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An ever-widening mismatch between storage and processor 
performance is causing storage pe$ormance evaluation to become 
increasingly more important. In this paper, we discuss the metrics 
and benchmarks used in storage performance evaluation. We first 
high fight the technology trends taking place in storage system, 
such as disk and tape evolution, disk arrays, and solid-state disks. 
We then describe, review, and run today’s popular I/O benchmarks 
on three system: a DECstation 5000/200 running the Sprite 
Operating System, a SPARCstation I + running SunOS, and an HP 
Series 700 (Model 730) running HP-UX. We also describe two new 
appmaches to storage benchmarks-UDDIS and A Self-scaling 
Benchmark with Predicted Pegormance. 

I. INTRODUCTION 
In the last decade, innovations in technology have led 

to extraordinary advances in computer processing speed. 
These advances have led many of those who evaluate a 
computer’s performance to focus their attention on mea- 
suring processor performance to the near exclusion of all 
other metrics; some have even equated a computer system’s 
performance with how well its CPU performs. This view- 
point, which makes system-wide performance synonymous 
with CPU speed, is becoming less and less valid. One 
way to demonstrate this declining validity is illustrated in 
Fig. 1, where IBM disk performance, represented by the 
throughput of accessing a random 8-kb block of data, is 
contrasted with IBM mainframe CPU performance [ 181. For 
the sake of comparison, both CPU and disk performance are 
normalized to their 1971 levels. As can readily be seen, over 
the past two decades, IBM mainframe CPU performance 
has increased more than 30-fold, while IBM disk perfor- 
mance has barely doubled. Microprocessor performance 
has increased even faster than mainframe performance 
[12],[41]. If CPU performance continues to improve at 
its current pace and disk performance continues to obtain 
more moderate improvements, eventually the performance 
of all applications that do any input or output (YO) will be 
limited by that YO component-further CPU performance 
improvements will be wasted [I]. 

In light of this developing trend toward I/O-limited 
applications, storage performance and storage architecture 
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Fig. 1. Contrasting trends of CPU and disk performance improve- 
ments. Over the past two decades, CPU performance improvements 
have far outstripped disk performance improvements. In this graph, 
CPU performance refers to IBM mainframe performance; disk 
performance refers to IBM disk (33x0 series) throughput on a 
random 8-kb access. Both are normalized to their 1971 level. The 
IBM mainframe performance comes from [18, p. 4, fig.l.l].  

become increasingly more crucial to overall system perfor- 
mance. In this paper, we use the terms U0 performance and 
storage performance interchangeably. 

In this paper, we first discuss common metrics used 
in evaluating storage. systems. Next, we highlight several 
trends in storage systems and how these trends affect 
storage performance evaluation. After addressing metrics 
and trends in storage systems, we devote the rest of the 
paper to discussing benchmarks used in evaluating VO 
performance. We list desirable characteristics of an VO 
benchmark, survey and run current VO benchmarks, and 
discuss two new U 0  benchmarks-one an evolutionary 
step in VO benchmarks, the other a new approach to VO 
benchmarks. 
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11. METRICS 
More than other areas of computer performance eval- 

uation, storage evaluation involves many varied types of 
metrics. In this section, we present an overview of some 
of the metrics commonly used today in choosing and 
evaluating storage systems. The value of most metrics 
depend strongly on the, workload used, hence the dual 
emphasis on metrics and benchmarks in this paper. 

The most basic metric for VO performance is throughput. 
Throughput is a measure of speed-the rate at which the 
storage system delivers data. Throughput is measured in 
two ways: VO rate, measured in accessedsecond, and data 
rate, measured in byteshecond ( B h )  or megabytedsecond 
(MBh).  The VO rate is generally used for applications 
where the size of each request is small, such as transaction 
processing [2]; data rate is generally used for applications 
where the size of each request is large, such as scientific 
applications [38]. 

Response time is the second basic performance metric 
for storage systems. Response time measures how long 
a storage system takes to access data. This time can be 
measured in several ways. For example, one could measure 
time from the user’s perspective, the operating system’s 
perspective, or the disk controller’s perspective, depending 
on what you view as the storage system. 

Usefulness for a storage system not only includes how 
fast data can be accessed, but also how much data can 
be stored on the storage system. Capacity is not normally 
applied as a metric to nonstorage components of a computer 
system, but it is an integral part of evaluating an U 0  
system. If capacity were ignored as a metric, tape, and disk 
manufacturers would soon find their customers switching 
to solid-state (memory-based) storage systems, which offer 
much higher performance but less capacity per dollar. 

Because users store valuable data on U 0  systems, they 
demand a reliability level much higher than for other parts 
of the computer. If a memory chip develops a parity error, 
the system will (hopefully) crash and be restarted. If a 
storage device develops a parity error in a database of bank 
accounts, however, banks could unwittingly lose billions of 
dollars. Thus reliability is a metric of great importance to 
storage systems. 

Cost, of course, applies to all components in computer 
systems. Disk subsystems are often the most expensive 
component in a large computer installation [3]. Cost is 
usually expressed as a composite metric, such as capacity 
cost, or throughput cost. 

Various combinations of these five metrics in storage 
system evaluation, throughput, response time, capacity, 
reliability, and cost, are common. One popular combination 
is a response time versus throughput graph (Fig. 2). Such 
graphs vary a parameter, such as the number of users 
on the system, to display the tradeoff between improving 
throughput and degrading response time. More users gen- 
erate higher system utilization and increase throughput. On 
the other hand, higher utilization leads to slower response 
times. Because a single performance number is easier to use 
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Fig. 2. Example response time versus throughput graph. Increas- 
ing the utilization of a system usually leads to higher throughput 
but slower response time. This figure was adapted from [6]. 
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Fig. 3. Metria for two storage systems. Here we show the 
differences in the values of several types of metrics for an IBM 
3390 disk system and a redundant disk array made of IBM 0661 
3.5 in drives [23]. This table was adapted from [13]. 

than a full graph, many evaluators combine throughput and 
response time by reporting throughput at a given response 
time [2], [6]. For example, the TPC-B benchmark reports 
maximum throughput with 90% of all requests completed 
within 2 s [65]. 

Another composite metric is data temperature, defined 
as VO rate divided by capacity [26]. Data temperature 
measures how many VO’s per second a storage system can 
support for a fixed amount of storage. Users who are limited 
by VO rate rather than capacity should buy systems with 
high data temperature. 

A general parameterizable composite metric can be for- 
mulated for any combination of the above metrics. For 
example, one could imagine a system administrator who 
wanted a system with the highest capacity per dollar, as 
long as it satisfied minimum reliability, throughput, and 
response time demands. 

