(5% time in VO
MB touched)

helps
understand

system

scaling
strategy

fair
comparison

generally
applicable

Andrew TPCB Sdet(5) Bonnie IOStone LADDIS

Fig. 15. Current state of YO benchmarks. In this figure, we show a qualitative evaluation of
benchmarks used today to evaluate YO systems. We see that several are not YO-bound and that most
do not provide understanding of the system, lack a well-defined scaling strategy, and are not generally
applicable. The percent time spent in YO was measured on the DECstation 5000/200 of Fig. 7.

e

b

e

1 I58

fare somewhat better by helping the user understand
system response under various loads. Bonnie begins
to help the user understand performance by running
six workloads. These workloads show the performance
differences between reads versus writes and block
versus character VO, but do not vary other aspects of
the workload, such as the number of VO’s occumng
in parallel.
Many of today’s I/O benchmarks have no scaling strat-
egy. Several made no provision for adjusting the
workload to stress machines with larger file caches, for
example. Without a well-defined scaling strategy, YO
benchmarks quickly grow obsolete. Two exceptions
are notable. TPC-B has an extremely well-defined
scaling strategy, made possible by TPC-B’s narrow
focus on debit-credit style transaction processing and
the widespread agreement on how databases change
with increasing database throughput. Sdet also has
a superior scaling strategy, varying the number of
simultaneously active scripts until the peak perfor-
mance is achieved. This idea of scaling aspects of
the workload automatically is a major improvement
over single workload benchmarks. However, Sdet does
not scale any other aspects of the benchmark, such as
request size or readwrite ratio.
Today’s I/O benchmarks make fair comparisons for
workloads identical to the benchmark, but do not help
in drawing conclusions about the relative pe rformance
of machines for other workloads. It would be ideal if
results from the benchmark could be applied to a wider
range of workloads.
Today’s I/O benchmarks focus on a narrow applica-
tion range. For example, TPC-B is intended solely
for benchmarking debit-credit transaction processing
systems.

good

P-r

The general poor state of VO benchmarks suggests the need
for new benchmarks.

IX. EMERGING YO BENCHMARKS
In this section, we review two emerging benchmarks.

LADDIS is an evolutionary step beyond current bench-
marks; A Self-scaling Benchmark with Predicted Perfor-
mance is a research idea being developed by this paper’s
authors at the University of California at Berkeley in the
context of the RAID (Redundant Arrays of Inexpensive
Disks) project [49].

A. LADDIS
Network file systems provide file service to a set of

client computers, connected by a network. The computer
providing this file service is called the server. One popular
protocol for network file service is Sun Microsystem’s NFS
[S I . In 1989, Shein, Callahan, and Woodbury created NFS-
Stone, a synthetic benchmark to measure NFS performance
[58]. NFSStone generated a series of NFS file requests from
a single client to stress and measure server performance.
These operations included reads, writes, and various other
file operations such as examining a file. The exact mix of
operations was patterned after a study done by Sun [55]; the
file sizes were patterned after the study done in [U]. Later,
Legato Systems refined NFSStone, dubbing it NHFSStone.
NFSStone and NHFSStone had several problems: one client
could not always fully stress a file server; different versions
of the benchmarks abounded; file and block sizes were not
realistic; and only SunOS clients could run them.

In 1990, seven companies joined forces to create an NFS
benchmark capable of stressing even the most powerful file
servers. The result was LADDIS, named after the seven
companies (Legato, Auspex, Digital Equipment Corpora-

PROCEEDINGS OF THE IEEE, VOL. 81, NO. 8, AUGUST 1993

tion, Data General, Interphase, and Sun). LADDIS is based
on NHFSStone but, unlike NHFSStone, runs on multiple,
possibly heterogeneous, clients and networks [3 13, [43].
Like NHFSStone, LADDIS is a synthetic benchmark with
a certain mix of operations. LADDIS is highly parame-
terized-besides the percentage of each operation in the
workload, LADDIS gives an evaluator the ability to change
the number of clients issuing requests to the server, the
rate at which each client issues requests, the total size of
all files, the block size of VO requests, and the percentage
of write requests that append to an existing file. LADDIS
defines default values for all tunable parameters to make
benchmark results standard and comparable. For example,
by default, half of all YO requests are done in 8-kB blocks
and half are done in fragments of 1, 2, or 4 kB.

LADDIS is quite similar to TPC-B in reporting philoso-
phy. The preferred metric is a throughput (NFS operations
per second) versus response time graph. As a more compact
form, users may report the maximum throughput subject to
an average response time constraint of 50 ms. Like TPC-B,
LADDIS scales according to the reported throughput-for
every 100 NFS operations per second of reported through-
put, capacity must increase by 540 MB. LADDIS was
released by SPEC in March of 1993 as the first part of the
SPEC-SFS (System Level File Server) Suite of benchmarks.

