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1. INTRODUCTION

As processors continue to improve their performance faster than 1/0 devices

[Patterson et al. 1988], 1/0 will increasingly become the system bottleneck.

There is therefore an increased need to understand and compare the perfor-

mance of 1/0 systems, hence the need for I/O-intensive benchmarks. The

benefits of good benchmarks are well understood—when benchmarks are

representative of users’ applications, they channel vendor optimization and

research efforts into improvements that benefit users. Good benchmarks

assist users also in purchasing machines by allowing fair, relevant compar-

isons.

Recent efforts to standardize benchmarks, such as SPEC [Scott 1990] and

Perfect Club [Berry et al. 1989], have increased our understanding of comput-

ing performance and helped create a fair playing field on which companies

can compete. These standardization efforts have focused on CPU-intensive

applications, however, and intentionally avoided I/O-intensive applications.

In this article, we develop criteria for ideal 1/0 benchmarks and show how

current 1/0 benchmarks fall short of these. We describe a new approach to

1/0 benchmarks—a self-scaling benchmark, which dynamically adjusts its

workload to the system being measured, and predicted performance, which

estimates the performance for unmeasured workloads based on the perfor-

mance from a small set of measured workloads. The self-scaling benchmark

reports how performance varies with each of five workload parameters. This

helps evaluators to understand systems and helps users to choose systems

that perform well for their workload. Predicted performance allows perfor-

mance evaluators to accurately estimate the performance one could expect on

a workload different than the exact ones measured in standard benchmarks.

2. THE IDEAL 1/0 BENCHMARK

In this article, an 1/0 benchmark measures the data 1/0 performance seen

by an end user issuing reads and writes. Specifically, we m-e not trying to

measure the performance of file system commands, such as deleting files,

making directories, or opening and closing files. This definition dictates that

we issue user 1/0 requests, which in UNIX typically go through the file or

buffer cache.

The ideal 1/0 benchmark will have several characteristics. First, a bench-

mark should help system designers and users understand why the system

performs as it does. Computer architects and operating system programmers

need benchmarks to evaluate design changes and isolate reasons for poor

performance. Users should be able to use benchmarks as well to understand

optimal ways to use the machine. For instance, if a user wanted to avoid

thrashing the file cache, the ideal 1/0 benchmark should be able to provide

information on the file cache size for any machine. This criteria may require

reporting results for several different workloads, enabling the user to com-
pare these results. These multiple workloads should require little human

interaction to run.
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Second, to maintain the focus of measuring and understanding 1/0 sys-

tems, an 1/0 benchmark should be 1/0 limited. By our definition of an 1/0

benchmark, this implies that most of the time should be spent doing data

1/0. In systems that mask response time with read prefetching or write-

behind, 1/0 limited implies that taking out all the reads and writes should

decrease running time more than taking out all non-I/O components.

Third, the ideal 1/0 benchmark should scale gracefully over a wide range

of current and future machines. Without a well-planned scaling strategy,

1/0 benchmarks become obsolete quickly as machines evolve. For instance,

IOStone tries to exercise the memory hierarchy but touches only 1 MB of

user data. Perhaps at the time IOStone was written 1 MB was a lot of data,

but no longer. One recent example of how 1/0 systems are evolving is disk

arrays [Patterson et al. 1988]. Disk arrays allow multiple 1/0s to be in

progress simultaneously. Most current 1/0 benchmarks do not scale the

number of processes issuing 1/0, and hence are unable to properly stress

disk arrays. Unfortunately, it is difficult to find widespread agreement on a

scaling strategy, especially for benchmarks intended for a wide range of

audiences.

Fourth, a good 1/0 benchmark should allow fair comparisons across ma-

chines. This comparison has two aspects. First, a fair comparison

across machines should be able to be made for 1/0 workloads identical to the

benchmark. However, users rarely have the same workload as a standard

benchmark. Thus, it should be possible also to use the results from a

benchmark to make meaningful comparisons for workloads that differ from

the benchmark.

Fifth, the ideal 1/0 benchmark would be relevant to a wide range of

applications. It is certainly easier to target a benchmark to a specific audi-

ence, but it would be better for a benchmark to be usable by many audiences.

Finally, for results to be meaningful, benchmarks must be tightly specified.