Figure 3, adapted from [ 131 shows the values of the above 
metrics for two different disk systems. 

111. TRENDS IN STORAGE SYSTEMS 

In this section we highlight some of the current trends 
in storage systems. We discuss advances in magnetic disk 
technology, arrays of disks, file caching and solid-state 
disks, magnetic tape, and log-structured file systems. 

Magnetic disks have long been the mainstay of storage 
systems. But, since 1970, disk performance has improved 

1152 PROCEEDINGS OF THE IEEE, VOL. 81. NO. 8, AUGUST 1993 



Metic I IBM 3330 I IBM 0661 I Average Yearly Immovement 
AverageSxkTime I 30ms I 12.5 ms I 5% 

Average Rofational Delay 
Transfer Rate 

8.3 ms 7 ms 1% 
806 KB/s 1700 KB/s 4% 

only modestly. In Fig. 4 we compare two disks, the IBM 
3330, introduced in 1971, and the IBM 0661, introduced in 
1989. The average yearly improvement in performance has 
inched forward at a few percent a year. Cost per capacity, 
on the other hand, has improved at a much faster pace, 
averaging a 23% reduction per year from 1977 to 1986 
[ 131. Disk size has also been gradually decreasing. The 
most common disk diameter of the 1970’s and 1980’s was 
14 in. Those disks are disappearing and are being replaced 
with 5.25- and 3.5-in diameter disks. These smaller disks 
have somewhat better performance than their larger, more 
expensive predecessors. 

The trend toward smaller, less expensive disks creates 
an opportunity to combine many of these disks into a 
parallel storage system known as a disk array. The concept 
of constructing an array of multiple disks has been used 
for many years for special purposes [24] but is only now 
becoming popular for general use. The list of companies 
developing or marketing disk arrays is quite long: Array 
Technology, Auspex, Ciprico, Compaq, Cray, Datamax, 
Hewlett-Packard, IBM, Imprimis, Intel Scientific, Intellis- 
tor, Maximum Strategy, Pacstor, SF2, Storage Concepts, 
Storage Technology, and Thinking Machines. Some ana- 
lysts have projected the disk array market to expand to $8 
billion market by 1994 [391. 

The basic concept behind disk arrays is straightfor- 
ward-combine many small disks and distribute data among 
them (Fig. 5). This increases the aggregate throughput 
available to an application. The array of disks can either 
service many small accesses in parallel or cooperate to 
deliver a higher data rate to a single large access [5], [6], 
[13], [28], [32], [49], [54]. Disk arrays compensate for the 
lower reliability inherent in using more disks by storing 
redundant, error-correcting information. Current disk array 
research is focusing on how to distribute (stripe) data 
across disks to get optimal performance [5], [29], [30], how 
to spread redundant information across disks to increase 
reliability and minimize the effect of disk failures [13], 
[20], [40], and how to reduce the penalties associated with 
small writes in certain types of disk arrays [35], [63]. 

Disk arrays improve throughput by using more disks to 
service requests. Requests which are serviced by a single 
disk, however, see the same response time. File caches, disk 
caches, and solid-state disks use dynamic RAM (random- 
access memory) to decrease response time. Caches can 
be placed in a variety of places in the system memory 
hierarchy [62]. Two common places are the disk controller, 
as in the IBM 3990 disk cache [34], and main memory, 
as in the Sprite operating system’s file cache [42], [45]. 

Exabyte-120 Tap Library 
M e t ”  RSS-600 Taw Library 

Fig. 5. Combining multiple smaller disks to improve perfor- 
mance. Performance of single disks is not improving rapidly (Fig. 
4); however, disks are rapidly becoming physically smaller and 
cheaper. Disk arrays take advantage of this downsizing to provide 
higher aggregate throughput by simultaneously operating many 
small disks. 
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8700 GB $62/GB 14.5GB 5Oscc. 
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Response times for writes is decreased by writing the data 
to RAM, acknowledging the request, then transferring the 
data to disk asynchronously. This technique, called wrire- 
behind, leaves the data in RAM more vulnerable to system 
failures until written to disk. Some systems, such as the 
IBM 3990, mitigate this reliability problem by storing the 
cached data in nonvolatile memory, which is immune to 
power failures [34]. As with any cache, read response time 
is decreased if the requested data are found in cache RAM. 

Solid-state disks are similar to caches in that they im- 
prove response time by storing requests in RAM rather 
than on magnetic disks. The principal difference between 
solid-state disks and caches is that solid-state disks speed 
up all accesses while caches speed up access only to the 
most commonly requested data. Solid-state disk is much 
more expensive than magnetic disk for equal capacity but is 
dramatically faster. Response times for solid-state disks are 
commonly less than 3 ms [4], [25], while response times 
for magnetic disks are approximately 10-30 ms. On the 
other hand, solid-state disks cost 50-100 times more than 
magnetic disks for the same capacity [13]. 

Two storage metrics have been addressed-throughput 
and response time. Dramatic improvements to capacity per 
cost have occurred in magnetic tapes (Fig. 6). A new 
method of reading and writing tapes, helical scan, has 
increased the capacity of a single tape from 0.1-0.2 GB 
to 5-20 GB [27], [66], [68]. Tapes are extremely slow, 
however, with response times of 20 s to a few minutes. 
Throughput for these devices is less dismaying, ranging 
from 0.1-2.0 MB/s. Current research related to tape devices 
addresses the questions of how to migrate data from tape to 
faster storage [15], [17], [37], [61], [67], how to increase 
tape throughput using striping [27], and how to decrease 
response time by prefetching and caching 191, [14]. 

Reported disk reliability has improved dramatically over 
the past ten years, though actual reliability has improved 
more slowly. The most common metric for reliability, 
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mean-time-to-failure, has increased from 30 OOO to 150 
000-200 000 h. This jump in apparent reliability comes 
mostly from changing the method of computing mean-time- 
to-failure and is not expected to continue improving as 
quickly [ 131. 

Innovation is also taking place in the file system. A good 
example of how file systems have improved VO system 
performance is the Log-Structured File System (LFS) [46], 
[50]. LFS writes data on the disk in the same order that they 
are written. This leads to highly sequentialized disk writes 
and thus improves the sustainable disk write throughput. 

Although the raw performance in storage technology 
has improved much slower than processor technology, 
innovation such as file caches, disk arrays, robot-driven tape 
systems, and new file systems have helped close the gap. 