B. A Self-scaling Benchmark with Predicted Pe formance
In this section, we describe two new ideas in VO bench-

marks, proposed in more detail by this paper's authors
in [7]. First, we describe a Self-scaling Benchmurk that
automatically scales its workload depending on the perfor-
mance of the system being measured. During evaluation,
the benchmark automatically explores the workload space,
searching for a relevant workload on which to base perfor-
mance graphs.

Because the base workload resulting from the Self-
Scaling Benchmark depends on the characteristics of each
system, we lose the ability to directly compare performance
results for multiple systems. We describe how to use
predicted peformance to restore this ability. Predicted
peformance uses the results of the Self-scaling Benchmark
to estimate performance for unmeasured workloads. The
ability to accurately estimate performance for arbitrary
workloads yields several benefits. First, it allows fairer com-
parisons to be drawn between machines for their intended
use-today, users are forced to apply the relative perfor-
mance from benchmarks that may be quite different from
their actual workload. Second, the results can be applied to a
much wider range of applications than today's benchmarks.
Of course, the accuracy of the prediction determines how
effectively prediction can be used to compare systems. We
discuss the method and accuracy of prediction in Section

I) A Self-Scaling Benchmark: The workload that the Self-
Scaling Benchmark uses is characterized by five parame-
ters. These parameters lead to the first-order performance
effects in VO systems. See Fig.17 for examples of each
parameter.

IX-B2.

uniqueBytes-the number of unique data bytes read
or written in a workload; essentially the total size of
the data.
sizehlean-the average size of an VO request. We
choose sizes from a normal Bernoulli distribution3 with
a coefficient of variation equal to 1 .
readFrac-the fraction of reads; the fraction of writes
is 1 -readFrac.
seqFrac-the fraction of requests that sequentially
follow the prior request. For workloads with multiple
processes, each process is given its own thread of
addresses.
processNum-the concurrency in the workload, that
is, the number of processes simultaneously issuing VO.

In this paper, a workload refers to a user-level program
with parameter values for each of the above five parameters.
This program spawns and controls several processes if
necessary.

The most important question in developing a synthetic
workload is the question of representativeness [8]. A syn-
thetic workload should have enough parameters such that
its performance is close to that of an application with the
same set of parameter value^.^ On the other hand, when
workload models become too complex, users lose the ability
to easily estimate the parameter values for their workload.
Our five parameter workload model attempts to make a
reasonable compromise between these two conflicting goals
of simplicity and generality. Reference [7] gives a first-
order verification that this synthetic workload model is
general enough to capture the performance of interesting
applications.

a) Single-parameter graphs: Most current benchmarks
report the performance for only a single workload. The
better benchmarks report performance for multiple work-
loads, usually in the form of a graph. TPC-B and Sdet,
for example, report how performance varies with load. But
even these better benchmarks do not show in general how
performance depends on parameters such as request size or
the mix of reads and writes.

The main output of the Self-scaling Benchmark is a set of
performance graphs, one for each parameter (uniqueBytes,
sizeMean, readFrac, processNum, and seqFrac) as in Fig.
17. While graphing one parameter, all other parameters
remain fixed. The value at which a parameter is fixed
while graphing other parameters is called the focal point
for that parameter. The vector of all focal points is called
thefocal vector. In Fig. 17, for example, the focal vector is
(uniqueBytes = 12 and 42 MB, sizeMean = 20 kB, readFrac
= 0.5, processNum = 1, seqFrac = 0.5). Hence, in Fig.
17(e), uniqueBytes is varied while the sizeMean = 20 kB,
readFrac = 0.5, processNum = 1, and seqFrac = 0.5.

'This distribution of sizes can be particularly useful in representing
multiple applications running simultaneously.

4Given the uncertain path of future computer development, it is im-
possible to determine a priori all the possible parameters necessary
to ensure representativeness. Even for current systems, it is possible to
imagine VO workloads that interact with the system in such a way that
no synthetic workload (short of a full trace) could duplicate that VO
workload's performance.

CHEN AND PATTERSON: STORAGE PERFORMANCE I159

!!,v L. sizeMean

readFrac

Fig. 16. Workloads reported by a set of single parameter graphs.
This figure illustrates the range of workloads reported by a set of
single parameter graphs for a workload of three parameters.

Fig. 16 illustrates the workloads reported by one set
of such graphs for a three-parameter workload space. Al-
though these graphs show much more of the entire workload
space than current benchmarks, they still show only single-
parameter performance variations; they do not display de-
pendencies between parameters. Unfortunately, completely
exploring the entire five-dimensional workload space re-
quires far too much time. For example, an orthogonal
sampling of six points per dimension requires 65, almost
8OOO, points. On the Sprite DECstation, each workload
takes approximately 10 min. to measure, thus 8OOO points
would take almost 2 months to gather! In contrast, mea-
suring six points for each graph of the five parameters
requires only 30 points and 5 h. The usefulness of these
single-parameter graphs depends entirely on how accurately
they characterize the performance of the entire workload
space. In the section on predicted performance we shall
see that, for a wide range of U 0 systems, the shapes of
these performance curves are relatively independent of the
specific values of the other parameters.