Results should be reproducible; optimizations that are allowed and disal-

lowed must be explicitly stated; the machine environment on which the

benchmarking takes place must be well defined and reported, and so on. In

this article, we leave this aspect of benchmarking to standardization organi-

zations such as SPEC [Scott 1990] and the Transaction Processing Perfor-

mance Council [ 1989; 1990].

In summary, the six characteristics of the ideal 1/0 benchmark are as

follows: it should help in understanding system performance; it should be

1/0 limited; it should scale gracefully over a wide range of current and future
machines; it should allow fair comparisons across machines; it should be

relevant to a wide range of applications; and it should be tightly specified.

3. CURRENT 1/0 BENCHMARKS

In this section, we examine current benchmarks used to evaluate 1/0 sys-

tems. The benchmarks we consider are Andrew [Howard et al. 1988], TPC-B

[Anon et al. 1985; TPPC 1989; 19901, Sdet [Gaede 1981; 1982; SPEC 1991b;
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Fig. 1. Current state of 1/0 benchmarks. In this figure, we show a qualitative evaluation of

benchmarks used today to evaluate 1/0 systems. We see that several are not I/O bound and

that most donotprovide understanding of the system, lack awell-defined scaling strategy, and

are not generally applicable. The percent time spent in 1/0 was measured on the DECstation

5000/200 of Figure 2. LADDIS was not available for execution at this time, but a prerelease beta

version spends 6396 of its execution time doing reads and write; the rest of the time is spent in

other NFS operations, such as lookup (17Yo) andgetattr (6%),

1991a], Bonnie [Bray 1990], and IOStone [Park and Becker 1990].1 Of these,

only Bonnie and IOStone specifically focus on measuring 1/0 performance.

Andrew is meant as a convenient yardstick for measuring file system perfor-

mance; TPC-B is a transaction-processing benchmark; Sdet, part of the SPEC

System Development Multiuser (SDM) Suite, is designed to measure system

throughput in a multitasking software development environment. Although

some of these benchmarks are not focused solely on measuring 1/0 perfor-

mance, they are nonetheless used today in 1/0 performance evaluation. In

applying our list of benchmark goals from the previous section to current 1/0

benchmarks, we see that there is much room for improvement. We show a

qualitative evaluation of today’s 1/0 benchmarks in Figure 1 and make the

following observations:

—Many 1/0 benchmarks are not I/O limited. On a DECstation 5000/200

(Figure 2) running the Sprite operating system [Ousterhout et al. 1988],

Andrew, Sdet,2 and IOStone spend 25% or less of their time doing 1/0.

1 LADDIS, a new benchmark being developed under SPEC, is not yet available for public

performance disclosure. We include it in our qualitative critique of benchmarks, however (Figure

1). The only other 1/0 benchmark known to the authors is the AIM III Suite, whose code was not

available. The AIM III suite is similar to Sdet in that it scales the number of scripts running in

parallel but no other workload parameter. Each simultaneously running script uses 3.5 MB.

2 This refers to Sdet running at the peak throughput concurrency level of 5.
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SystemName
Year Released

CPU
SPECmarks
Disk System

I/o Bus
Mere. Peak Speed

Memory Size
Operating System

SPARCstation 1+
1989

SPARC
8.3

CDC Wren IV
SCSI-I

80 ~/S

28 MB
SunOS4.1

DECstation 5000f100
1990

MIPS R3000
19.9

3 Wrens (RAID O)
SCSI-I

100 MB/s
32 MB

Sprite LFS

HP 730
1991

PA-RISC
76.8

HP 1350SX
Fast SCSI-II

264 MB/s
32 MB

HP/UX 8.07

SystemName Convex C240 Solboorne 5EP05
Year Released 1988 I 1991

CPU
speed

Disk System
Ml Bus

Mere. Peak Speed
Memory Size

Operating System

C2 (4 processors) SPARC (5 processors)
220 MIPs 22.8 SPECint

4 DKD-502 RAID 5 2 ScagateIPI
IPI-2 LPI-2

200 MB/s 128 ~/S

1024 MB 384 MB
ConvexOS 10.1 (BSD derived) SunOS4. lA.2 (revised)

Fig. 2. System platforms. This table shows the five systems on which we run benchmarks. The

DECstation [DEC 1990] uses a three-disk RAID disk array [Patterson et al. 1988] with a 16-KB

striping unit [Chen and Patterson 1990] and is configured without redundancy, The SPECmark

rating is a measure of the processor speed; ratings are relative to the speed of a VAX 11/780.