IV. YO BENCHMARKS 
These developments in disks, disk array, file caches, 

solid-state disks, tapes, and file systems create new chal- 
lenges for storage system evaluation. Benchmarks used 
in the evaluation process must evolve to comprehensively 
stress these new YO systems. For example, disk arrays are 
able to service many VO’s at the same time; benchmarks 
therefore need to issue many simultaneous VO’s if they 
hope to stress a disk array. Caches create distinct perfor- 
mance regions based on the size of the file space touched 
by a program; benchmarks likewise should measure these 
different performance regions. 

The rest of this paper is devoted to discussing bench- 
marks used in evaluating VO performance. We first list 
standards used to critique VO benchmarks. We then review, 
run, and evaluate VO benchmarks in use today. Last, we 
discuss two new U 0  benchmarks being proposed. 

In this paper, we use I/O benchmarks to measure the 
data VO performance seen by a program issuing reads and 
writes. Specifically, we are not using VO benchmarks to 
measure the performance of file system commands, such as 
deleting files, making directories, or opening and closing 
files. While these are perfectly valid and important metrics, 
they are more a measure of the operating system and 
processor speed than they are of the storage components. 

V. THE IDEAL I/O BENCHMARK 
In purchasing and evaluating an U 0  system, most people 

unfortunately use trivial benchmarks. These include, for 
example, the time to write 1 MB to disk, the average 
disk access time, or the raw disk transfer rate. These 
metrics are similar to the CPU clock rate in processor 
performance evaluation; they provide some insight but do 
not translate easily into performance visible to the end user. 
In this section we list some desirable characteristics of U 0  
benchmarks. 

First, a benchmark should help system designers and 
users understand why the system performs as it does. 
Computer architects and operating system programmers 
need to have benchmarks to evaluate design changes and 
isolate reasons for poor performance. Users should be also 

- 

able to use benchmarks to understand optimal ways to use 
the machine. For instance, if a user wanted to have his 
application fit within the file cache, the ideal VO benchmark 
should be able to provide information on the file cache 
size of a machine. This criterion may require reporting 
results for several different workloads, enabling the user 
to compare these results. These multiple workloads should 
require little human interaction to run. 

Second, to maintain the focus of measuring and under- 
standing VO systems, the performance of an VO benchmark 
should be limited by the U 0  devices. The most intuitive 
test of being VO-limited is the following: if the speedup 
resulting from taking out all VO from an application is 
greater than the speedup resulting from taking out all 
CPU operations (leaving only YO), then the application 
is VO-limited. Unfortunately, this test is quite hard to 
perform in practice-almost any nontrivial application will 
not function when its U 0  is eliminated. Instead, we test for 
how VO-limited an application is by measuring the fraction 
of time spent in doing data YO. 

Third, the ideal VO benchmark should scale gracefully 
over a wide range of current and future machines. Without 
a well planned-out scaling strategy, VO benchmarks quickly 
become obsolete as machines evolve. For instance, ZOSrone 
tries to exercise the memory hierarchy, but touches only 1 
MB of user data. Perhaps at the time IOStone was written, 
1 MB was a lot of data, but this is no longer true. Another 
example of an U 0  benchmark’s need to scale is provided by 
disk arrays. As mentioned above, disk arrays allow multiple 
VO’s to be in progress simultaneously. Most current VO 
benchmarks do not scale the number of processes issuing 
YO, and hence are unable to properly stress disk arrays. 
Unfortunately, it is difficult to find widespread agreement 
on a scaling strategy, especially for benchmarks intended 
for a wide range of audiences. 

Fourth, a good U 0  benchmark should allow fair compar- 
isons across machines. This comparison has two aspects. 
First, a fair comparison across machines should be able 
to be made for VO workloads identical to the benchmark. 
However, users rarely have the same workload as a standard 
benchmark. Thus the results from a benchmark should 
predict performance for workloads that differ from the 
benchmark. 

Fifth, the ideal YO benchmark would be relevant to a 
wide range of applications. It is certainly easier to target 
a benchmark to a specific audience, and benchmarks that 
do a good job representing their target applications are 
invaluable for those applications. But, it would be even 
better for a benchmark to be usable by many audiences. 

Finally, in order for results to be meaningful, benchmarks 
must be tightly specified. Results should be reproducible 
by general users; optimizations which are allowed and 
disallowed must be explicitly stated; the machine envi- 
ronment on which the benchmarking takes place must be 
well-defined and reported (CPU type and speed, operating 
system, compiler, network, disk, other load on the system) 
the starting state of the system (file cache state, data layout 
on disk) should be well-defined and consistent, and so on. 
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Fig. 7. System platforms. This table shows the three systems on 
which we run benchmarks. The DECstation uses a three disk RAID 
disk array [49] with a 16-kE% striping unit [6] and is configured 
without redundancy. The SPECint rating is a measure of the integer 
speed of the processor. Ratings are relative to the speed of a VAX 
1 ln80. The full name of the HP 730 is the HP Series 700 Model 
730. 

DECstation so00 
HP 730 

In summary, the six characteristics of the ideal VO 
benchmark are as follows: it should help in understanding 
system performance; its performance should be VO-limited; 
it should scale gracefully over a wide range of current 
and future machines; it should allow fair comparisons 
across machines; it should be relevant to a wide range of 
applications; it should be tightly specified. 

20 sec. (10%) 67 sec. (3%) 87 sec. (4%) 
17 sec. (27%) 28 sec. (6%) 45 sec. (13%) 

VI. SYSTEM PLATFORMS 

In running benchmarks in this paper, we use three sys- 
tems. All are high-performance workstations with differing 
VO systems. Figure 7 summarizes their characteristics. 
Note that these computers were introduced in different 
years-our study is not meant to be a competitive market 
analysis of the competing products. 

In order to better understand these benchmarks, we 
slightly modified their software. For example, we compiled 
in special VO routines which traced VO activity. Hence, 
we used publicly available code for as many programs 
as possible. In general, we used GNU (Gnu’s Not Unix) 
code developed by the Free Software Foundation. To make 
results directly comparable between machines for bench- 
marks which used the compiler, we took the same step as 
Ousterhout [47] in having the GNU C compiler generate 
code for an experimental CPU called SPUR [19]. 

VII. OVERVIEW OF CURRENT Yo BENCHMARKS 
In this section, we describe, critique, and run five com- 

mon benchmarks used in VO system evaluation: Andrew, 
TPC-B, Sdet, Bonnie, and IOStone. Figure 14 contains 
information for obtaining these benchmarks. We categorize 
them into two classes: application benchmarks and synthetic 
benchmarks. 