The Self-scaling Benchmark scales by choosing different
focal points for different systems. Two factors influence the
choice of focal points. First, the benchmark should display a
range of relevant workloads. Relevancy in turn involves two
factors: the workloads must perform reasonably well, and
the workloads must be practical. Second, the benchmark
should adequately characterize the entire workload space
with only a few graphs. Reference [7] gives more details
as to how the benchmark chooses the focal points and the
ranges of the graphs.

b) Examples: This section contains results from run-
ning the Self-Scaling Benchmark on the SPARCstation 1+
and a DECStation 5000/200 described in Fig. 7.

Figure 17 shows results from the Self-scaling Bench-
mark on a SPARCstation l+. The uniqueBytes values that
characterized the two performance regions are 12 and 42
MB. Graphs (a)-(d) show the file cache performance region,
measured with uniqueBytes = 12 MB. Graphs (0-(i) show
the disk performance region, measured with uniqueBytes
= 42 MB. We learn the following from the Self-Scaling
Benchmark:

The effective file cache size is 21 MB. Applications
that have a working set larger than 21 MB will go to
disk frequently.
Larger request sizes yield higher performance. This
effect is more pronounced in the disk region than in

the file cache region.
Reads are faster than writes, even when all the data
fit in the file cache (Fig. 17(b)). Although the data fit
in the file cache, writes still cause i-node changes to
be written to disk periodically for reliability in case of
a system crash. This additional overhead for writing
causes writes to be slower than reads.
Increasing concurrency does not improve performance.
As expected, without parallelism in the disk system,
workload parallelism is of little value.
Sequentiality offers no benefit in the file cache region
(Fig. 17(b)) but offers substantial benefit in the disk
region (Fig. 17(a)).

Figure 18 shows self-scaling benchmark results for the
DECstation 5OOO/200. The uniqueBytes graph (Fig. 18(a))
shows three performance plateaus, uniqueBytes = 0 to 5
MB, uniqueBytes = 5 to 20 MB, and uniqueBytes > 20
MB. Thus the self-scaling benchmark gathers three sets of
measurements: at uniqueBytes 2, 15, and 36 MB. The most
interesting phenomenon involves readFrac (Fig. 18(b)).

In the first performance level (uniqueBytes = 2 MB),
reads and writes are the same speed. At the next perfor-
mance level (uniqueBytes = 15 MB), reads are much faster
than writes. This is due to the effective write cache of
Sprite's LFS being much smaller than the read cache, so
reads are cached in this performance region while writes
are not. The write cache of LFS is smaller because LFS
limits the number of dirty cache blocks to avoid deadlock
during cleaning. The effective file cache size for writes is
only 5-8 MB, while for reads it is 20 MB [51].5 In contrast,
when uniqueBytes is large enough to exercise the disk for
both reads and writes, writes are faster than reads. This
phenomenon is due to Sprite's LFS, which improves write
performance by grouping multiple small writes into fewer
large writes.

2) Predicted Performance: The Self-scaling Benchmark
increases our understanding of a system and scales the
workload to remain relevant. However, it complicates the
task of comparing results from two systems. The problem is
the benchmark may choose different workloads on which
to measure each system. Also, though the output graphs
from the Self-Scaling Benchmark apply to a wider range
of applications than today's U 0 benchmarks, they stop
short of applying to all workloads. In this section, we
show how predicted performance solves these problems by
enabling us to accurately estimate the U 0 performance for
arbitrary workloads based on the performance of a small
set of measured workloads (that is, those measured by the
Self-Scaling Benchmark).

A straightforward approach for estimating performance
for all possible workloads is to measure a comprehensive set
of workloads. However, measuring all possible workloads
is not feasible within reasonable time constraints. A more
attractive approach is to use the graphs output by the
Self-Scaling Benchmark (such as Fig. 17) to estimate

"e default limit was tuned for a machine with 128 MB of memory; in
production use, this limit would be changed for the 32-MB system being
tested.