A. Application Benchmarks 
Application benchmarks use standard programs, such as 

compilers, utilities, editors, and databases, in various com- 
binations, to produce a workload. Each benchmark targets 
a single application area, such as transaction processing or 
system development. Application benchmarks usually do a 
good job of accurately representing their target application 
area. But, as we shall see, they are often not VO-limited. 

I) Andrew: The Andrew .benchmark was designed at 
Carnegie-Mellon University to be a file system bench- 

System I CODV Phase /% 1/01 1 Compile Phase /% VO) I Total (% I/O 
SPARCstation I +  I 82 sec. (4%) I 137 sec. (7%) I 219 sec. (6%) 

mark for comparatively evaluating the Andrew File System 
against other file systems [21]. It was originally meant to be 
only a convenient yardstick for measuring file systems, not 
necessarily as a representative workload for benchmarking. 
Despite this intent, it has become a widely used defacto 
benchmarking standard [47]. 

Andrew is meant to represent the workload generated 
by a typical set of software system developers. It copies a 
file directory hierarchy, examines and reads the new copy, 
then compiles the copy. The file directory contains 70 files 
totaling 0.2 MB. CMU’s experience in 1987 suggests the 
load generated roughly equals that generated by five users. 

In Fig. 8, we list results from Andrew on our three system 
platforms. As in [47], we divide Andrew into two sections: 
the copy phase, consisting of the copy, examination, and 
reading stages; and the compile phase. Note that on all 
machines Andrew spends only 6%-13% actually doing data 
reads and writes. The HP 730, which has the fastest CPU, 
spends a higher fraction of time in YO than the others. This 
supports our contention that systems with faster and faster 
CPU’s will become more and more VO-limited. 

2) TPC-B: TPC-B measures transaction processing per- 
formance for a simple database update [65]. The first 
version, TPl, first appeared in 1985 [2] and quickly be- 
came the de facto standard in benchmarking transaction 
processing systems. TPC-A’ [64] and TPC-B [65] are 
more tightly specified versions of TP1 and have replaced 
TPl as the standard transaction processing benchmark. 
As a transaction processing benchmark, TPC-B not only 
measures the machine supporting the database but also the 
database software. 

TPC-B repeatedly performs Debit-Credit transactions, 
each of which simulates a typical bank account change on a 
bank database. The database consists of customer accounts, 
bank branches, and tellers. Using a random customer re- 
quest, a Debit-Credit transaction reads and updates the 
necessary account, branch, and teller balances. Requests 
are generated by a number of simulated customers, each 
requesting transactions as quickly as possible. 

TPC-B’s main metric is maximum throughput measured 
in transactions-per-second, qualified by a response time 
threshold demanding that 90% of all transactions complete 

‘The main difference between TPC-A and TPC-B is the presence of 
real terminals. TPC-A demands the test be done with actual terminals 
providing input at an average rate of one request every 10 s. TPC-B 
generates requests with intemal drivers running as fast as possible. This 
paper discusses only TPC-B. 
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Fig. 9. TPC-B Results. These figures show TPC-B results for our three experimental systems. As 
a database program, we used Seltzer's simple transaction processing library LIBTP [57]. Due to 
software limitations, we were unable to run at concurrencies higher than 2,  reflected by response 
times much faster than those required by TPC-B. 

within 2 s. TPC-B also reports price for the system and 
required storage. The number of accounts, branches, and 
tellers specified by TPC-B is proportional to through- 
put-for each additional transaction-per-second of perfor- 
mance reported, the test system database must add 10 MB 
more account information. Using this database size, TPC-B 
reports a graph of throughput versus the average number of 
outstanding requests and a histogram of response times for 
the maximum throughput. In Fig. 9, we show the TPC-B 
response time characteristic on our three systems, using 
Seltzer's simple transaction supporting package LIBTP 
W l .  

3) Sdet: The System Performance Evaluation Coopera- 
tive (SPEC) was founded in 1988 to establish independent 
standard benchmarks [56]. Their first set of benchmarks, 
SPEC Release 1, primarily measures CPU performance. 
Their second set of benchmarks, System Development 
Multi-tasking (SDM) Suite, measures overall system per- 
formance for software development and research environ- 
ments. SDM consists of two benchmarks, Sdet [lo], [ 111 
and Kenbusl [33]. Sdet and Kenbusl are quite similar in 
benchmarking methodology; their main difference is the 
specific mix of user commands. We limit our discussion to 
Sdet, which does more U 0  than Kenbus 1. 

Sdet's workload consists of a number of concurrently 
running scripts. Each script contains a list of user com- 
mands in random order. These commands are taken from 
a typical software development environment and include 
editing, text formatting, compiling, file creating and delet- 
ing, as well as miscellaneous other UNIX utilities [52]. Sdet 
increases the number of concurrently running scripts until it 
reaches the system's maximum throughput, measured as the 
script completion rate (scripts per hour). Sdet reports this 
maximum rate, along with the graph of throughput versus 

Hp 730 
lo0l 

"i 

the script concurrency (Fig. 10). Once again, only a small 
percentage of time, 10%-22%, is spent in UO. 

B. Synthetic Benchmarks 
Synthetic benchmarks exercise an VO system by directly 

issuing read and write commands. In contrast, application 
benchmarks use standard programs, which in turn issue VO. 
By issuing reads and writes directly, synthetic benchmarks 
are able to generate more U 0  intensive workloads. But, 
synthetic benchmarks often yield less convincing results 
because they, unlike application benchmarks, do not per- 
form useful work. We review three synthetic benchmarks 
here. Two popular benchmarks are Bonnie and IOStone; 
we also create a third synthetic benchmark to demonstrate 
a typical scientific VO workload. 

1 )  Bonnie: Bonnie measures VO performance on a single 
file for a variety of simple workloads. One workload 
sequentially reads the entire file a character at a time; 
another writes the file a character at a time. Other work- 
loads exercise block-sized sequential reads, writes, or reads 
followed by writes (rewrite). The final workload uses 
three processes to simultaneously issue random VO's. The 
size of the file is set by the evaluator and should be 
several times larger than the system's file cache size, thus 
preventing the entire file from fitting in the cache. For each 
workload, Bonnie reports throughput, measured in kilobytes 
per second or VO's per second, and CPU utilization. We 
show results for the three systems in Fig. 11. Most of 
Bonnie's workloads are UO-limited, however, the character 
reads and writes are CPU-limited. 

2) IOStone: IOStone is a synthetic U 0  benchmark [48] 
based on system traces of Unix minicomputers and work- 
stations [22], [44] and IBM mainframes [59], [60]. Using 
400 files totaling 1 MB, IOStone reads and writes data in 
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from the SPEC SDM benchmark Sdet. 