1160 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 8, AUGUST 1993

readFrac
3.0 1

3,0, sizeMean (KB)

A

f
e

; 1.0-

i

r

Y
0 2.0-

(

0.0-

I I
h
r

h
r ! 0 5 -

0 2 0 0 2 0
U U

1 0 4 -

I

0 U

e f b
e e

! 10 ! 10

0 3 -
(((M

B

)

; 0 2 -

)
S
)

01-

"." .
10 IN 0.0 0.5 I .r

sireMean (KB) readFrac

(a) (b)

seqFrac uniqueBytes (MB)

processNum
3.01

I .5 2.0
pmcessNum

I .o

(C)

0,7, sizeMean (KB)

0.5 I .o
seqFrac

0.0 0 10 20 30 40 50 60
uniqueBytes (MB) -",,

(d) (e)

0.7 1 readFrac 0.7 1 processNum

0 6 0 6

t i s 0 5 r 0 5

e e
6 6

0 U 0 U

f 0 4 b 0 4

0 3 0 3

/ 0 2 / 0 2

)
S s

)

0 1 01

00 00

Fig. 17. Results from a self-scaling benchmark when run on a SPARCstation I+. This figure
shows results from the Self-Scaling Benchmark when run on a SPARCstation I+. The focal point
for uniqueBytes is 12 MB in graphs (aHd) and 42 MB in graphs (M i) . For all graphs, the focal
points for the other parameters is sizeMean = 20 kB, readFrac = 0.5, processNum = 1, seqFrac =
0.5. Increasing sizes improve performance, more so for disk accesses than file cache accesses (parts
(a) and (0). Reads are faster than writes, even when data are in the file cache. This is because
inodes must still go to disk. Sequentiality increases performance only for the disk region (part (i)).

0.0'
I 10 IN lMxl

sizeMean (KB)

(0

seqFrac

0.6 0.71

0.0 0.5 I .o
seqFrac

?%

(i)

performance for unmeasured workloads. This is similar in We estimate performance for unmeasured workloads
concept to work done by Saavedra-Barrera, who predicts by assuming the shape of a performance curve for
CPU performance by measuring the performance for a small one parameter is independent of the values of the
set of FORTRAN operations [53]. other parameters. This assumption leads to an overall

CHEN AND PATTERSON: STORAGE PERFORMANCE 1161

uniqueBytes (MB)

'1

1 .o O J
0.0 0.5

0 I O 20 30 40 50
uniqueBytes (MB) Gv

(a)

Fig. 18. Selected results from Self-Scaling Benchmark when run on a DECstation 5000/200. In
this figure, we show selected results from the Self-scaling Benchmark when run on a DECstation
5000/200. Graph (a) shows three plateaus in uniqueBytes, due to the different effective file cache
sizes for reads and writes. The focal points chosen for uniqueBytes are 2, 15, and 36 MB. The focal
points for the other parameters is sizeMean = 40 kB, readFrac = 0.5, processNum = 1, seqFrac =
0.5. Note in graph (b) how reads are much faster than writes at uniqueBytes 15 MB, slightly slower
than writes at uniqueBytes 36 MB, and approximately the same speed at uniqueBytes 2 MB. These
results helped us understand that, due to the default limit on the number of dirty file cache blocks
allowed. the effective file cache size for writes was much smaller than the file cache size for reads.

readFrac
@$

I
Pf processNum s1 Sf S i z e M W

Fig. 19. Predicting performance of unmeasured workloads. In this figure, we show how to predict
performance with a workload of two parameters, processNum and sizeMean. The solid lines represent
workloads that have been measured; the dashed line represent workloads that are being predicted.
The left graph shows throughput graphed against processNum with sizeMean fixed at s i z e i l f e a n f .
The right graph shows throughput versus sizeMean with processNum fixed at processiVum f . We
predict the throughput curve versus processNum with sizeMean fixed at sizeilfeanl by assum-
ing that Throughput(process.Vuna. s i z e : l f e a n f / Throughput(pr0cessNum. skeilfeanl) is
constant (independent of processNum) and fixed at Throughput(processiVumf, sizeilfeanf)
/ Throughput(process;Vuiiif. sizeAf ean 1).

performance equation of Throughput (X, Y, Z...) =
f<y(X) x f y (Y) x fz(2) ..., where X, Y, Z, ... are
the parameters. Pictorially, our approach to estimating
performance for unmeasured workloads is shown for
a two parameter workload in Fig. 19. In the Self-
Scaling Benchmark, we measure workloads with all but
one parameter fixed at the focal point. In Fig. 19,
these are shown as the solid line throughput curves
Throughput (process Num, sizeMean f) and Throughput
(processNumf, sizeMean), where processNumf is
processNum's focal point and sizeMeanf is sizeMean's
focal point. Using these measured workloads, we esti-
mate performance for unmeasured workloads Throughput
(processNum, sizeMeanl) by assuming a constant ratio
between Throughput (processNum, sizeMeanf) and
Throughput (processNum, sizeMean,). This ratio is

known at processNum = processNumf to be

Throughput (processNumf , sizeMeanf)
Throughput (processNumf , sizeMean1)

. To measure how accurately this approximates actual per-
formance, we measured 100 workloads, randomly selected
over the entire workload space (the range of each parameter
is shown in Fig. 17).

Fig. 20 shows the prediction accuracy of this simple
product-of-single-variable-functions approach. We see that,
over a wide range of performance (0.2 to 3.0 MB/s),
the predicted performance values match extremely well
to the measured results. 50% of all workloads have a
prediction error of 10% or less; 75% of all workloads had a
prediction error of 15% or less. In contrast, any single-point
VO benchmark would predict all workloads to yield the

I I62 PROCEEDINGS OF THE IEEE, VOL. 81, NO. 8, AUGUST 1993

Prediction Accuracy
3.0 1 /

bonnie

0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
measured (MB/s)

Fig. 20. Evaluation of prediction accuracy for SPARCstation
I + with 1 disk. This figure graphs the predicted performance
against the actual (measured) performance for the SPARCstation
in Fig. 17. Each point represents a single workload, with each
parameter value randomly chosen from its entire range shown in
Fig. 17. The closer the points lie to the solid line, the better the
prediction accuracy. Median error is 10%. Performance for each
workload ranges from 0.2 to 3.0 MBls. For comparison, we show
the single-performance point predicted by Andrew, IOStone, and
Bonnie (sequential block write), and Sdet as horizontal dashed
lines. Clearly these single point benchmarks do not predict the
performance of many workloads.

same performance. For example, Andrew’s workload and
IOStone’s workload both yield performance of 1.25 MB/s,
leading to a median prediction error of 50%. Bonnie’s
sequential block write yields a performance of 0.32 MB/s,
for a median prediction error of 65%. These are shown by
the dashed lines in Fig. 20.

The accuracy of our predictions has two important rami-
fications. First, it renders the graphs from the Self-Scaling
Benchmark much more useful, since they can be used
to estimate performance for other workloads. Second, it
supports the assumption of shape independence; the shape
of each graph in Fig. 17 is approximately independent of
the values of the other parameters.

X. SUMMARY
YO performance, long neglected by computer architects

and evaluators [181, is rapidly becoming an area of impor-
tant research activity. As CPU and memory speed increases
continue to outstrip VO speed increases, this trend will
continue and accelerate. VO performance evaluation differs
from other types of computer performance evaluation in
several key ways:

The main metric in processor evaluation is speed, or its
reciprocal, time. In contrast, VO evaluation considers
many more factors-capacity, reliability, and several
composite metrics such as throughput-response time
graphs.
Researchers have been developing CPU benchmarks
for many years. In contrast, U 0 benchmarks have only

Fig. 21. Summary of median prediction errors. This table sum-
marizes the prediction errors on all systems. “Enhanced Error”
on all machines but the Convex refers to the prediction error on
the sample of workloads not in the thrashing region between the
file cache and disk locality regions. For the Convex, prediction
error was most closely correlated with sizeMean, so enhanced error
refers to points with sizes smaller than 300 kB. The last column in
the table lists the inherent measurement error, which was measured
by running the same set of random workloads twice and using one
E n to “predict” performance of the other run.

recently begun to be of wider interest. As a result, VO
benchmarks are not as mature as CPU benchmarks.
VO performance, even more than CPU performance,
depends critically on what workload is applied. Hence,
the benchmarks evaluators use in measuring U0 per-
formance is of primary importance.
VO benchmarks must scale in order to remain relevant.
Benchmarks generally require several years to become
accepted. By this time, nonscaling benchmarks have
been made nearly obsolete by the rapid increases in
VO system capacity or other developments. Of the
benchmarks described in this paper, TPC-B, Sdet,
and LADDIS have the greatest chance of remaining
relevant for many years due to how they scale the size
of the benchmark according to the performance of the
system.

Storage systems are improving rapidly in some areas.
Disks and tape systems are improving in capacity/cost; disk
arrays are improving the available data and YO throughput;
file caching and solid-state disks are improving response
times for cacheable data. Overall, however, further innova-
tion is needed to keep up with the incredible gains made
in CPU performance.

We have described a new approach to YO performance
evaluation-the Self-scaling Benchmark with Predicted
Performance. The Self-Scaling Benchmark scales automati-
cally to current and future systems by scaling the workload
to the system under test. It also gives insight on a machine’s
performance characteristic by revealing its performance
dependencies for each of five workload parameters.

Predicted performance restores the ability to compare two
machines on the same workload lost in the Self-Scaling
Benchmark. Further, it extends this ability to workloads
that have not been measured by estimating performance
based on the graphs from the Self-Scaling Benchmark. We
have shown that this prediction is far more accurate over a
wide range of workloads than any single point benchmark.

We hope this approach will help VO architects understand
YO systems and will help direct their efforts in developing
the next generation of storage systems.

REFERENCES

\

[l] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proc. AFIPS
1967Spring Joint Computer Conj 30, Apr. 1967, pp. 483485.

CHEN AND PA’ITERSON: STORAGE PERFORMANCE 1163

[2] Anon et al., A measure of transaction processing power,”
Datamation, vol. 31, no.7, pp. 112-118, Apr. 1985.

[3] National Science Foundation Workshop on Next Generation
Secondary Storage Architecture. Bodega Bay, CA: Nat. Sci.
Foundation, May 1989.