Sequential Sequential Sequential 
System Char Write Block Write Block Rewrite. 

KB/s (% CPU) KB/s (5% CPU) KBh (% CPU) 
SPARCstation I +  229 (99%) 558 (37%) 230 (26%) 
DECstation5000 300(77%) . 663 (14%) 297(14%) 

HP 730 1285 (98%) 1777 (16%) 604(13%) 

loo 1 

Sequential Sequential Random 
Char Read Block Read Block Read 

KB/s (9% CPU) KB/s (46 CPU) IO/s (46 CPU) 
193 (98%) 625 (37%) 31 (22%) 
253 (60%) 781 (18%) 32(14%) 
995 (85%) 2023 (13%) 39 (5%) 

HP 730 

DECstation 5000 
HP 730 

q 0 80 
U 

82 MBh 1.28 MB/s 
1.98 MB/s 1.86 MB/s 

peak 46.3 scriptshour (2 scripts) 

22% time spent in I/O (2 scripts) 

DECstation 5000 
HP 730 

? 
7 ; 20- 

U r 

50905 26% 
20409 81% 

IO 
Number of Concurrent Scripts 

(C) 

System I IOStones/second I Percent Time Swnl in I/O 
SPARCstation I +  I 11002 I 61% 

patterns which approximate the locality found in [44]. One 
process performs all the accesses-no U 0  parallelism is 
present. IOStone reports a single throughput result, IOS- 
tones per second (Fig.12). IOStone runs much faster when 
the system’s file cache is large enough to contain the small 
data space of the benchmark. Thus the Sprite DECstation, 
with a maximum file cache of 25 MB, runs IOStone 2 4  
times faster than the SPARCstation or the HP 730. 

3) ScientiJic: Andrew, SDM, IOStone, and Bonnie all 
target system development or workstation environments. 
Other application areas, such as scientific or supercom- 
puting code, have substantially different workload char- 
acteristics [38]. Typical scientific applications generally 
touch much more data and use much larger request sizes 
than workstation applications. To illustrate U0 performance 
for a supercomputing environment, we define two simple 
workloads: a large file read, in which we read a 100-MB 
file in 128-kB units, and a large file write, in which we 
write a 100-MB file in 128-kB units. In Fig. 13, we show 
results for our three system platforms. 

VIII. CRITIQUE OF CURRENT BENCHMARKS 
In applying our list of benchmark goals from Section 

V to current VO benchmarks, we see that there is much 

System I Lame File Reads (MBh) I Large File Writes (MB/s) 
.%I MB/s I .64 MB/s SPARCstation I +  I 

Fig. 14. List of contacts for various benchmarks. 

room for improvement. We show a qualitative evaluation of 
today’s U0 benchmarks in Fig. 15 and make the following 
observations: 

Many I/O benchmarks are not I/O-limited. On the 
DECstation 5000/200, Andrew, Sdet,2, and IOStone 
spend 25% or less of their time doing UO. Further, 
many of the benchmarks touch very little data. IOStone 
touches only 1 MB of user data; Andrew touches only 
4.5 MB. The best of the group is Bonnie, but even 
Bonnie had some tests which were CPU-bound. 
Today’s I/O benchmarks do not help in understanding 
system performance. Andrew and IOStone give only a 
single bottom-line performance result. TPC-B and Sdet 

2This refers to Sdet running at the peak throughput concurrency level 
of 5. 
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Fig. 15. Current state of YO benchmarks. In this figure, we show a qualitative evaluation of 
benchmarks used today to evaluate YO systems. We see that several are not YO-bound and that most 
do not provide understanding of the system, lack a well-defined scaling strategy, and are not generally 
applicable. The percent time spent in YO was measured on the DECstation 5000/200 of Fig. 7. 
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fare somewhat better by helping the user understand 
system response under various loads. Bonnie begins 
to help the user understand performance by running 
six workloads. These workloads show the performance 
differences between reads versus writes and block 
versus character VO, but do not vary other aspects of 
the workload, such as the number of VO’s occumng 
in parallel. 
Many of today’s I/O benchmarks have no scaling strat- 
egy. Several made no provision for adjusting the 
workload to stress machines with larger file caches, for 
example. Without a well-defined scaling strategy, YO 
benchmarks quickly grow obsolete. Two exceptions 
are notable. TPC-B has an extremely well-defined 
scaling strategy, made possible by TPC-B’s narrow 
focus on debit-credit style transaction processing and 
the widespread agreement on how databases change 
with increasing database throughput. Sdet also has 
a superior scaling strategy, varying the number of 
simultaneously active scripts until the peak perfor- 
mance is achieved. This idea of scaling aspects of 
the workload automatically is a major improvement 
over single workload benchmarks. However, Sdet does 
not scale any other aspects of the benchmark, such as 
request size or readwrite ratio. 
Today’s I/O benchmarks make fair comparisons for  
workloads identical to the benchmark, but do not help 
in drawing conclusions about the relative pe rformance 
of machines for other workloads. It would be ideal if 
results from the benchmark could be applied to a wider 
range of workloads. 
Today’s I/O benchmarks focus on a narrow applica- 
tion range. For example, TPC-B is intended solely 
for benchmarking debit-credit transaction processing 
systems. 

good 

P-r 

The general poor state of VO benchmarks suggests the need 
for new benchmarks. 

IX. EMERGING YO BENCHMARKS 
In this section, we review two emerging benchmarks. 

LADDIS is an evolutionary step beyond current bench- 
marks; A Self-scaling Benchmark with Predicted Perfor- 
mance is a research idea being developed by this paper’s 
authors at the University of California at Berkeley in the 
context of the RAID (Redundant Arrays of Inexpensive 
Disks) project [49]. 

A. LADDIS 
Network file systems provide file service to a set of 

client computers, connected by a network. The computer 
providing this file service is called the server. One popular 
protocol for network file service is Sun Microsystem’s NFS 
[ S I .  In 1989, Shein, Callahan, and Woodbury created NFS- 
Stone, a synthetic benchmark to measure NFS performance 
[58].  NFSStone generated a series of NFS file requests from 
a single client to stress and measure server performance. 
These operations included reads, writes, and various other 
file operations such as examining a file. The exact mix of 
operations was patterned after a study done by Sun [55];  the 
file sizes were patterned after the study done in [U]. Later, 
Legato Systems refined NFSStone, dubbing it NHFSStone. 
NFSStone and NHFSStone had several problems: one client 
could not always fully stress a file server; different versions 
of the benchmarks abounded; file and block sizes were not 
realistic; and only SunOS clients could run them. 