[4] C. Cassidy, “DEC’s ESE20 boosts performance,” DEC Profes-
sional, pp. 102-110, May 1989.

[5] P. M. Chen and D. A. Patterson, “Maximizing performance in
a striped disk array,” in Proc. 1990 Int. Symp. on Computer
Architecture (Seattle, WA, May 1990). pp. 322-331.

[6] P. M. Chen, G. Gibson, R. H. Katz, and D. A. Patterson, “An
evaluation of redundant arrays of disks using an Amdahl5890,”
in Proc. 1990 ACM SIGMETRICS Con$ on Measurement and
Modeling of Computer Systems (Boulder, CO, May 1990).

[7] P. M. Chen and D. A. Patterson, “A New approach to YO perfor-
mance evaluation-Self-scaling YO benchmarks, predicted YO
performance (conference version),” in Proc. 1993 ACM SIG-
METRICS Con$ on Measurement and Modeling of Computer
Systems (Santa Clara, CA, 1993).

[8] D. Ferrari, “On the foundations of artificial workload design,”
in Proc. 1984 ACM SIGMETRICS Con$ on Measurement and
Modeling of Computer Systems, 1984, pp. 8-14.

[9] J. A. Fine, T. E. Anderson, M. D. Dahlin, J. Frew, M. Olson,
and D. A. Patterson, “Abstracts: A latency-hiding technique for
high-capacity mass storage systems,” Sequoia Tech. Rep. 92/1 I ,
Univ. of California at Berkeley, Mar. 1992.

[lo] S. Gaede, “Tools for research in computer workload character-
ization,” in Experimental Computer Performance and Evalua-
tion, D. Ferrari and M. Spadoni, Eds., 1981.

[l l] -, “A scaling technique for comparing interactive system
capacities,” in 13th Int. Con$ on Management and Performance
Evaluation of Computer Systems, 1982, pp. 6 2 4 7 , CMG 1982.

[12] P. P. Gelsinger, P. A. Gargini, G. H. Parker, and A. Y. C. Yu,
“Microprocessors circa 2000,” IEEE Spectrum, vol. 26, pp.
43-47, Oct. 1989.

[13] G. A. Gibson, “Redundant disk arrays: Reliable, parallel sec-
ondary storage,” Univ. of California at Berkeley, Computer Sci.
Dept. Rep. 91/613; also available from MIT Press, 1992;‘

[141 G. A. Gibson, R. H. Patterson, and M. Satyanarayanan, Disk
reads with DRAM latency,” presented at the 3rd Workshop
on Workstation Operating Systems, Key Biscayne, FL, Apr.
1992.

[15] A. Hac, “A distributed algorithm for performance improvement
through file replication, file migration, and process migration,”
IEEE Trans. Software Eng., vol. 15, no.1 I , pp. 1459-1470, Nov.
1989.

[16] J. M. Harker, D. W. Brede, R. E. Pattison, G. R. Santana, and
L. G. Taft, “A quarter centure of disk file innovation,” IBM .I.
Res. Devel., vol. 25, 110.5, pp. 677489, Sept. 1981.

171 R. L. Henderson and A. Poston, “MSSII and RASH: A main-
frame UNIX based mass storage system with a rapid access
storage hierarchy file management system,” in Winter USENIX
1989, pp. 65-83, Jan. 1989.

181 J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach. San Mateo, CA: Morgan Kaufmann
Pub., 1990.

191 M. D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B.
K. Bose, G. A. Gibson, P. M. Hansen, J. Keller, S. I. Kong, C.
G. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G. Zorn,
P. N. Hilfinger, D. Hodges, R. H. Katz, J. K. Ousterhout, and
D. A. Patterson, “Design decisions in SPUR,” IEEE Computer,
vol. 19, no.11, Nov. 1986.

[20] M. Holland and G. Gibson, “Parity declustering for continuous
operation in redundant disk arrays,” in Proc. 5th Int. Con$ on
Architectural Support for Programming Languages and Opra-
tiong Systems (ASPLOS-V), Oct. 1992, pp. 23-35.

[21] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M.
Satyanarayanan, R. N. Sidebotham, and M. J. West, “Scale and
performance in a distributed file system,” ACM Trans. Comput.
Syst., vol. 6, no.1, pp. 51-81, Feb. 1988.

[22] I. Hu, “Measuring file access patterns in UNIX,” in Proc. 1986
ACM SIGMETRICS Con$ on Measurement and Modeling of
Computer Systems, 1986, pp. 15-20.

[23] IBM 0661 Disk Drive Product Description-Model 371, IBM,
July 1989.

[24] 0. G. Johnson, “Three-dimensional wave equation computa-
tions on vector computers,” Proc. IEEE, vol. 72, no. I , Jan.
1984.

1164

[25] A. L. Jones, “SSD is cheaper than DASD,” Storage Technology
Corp. Tech. Rep., Oct. 1989.

[26] R. H. Katz, D. W. Gordon, and J. A. Tuttle, “Storage system
metrics for evaluating disk m a y organizations,” Univ. of
California at Berkeley, Computer Sci. Dept. Rep. 90/611, Dec.
1990.

[27] R. H. Katz, T. E. Anderson, J. K. Ousterhout, and D. A. Pat-
terson, “Robo-line storage: Low latency, high capacity storage
systems over geographically distributed networks,” Univ. of
California at Berkeley, Computer Sci. Dept. Rep. 91/651, Sept.
1991.

[28] M. Y. Kim, “Synchronized disk inteleaving,” IEEE Trans.
Compur., vol. C-35, pp. 978-988, Nov. 1986.

[29] E. K. Lee and R. H. Katz, “An analytic performance model
of disk arrays and its applications,” Univ. of California at
Berkeley, Computer Sci. Dept. Rep. 91/660, 1991.

[30] -, “Performance consequences of parity placement in disk
arrays,’’ in Proc. 4th Int. Con$ on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-IV),
Apr. 1991, pp. 190-199.

[31] J. Levitt, “Better benchmarks are brewing,” Unix Today!, Jan
1992.

[32] M. Livny, S. Khoshafian, and H. Boral. “Multi-disk manage-
ment algorithms,” in Proc. 1987 ACM SIGMETRICS Con$ on
Measurement and Modeling of Computer Systems, May 1987,

[33] K. J. McDonell, “Taking performance evaluation out of the
stone age,” in Proc. Summer Usenix Tech. Con$ (Phoenix, AZ,
June 1987), pp. 407417.

[34] J. Menon and M. Hartung, “The IBM 3990 Model 3 disk cache,”
IBM Tech Rep. RI 5994 (59593), Dec. 1987.

[35] J. Menon and J. Kasson, “Methods for improved update per-
formance of disk arrays,’’ in Proc. Hawaii Int. Con$ on System
Sciences, July 1989.

[36] RSS-600 Rotary Storage System Product Information, Metrum,
1991.

[37] E. L. Miller, “File migration on the Cray Y-MP at the National
Center for Atmospheric Research,” University of California at
Berkeley, Computer Sci, Dept. Rep. 91/638, June 1991.

[38] E. L. Miller and R. H. Katz, “InpuVoutput behavior for su-
percomputing applications,” in Proc. Supercomputing ’91, Nov.

[39] J. B. J. T. Liu, Ed., “RAID: A technology poised for explosive
growth,” Montgomery Securities Rep. DJIA:2902, Dec. 1991.

[40] R. R. Muntz and J. C. S. Lui, “Performance analysis of disk
arrays under failure,” in Proc. 16th Con$ on Very Large Data
Bases, 1990, VLDB XVI.

[41] G. J. Myers, A. Y. C. Yu, and D. L. House, “Microprocessor
technology trends,” Proc. IEEE, vol. 74,110.12, pp. 1605-1622,
Dec. 1986.

[42] M. N. Nelson, B. B. Welch, and J. K. Ousterhout, “Caching in
the Sprite network file system,” ACM Trans. Computer Syst.,
vol. 6, no.1, pp.134-154, Feb. 1988.

[43] B. Nelson, B. Lyon, M. Wittle, and B. Keith, “LADDIS-A
multi-vendor and vendor-neutral NFS Benchmark,” presented
at the UniForum Conf., Jan. 1992.

[U] J. K. Ousterhout, H. Da Costa, et al., “A trace-driven analysis
of the UNIX 4.2 BSD file system,” Operating Syst. Rev., vol.
19, 110.5, pp. 15-24, Dec. 1985; also in Proc. 10th Symp. on
Operating System Principles.

[45] J. K. Ousterhout, A. Cherenson, F. Douglis, and M. Nelson,
“The Sprite network operating system,” IEEE Computer, vol.
21, 110.2, pp. 23-36, Feb. 1988.

[46] J. K. Ousterhout and F. Douglis, “Beating the YO bottleneck
A case for log-structured file systems,” SIGOPS, vol. 23. no.1,

pp. 69-77.

1991, pp, 567-576.

pp. 11-28, J&. 1989.
[47] J. K. Ousterhout, “Why aren’t operating systems getting faster

as fast as hardware?,” in Proc. USENIX Summer Conf, June
1990, pp. 247-256.

[48] A. Park and J. C. Becker, “IOStone: A synthetic file system
benchmark,” Computer Archit. News, vol. 18, no. 2, pp. 45-52,
June 1990.

[49] D. A. Patterson, G. Gibson, and R. H. Katz, “A case for
redundant arrays of inexoensive disks (RAID),” in Int. Con$
on Management of Data (SIGMOD), June 1988, pp. 109-1 16.

[50] M. Rosenblum and J. K. Ousterhout, ‘The design and imple-
mentation of a log-structured file system,” in Proc. 13th ACM
Symp. on Operating Systems Principles, Oct. 1991.