In 1990, seven companies joined forces to create an NFS 
benchmark capable of stressing even the most powerful file 
servers. The result was LADDIS, named after the seven 
companies (Legato, Auspex, Digital Equipment Corpora- 
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tion, Data General, Interphase, and Sun). LADDIS is based 
on NHFSStone but, unlike NHFSStone, runs on multiple, 
possibly heterogeneous, clients and networks [3 13, [43]. 
Like NHFSStone, LADDIS is a synthetic benchmark with 
a certain mix of operations. LADDIS is highly parame- 
terized-besides the percentage of each operation in the 
workload, LADDIS gives an evaluator the ability to change 
the number of clients issuing requests to the server, the 
rate at which each client issues requests, the total size of 
all files, the block size of VO requests, and the percentage 
of write requests that append to an existing file. LADDIS 
defines default values for all tunable parameters to make 
benchmark results standard and comparable. For example, 
by default, half of all YO requests are done in 8-kB blocks 
and half are done in fragments of 1, 2, or 4 kB. 

LADDIS is quite similar to TPC-B in reporting philoso- 
phy. The preferred metric is a throughput (NFS operations 
per second) versus response time graph. As a more compact 
form, users may report the maximum throughput subject to 
an average response time constraint of 50 ms. Like TPC-B, 
LADDIS scales according to the reported throughput-for 
every 100 NFS operations per second of reported through- 
put, capacity must increase by 540 MB. LADDIS was 
released by SPEC in March of 1993 as the first part of the 
SPEC-SFS (System Level File Server) Suite of benchmarks. 

B. A Self-scaling Benchmark with Predicted Pe formance 
In this section, we describe two new ideas in VO bench- 

marks, proposed in more detail by this paper's authors 
in [7]. First, we describe a Self-scaling Benchmurk that 
automatically scales its workload depending on the perfor- 
mance of the system being measured. During evaluation, 
the benchmark automatically explores the workload space, 
searching for a relevant workload on which to base perfor- 
mance graphs. 

Because the base workload resulting from the Self- 
Scaling Benchmark depends on the characteristics of each 
system, we lose the ability to directly compare performance 
results for multiple systems. We describe how to use 
predicted peformance to restore this ability. Predicted 
peformance uses the results of the Self-scaling Benchmark 
to estimate performance for unmeasured workloads. The 
ability to accurately estimate performance for arbitrary 
workloads yields several benefits. First, it allows fairer com- 
parisons to be drawn between machines for their intended 
use-today, users are forced to apply the relative perfor- 
mance from benchmarks that may be quite different from 
their actual workload. Second, the results can be applied to a 
much wider range of applications than today's benchmarks. 
Of course, the accuracy of the prediction determines how 
effectively prediction can be used to compare systems. We 
discuss the method and accuracy of prediction in Section 

I )  A Self-Scaling Benchmark: The workload that the Self- 
Scaling Benchmark uses is characterized by five parame- 
ters. These parameters lead to the first-order performance 
effects in VO systems. See Fig.17 for examples of each 
parameter. 

IX-B2. 

uniqueBytes-the number of unique data bytes read 
or written in a workload; essentially the total size of 
the data. 
sizehlean-the average size of an VO request. We 
choose sizes from a normal Bernoulli distribution3 with 
a coefficient of variation equal to 1 .  
readFrac-the fraction of reads; the fraction of writes 
is 1 -readFrac. 
seqFrac-the fraction of requests that sequentially 
follow the prior request. For workloads with multiple 
processes, each process is given its own thread of 
addresses. 
processNum-the concurrency in the workload, that 
is, the number of processes simultaneously issuing VO. 

In this paper, a workload refers to a user-level program 
with parameter values for each of the above five parameters. 
This program spawns and controls several processes if 
necessary. 

The most important question in developing a synthetic 
workload is the question of representativeness [8]. A syn- 
thetic workload should have enough parameters such that 
its performance is close to that of an application with the 
same set of parameter  value^.^ On the other hand, when 
workload models become too complex, users lose the ability 
to easily estimate the parameter values for their workload. 
Our five parameter workload model attempts to make a 
reasonable compromise between these two conflicting goals 
of simplicity and generality. Reference [7] gives a first- 
order verification that this synthetic workload model is 
general enough to capture the performance of interesting 
applications. 

a )  Single-parameter graphs: Most current benchmarks 
report the performance for only a single workload. The 
better benchmarks report performance for multiple work- 
loads, usually in the form of a graph. TPC-B and Sdet, 
for example, report how performance varies with load. But 
even these better benchmarks do not show in general how 
performance depends on parameters such as request size or 
the mix of reads and writes. 

The main output of the Self-scaling Benchmark is a set of 
performance graphs, one for each parameter (uniqueBytes, 
sizeMean, readFrac, processNum, and seqFrac) as in Fig. 
17. While graphing one parameter, all other parameters 
remain fixed. The value at which a parameter is fixed 
while graphing other parameters is called the focal point 
for that parameter. The vector of all focal points is called 
thefocal vector. In Fig. 17, for example, the focal vector is 
(uniqueBytes = 12 and 42 MB, sizeMean = 20 kB, readFrac 
= 0.5, processNum = 1, seqFrac = 0.5). Hence, in Fig. 
17(e), uniqueBytes is varied while the sizeMean = 20 kB, 
readFrac = 0.5, processNum = 1, and seqFrac = 0.5. 

'This distribution of sizes can be particularly useful in representing 
multiple applications running simultaneously. 

4Given the uncertain path of future computer development, it is im- 
possible to determine a priori all the possible parameters necessary 
to ensure representativeness. Even for current systems, it is possible to 
imagine VO workloads that interact with the system in such a way that 
no synthetic workload (short of a full trace) could duplicate that VO 
workload's performance. 

CHEN AND PATTERSON: STORAGE PERFORMANCE I159 



!!,v L. sizeMean 

readFrac 

Fig. 16. Workloads reported by a set of single parameter graphs. 
This figure illustrates the range of workloads reported by a set of 
single parameter graphs for a workload of three parameters. 

Fig. 16 illustrates the workloads reported by one set 
of such graphs for a three-parameter workload space. Al- 
though these graphs show much more of the entire workload 
space than current benchmarks, they still show only single- 
parameter performance variations; they do not display de- 
pendencies between parameters. Unfortunately, completely 
exploring the entire five-dimensional workload space re- 
quires far too much time. For example, an orthogonal 
sampling of six points per dimension requires 65,  almost 
8OOO, points. On the Sprite DECstation, each workload 
takes approximately 10 min. to measure, thus 8OOO points 
would take almost 2 months to gather! In contrast, mea- 
suring six points for each graph of the five parameters 
requires only 30 points and 5 h. The usefulness of these 
single-parameter graphs depends entirely on how accurately 
they characterize the performance of the entire workload 
space. In the section on predicted performance we shall 
see that, for a wide range of U 0  systems, the shapes of 
these performance curves are relatively independent of the 
specific values of the other parameters. 

The Self-scaling Benchmark scales by choosing different 
focal points for different systems. Two factors influence the 
choice of focal points. First, the benchmark should display a 
range of relevant workloads. Relevancy in turn involves two 
factors: the workloads must perform reasonably well, and 
the workloads must be practical. Second, the benchmark 
should adequately characterize the entire workload space 
with only a few graphs. Reference [7] gives more details 
as to how the benchmark chooses the focal points and the 
ranges of the graphs. 

b) Examples: This section contains results from run- 
ning the Self-Scaling Benchmark on the SPARCstation 1+ 
and a DECStation 5000/200 described in Fig. 7. 

Figure 17 shows results from the Self-scaling Bench- 
mark on a SPARCstation l+. The uniqueBytes values that 
characterized the two performance regions are 12 and 42 
MB. Graphs (a)-(d) show the file cache performance region, 
measured with uniqueBytes = 12 MB. Graphs (0-(i) show 
the disk performance region, measured with uniqueBytes 
= 42 MB. We learn the following from the Self-Scaling 
Benchmark: 

The effective file cache size is 21 MB. Applications 
that have a working set larger than 21 MB will go to 
disk frequently. 
Larger request sizes yield higher performance. This 
effect is more pronounced in the disk region than in 

the file cache region. 
Reads are faster than writes, even when all the data 
fit in the file cache (Fig. 17(b)). Although the data fit 
in the file cache, writes still cause i-node changes to 
be written to disk periodically for reliability in case of 
a system crash. This additional overhead for writing 
causes writes to be slower than reads. 
Increasing concurrency does not improve performance. 
As expected, without parallelism in the disk system, 
workload parallelism is of little value. 
Sequentiality offers no benefit in the file cache region 
(Fig. 17(b)) but offers substantial benefit in the disk 
region (Fig. 17(a)). 

Figure 18 shows self-scaling benchmark results for the 
DECstation 5OOO/200. The uniqueBytes graph (Fig. 18(a)) 
shows three performance plateaus, uniqueBytes = 0 to 5 
MB, uniqueBytes = 5 to 20 MB, and uniqueBytes > 20 
MB. Thus the self-scaling benchmark gathers three sets of 
measurements: at uniqueBytes 2, 15, and 36 MB. The most 
interesting phenomenon involves readFrac (Fig. 18(b)). 

In the first performance level (uniqueBytes = 2 MB), 
reads and writes are the same speed. At the next perfor- 
mance level (uniqueBytes = 15 MB), reads are much faster 
than writes. This is due to the effective write cache of 
Sprite's LFS being much smaller than the read cache, so 
reads are cached in this performance region while writes 
are not. The write cache of LFS is smaller because LFS 
limits the number of dirty cache blocks to avoid deadlock 
during cleaning. The effective file cache size for writes is 
only 5-8 MB, while for reads it is 20 MB [51].5 In contrast, 
when uniqueBytes is large enough to exercise the disk for 
both reads and writes, writes are faster than reads. This 
phenomenon is due to Sprite's LFS, which improves write 
performance by grouping multiple small writes into fewer 
large writes. 

2) Predicted Performance: The Self-scaling Benchmark 
increases our understanding of a system and scales the 
workload to remain relevant. However, it complicates the 
task of comparing results from two systems. The problem is 
the benchmark may choose different workloads on which 
to measure each system. Also, though the output graphs 
from the Self-Scaling Benchmark apply to a wider range 
of applications than today's U 0  benchmarks, they stop 
short of applying to all workloads. In this section, we 
show how predicted performance solves these problems by 
enabling us to accurately estimate the U 0  performance for 
arbitrary workloads based on the performance of a small 
set of measured workloads (that is, those measured by the 
Self-Scaling Benchmark). 

A straightforward approach for estimating performance 
for all possible workloads is to measure a comprehensive set 
of workloads. However, measuring all possible workloads 
is not feasible within reasonable time constraints. A more 
attractive approach is to use the graphs output by the 
Self-Scaling Benchmark (such as Fig. 17) to estimate 

"e default limit was tuned for a machine with 128 MB of memory; in 
production use, this limit would be changed for the 32-MB system being 
tested. 
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Fig. 17. Results from a self-scaling benchmark when run on a SPARCstation I+.  This figure 
shows results from the Self-Scaling Benchmark when run on a SPARCstation I+.  The focal point 
for uniqueBytes is 12 MB in graphs (aHd) and 42 MB in graphs ( M i ) .  For all graphs, the focal 
points for the other parameters is sizeMean = 20 kB, readFrac = 0.5, processNum = 1, seqFrac = 
0.5. Increasing sizes improve performance, more so for disk accesses than file cache accesses (parts 
(a) and (0). Reads are faster than writes, even when data are in the file cache. This is because 
inodes must still go to disk. Sequentiality increases performance only for the disk region (part (i)). 
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performance for unmeasured workloads. This is similar in We estimate performance for unmeasured workloads 
concept to work done by Saavedra-Barrera, who predicts by assuming the shape of a performance curve for 
CPU performance by measuring the performance for a small one parameter is independent of the values of the 
set of FORTRAN operations [53]. other parameters. This assumption leads to an overall 
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Fig. 18. Selected results from Self-Scaling Benchmark when run on a DECstation 5000/200. In 
this figure, we show selected results from the Self-scaling Benchmark when run on a DECstation 
5000/200. Graph (a) shows three plateaus in uniqueBytes, due to the different effective file cache 
sizes for reads and writes. The focal points chosen for uniqueBytes are 2, 15, and 36 MB. The focal 
points for the other parameters is sizeMean = 40 kB, readFrac = 0.5, processNum = 1, seqFrac = 
0.5. Note in graph (b) how reads are much faster than writes at uniqueBytes 15 MB, slightly slower 
than writes at uniqueBytes 36 MB, and approximately the same speed at uniqueBytes 2 MB. These 
results helped us understand that, due to the default limit on the number of dirty file cache blocks 
allowed. the effective file cache size for writes was much smaller than the file cache size for reads. 