PROCEEDINGS OF THE IEEE, VOL. SI , NO. 8. AUGUST 1993

M. Rosenblum, Sprite LFS write cache size, personal commu-
nication, July 1992.
SPEC SDM 1.0 Release Manual, System Performance Evalua-
tion Cooperative, 1991.
R. H. Saavedra-Barrera, A. J. Smith, and E. Miya, “Machine
characterization based on an abstract high-level language ma-
chine,” IEEE Trans. Comput., vol. 38, no. 12, pp. 1659-1679,
Dec. 1989.
K. Salem and H. Garcia-Molina, “Disk striping,” in Proc, 2nd
Int. Con$ on Data Engineering, 1986, pp. 336342.
R. Sandberg, D. Goldbert, S. Kleiman, D. Walsh, and B. Lyon,
“Design and implementation of the Sun network filesystem,”
presented at the Summer 1985 Usenix Conf., 1985.
V. Scott, “Is standardization of benchmarks feasible?,” in Proc.
BUSCON Conf (Long Beach, CA, Feb. 1990), pp. 139-147.
M. Seltzer and M. Olson, “LIBTP: Portable, modular, transac-
tions for UNIX,” in Proc USENIX Winter Tech. Conf 1992,
Jan. 1992.
B. Shein, M. Callahan, and P. Woodbuy, “NFSStone-A net-
work file server performance benchmark, “ in Proc. USENIX
Summer Tech. Conf 1989, pp. 269-275.
A. J. Smith, “Sequentiality and prefetching in database sys-
tems,” ACM Trans. Database Syst., vol. 3, no.3, pp. 223-247,
1978.
-, “Analysis of long term file reference pattems for applica-
tion of file migration algorithms,” IEEE Trans. Software Eng.,
vol. SE-7, no.4, pp. 403417, 1981.
-, “Optimization of U 0 systems by cache disk and file
migration: A summary,” Performance Evaluation, vol. 1, 110.3,

__ , “Disk cache-miss ratio analysis and design considera-
tions,” ACM Trans. Comput. Syst., vol. 3, no.3, pp. 161-203,
Aug. 1985.
D. Stodolsky and G. A. Gibson, “Parity logging: Overcoming
the small write problem in redundant disk arrays,” in P roc. I993
Int. Symp. on Computer Architecture, May 1993.
TP C Benchmark A Standard Specijication, Transaction Process-
ing Performance Council, Nov. 1989.
TP C Benchmark B Standard Specijicarion, Transaction Process-
ing Performance Council, Aug. 1990.
E. Tan and B. Vermeulen, “Digital audio tape for data storage,”
IEEE Spectrum, vol. 26, pp. 34-38, Oct. 1989.
E. Thanhardt and G. Harano, “File migration in the NCAR
mass storage system,” in Proc. 9th IEEE Symp. on Mass Storage
Systems, Oct. 1988.
B. Vermeulen, “Helical scan and DAT-A revolution in
computer technology,” in Systems Design and Networks Con$
(SDNC), May 1989, pp. 79-86.

pp. 249-262, NOV. 1981.

Peter M. Chen received the B.S. degree in
electrical engineering from Pennsylvania State
University, University Park, in 1987 and the
M.S. and Ph.D. degrees in computer science
from the University of California at Berkeley
in 1989 and 1992, respectively.

He is currently an Assistant Professor in the
Department of Electrical Engineering and Com-
puter Science at the University of Michigan
at Ann Arbor. His research interests include
computer architecture and operating systems and

focus on improving the performance, capacity, and reliability of computer
storage systems.

David A. Patterson (Fellow, IEEE) has taught
Computer Architecture at the University of Cal-
ifornia at Berkeley since 1977. There, he led the
design and implementation of RISC I. This re-
search became the foundation of SPARC archi-
tecture. He was also a leader of the Redundant
Arrays of Inexpensive Disks (RAID) project,
which led to high-performance U 0 systems from
several companies. These projects resulted in
the ACM Distinguished Disseration Awards. He
is currently the holder of the campus-wide en-

dowed E.H. and M.E. Pardee Chair of Computer Science. He is also
active in the Sequoia 2000 Project: an interdisciplinary effort among
global change researchers, computer scientists, and engineers to develop a
massive information storage and retrieval system that will enable scientists
to understand and predict the impact of global change on our environment,
such as global warming, ozone depletion, and deforestation. Also, he is
a Corporate Fellow of Thinking Machines, Corp., and consults for TMC
and Sun Microsystems. He won the ACM Outstanding Educator Award
and the University of California’s Distinguished Teaching Award. His
most recently published book, co-authored with J. Hennessey of Stanford
University, is Computer Organization and Design: The Hardware/Sofrware
Inte flare.

Dr. Patterson is a member of the National Academy of Engineering.

CHEN AND PATTERSON: STORAGE PERFORMANCE I I65