readFrac 
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Fig. 19. Predicting performance of unmeasured workloads. In this figure, we show how to predict 
performance with a workload of two parameters, processNum and sizeMean. The solid lines represent 
workloads that have been measured; the dashed line represent workloads that are being predicted. 
The left graph shows throughput graphed against processNum with sizeMean fixed at s i z e i l f e a n f .  
The right graph shows throughput versus sizeMean with processNum fixed at processiVum f .  We 
predict the throughput curve versus processNum with sizeMean fixed at sizeilfeanl by assum- 
ing that Throughput(process.Vuna. s i z e : l f e a n f /  Throughput(pr0cessNum. skeilfeanl ) is 
constant (independent of processNum) and fixed at Throughput(processiVumf, sizeilfeanf ) 
/ Throughput(process;Vuiiif. sizeAf ean 1 ). 

performance equation of Throughput (X, Y, Z...) = 
f<y(X) x f y ( Y )  x fz(2) ..., where X, Y, Z, ... are 
the parameters. Pictorially, our approach to estimating 
performance for unmeasured workloads is shown for 
a two parameter workload in Fig. 19. In the Self- 
Scaling Benchmark, we measure workloads with all but 
one parameter fixed at the focal point. In Fig. 19, 
these are shown as the solid line throughput curves 
Throughput (process Num,  sizeMean f )  and Throughput 
(processNumf, sizeMean), where processNumf is 
processNum's focal point and sizeMeanf is sizeMean's 
focal point. Using these measured workloads, we esti- 
mate performance for unmeasured workloads Throughput 
(processNum, sizeMeanl) by assuming a constant ratio 
between Throughput (processNum, sizeMeanf) and 
Throughput (processNum, sizeMean,). This ratio is 

known at processNum = processNumf to be 

Throughput (processNumf , sizeMeanf ) 
Throughput (processNumf , sizeMean1) 

. To measure how accurately this approximates actual per- 
formance, we measured 100 workloads, randomly selected 
over the entire workload space (the range of each parameter 
is shown in Fig. 17). 

Fig. 20 shows the prediction accuracy of this simple 
product-of-single-variable-functions approach. We see that, 
over a wide range of performance (0.2 to 3.0 MB/s), 
the predicted performance values match extremely well 
to the measured results. 50% of all workloads have a 
prediction error of 10% or less; 75% of all workloads had a 
prediction error of 15% or less. In contrast, any single-point 
VO benchmark would predict all workloads to yield the 
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Fig. 20. Evaluation of prediction accuracy for SPARCstation 
I +  with 1 disk. This figure graphs the predicted performance 
against the actual (measured) performance for the SPARCstation 
in Fig. 17. Each point represents a single workload, with each 
parameter value randomly chosen from its entire range shown in 
Fig. 17. The closer the points lie to the solid line, the better the 
prediction accuracy. Median error is 10%. Performance for each 
workload ranges from 0.2 to 3.0 MBls. For comparison, we show 
the single-performance point predicted by Andrew, IOStone, and 
Bonnie (sequential block write), and Sdet as horizontal dashed 
lines. Clearly these single point benchmarks do not predict the 
performance of many workloads. 

same performance. For example, Andrew’s workload and 
IOStone’s workload both yield performance of 1.25 MB/s, 
leading to a median prediction error of 50%. Bonnie’s 
sequential block write yields a performance of 0.32 MB/s, 
for a median prediction error of 65%. These are shown by 
the dashed lines in Fig. 20. 

The accuracy of our predictions has two important rami- 
fications. First, it renders the graphs from the Self-Scaling 
Benchmark much more useful, since they can be used 
to estimate performance for other workloads. Second, it 
supports the assumption of shape independence; the shape 
of each graph in Fig. 17 is approximately independent of 
the values of the other parameters. 

X. SUMMARY 
YO performance, long neglected by computer architects 

and evaluators [ 181, is rapidly becoming an area of impor- 
tant research activity. As CPU and memory speed increases 
continue to outstrip VO speed increases, this trend will 
continue and accelerate. VO performance evaluation differs 
from other types of computer performance evaluation in 
several key ways: 

The main metric in processor evaluation is speed, or its 
reciprocal, time. In contrast, VO evaluation considers 
many more factors-capacity, reliability, and several 
composite metrics such as throughput-response time 
graphs. 
Researchers have been developing CPU benchmarks 
for many years. In contrast, U 0  benchmarks have only 

Fig. 21. Summary of median prediction errors. This table sum- 
marizes the prediction errors on all systems. “Enhanced Error” 
on all machines but the Convex refers to the prediction error on 
the sample of workloads not in the thrashing region between the 
file cache and disk locality regions. For the Convex, prediction 
error was most closely correlated with sizeMean, so enhanced error 
refers to points with sizes smaller than 300 kB. The last column in 
the table lists the inherent measurement error, which was measured 
by running the same set of random workloads twice and using one 
E n  to “predict” performance of the other run. 

recently begun to be of wider interest. As a result, VO 
benchmarks are not as mature as CPU benchmarks. 
VO performance, even more than CPU performance, 
depends critically on what workload is applied. Hence, 
the benchmarks evaluators use in measuring U0 per- 
formance is of primary importance. 
VO benchmarks must scale in order to remain relevant. 
Benchmarks generally require several years to become 
accepted. By this time, nonscaling benchmarks have 
been made nearly obsolete by the rapid increases in 
VO system capacity or other developments. Of the 
benchmarks described in this paper, TPC-B, Sdet, 
and LADDIS have the greatest chance of remaining 
relevant for many years due to how they scale the size 
of the benchmark according to the performance of the 
system. 

Storage systems are improving rapidly in some areas. 
Disks and tape systems are improving in capacity/cost; disk 
arrays are improving the available data and YO throughput; 
file caching and solid-state disks are improving response 
times for cacheable data. Overall, however, further innova- 
tion is needed to keep up with the incredible gains made 
in CPU performance. 

We have described a new approach to YO performance 
evaluation-the Self-scaling Benchmark with Predicted 
Performance. The Self-Scaling Benchmark scales automati- 
cally to current and future systems by scaling the workload 
to the system under test. It also gives insight on a machine’s 
performance characteristic by revealing its performance 
dependencies for each of five workload parameters. 

Predicted performance restores the ability to compare two 
machines on the same workload lost in the Self-Scaling 
Benchmark. Further, it extends this ability to workloads 
that have not been measured by estimating performance 
based on the graphs from the Self-Scaling Benchmark. We 
have shown that this prediction is far more accurate over a 
wide range of workloads than any single point benchmark. 

We hope this approach will help VO architects understand 
YO systems and will help direct their efforts in developing 
the next generation of storage systems. 
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