The full name of the HP 730 is the HP Series 700 Model 730 [Hewlett-Packard 1992].

Further, many of the benchmarks touch very little data. IOStone touches

only 1 MB of user data; Andrew touches only 4.5 MB.

—Today’s 1/0 benchmarks do not help much in understanding system

performance. Andrew and IOStone give only a single bottom-line perfor-

mance result. TPCB and Sdet fare somewhat better by showing the user

system performance under various loads. Bonnie begins to help the user

understand performance by running six different workloads. These work-

loads show the performance differences between reads versus writes and

block versus character 1/0, but do not vary other aspects of the workload,

such as the number of 1/0 occurring in parallel.

—Most of today’s I/O benchmarks have no general scaling strategy. Several

make no provision for adjusting the workload to stress machines with

larger file caches, for example. Without a well-defined scaling strategy,

1/0 benchmarks grow obsolete quickly. Several exceptions are notable.

TPC-B has an extremely well-defined scaling strategy, made possible by
TPC-B’S narrow focus on debit-credit style transaction processing and the

widespread agreement on how databases change with increasing database

throughput. Sdet has a superior scaling strategy also, varying the number

of simultaneously active scripts until the peak performance is achieved.

This idea of scaling aspects of the workload automatically is a major

improvement over single-workload benchmarks. However, Sdet does not

scale any other aspects of the benchmark, such as request size or read/write

ratio. LADDIS, when formally defined, will likely have a scaling strategy
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similar to Sdet. It will probably scale a few workload parameters, such as

disk space or number of clients, but will leave other parameters fixed.

—Today’s 1/0 benchmarks make fair system comparisons for workloads

identical to the benchmark but do not help in drawing conclusions about

the relatiwe performance of machines for other workloads. Itwould be useful

if results form the benchmark could be applied to a wider range of

workloads.

—Today’s 1/0 benchmarks focus on a narrow application range. F’or exam-

ple, TPC-B is intended solely for benchmarking debit-credit transaction-

processing systems.

4. A NEW APPROACH FOR 1/0 BENCHMARKS —AN OVERVIEW

We propose two new ideas in 1/0 benchmarks. First, we propose a bench-

mark that scales its workload automatically to the system being measured.

During evaluation, the benchmark explores the workload space automati-

cally, searching for a relevant workload on which to base performance graphs,

Because the base workload resulting from self-scaling evaluation depends

on the characteristics of each system, we lose the ability to directly compare

performance results for multiple systems. We propose using predicted perfor-

mance to restore this ability. E’redicted performance uses the results of the

self-scaling benchmark to estimate performance for unmeasured workloads.

The ability to accurately estimate performance for arbitrary workloads has

several advantages. l?irst, it allows fairer comparisons to be drawn between

machines for their intended use—today, users are forced to apply the relative

performance from benchmarks that may be quite different from their actual

workload. Second, the results can be applied to a much wider range of

applications than today’s benchmarks. Of course, the accuracy of the predic-

tion determines how effectively prediction can be ulsed to compare systems.

We explore the method and accuracy of prediction in Section 9.

5. WORKLOAD MODEL

The workload that the self-scaling evaluation uses is characterized by five

parameters. These parameters lead to the first-order performance effects in

1/0 systems. See Figure 4 for examples of each parameter.

(1) uniquel+lytes-the number of unique data bytes read or written in a
workload, essentially the total size of the data.

(2) sizeMean—the average size of an I\O request. We choose sizes from a
normal distribution with a coefficient of variation equal to 1.

(3) readFrac—the fraction of reads; the fraction of writes is l-readFrac.

(4) seqFrac—the fraction of requests that follow the prior request sequen-

tially. For workloads with multiple processes, each process is given its

own thread of addresses.

(5) prcwessNum—the concurrency in the workload, that is, the number of
processes simultaneously issuing 1/0.

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994,



314 . P. M. Chen and D, A. Patterson

Fig, 3. Representativeness of work-

load. This table shows how accurately

our synthetic workload mimics the per-

formance of two I/O-bound applica-

tions, Sort and TPC-B. All runs were

done on a DECstation 5000 running

Sprite. The input to sort was four files

totaling 48 MB.

Application Throughput ResponseTime
sort 0.20 MB/s 11.7 ms

Workload Model 0.20 MB/s 11.0 ms
TPC-B 0.13 MB/s 14.0 ms

Workload Model 0.13MB/s 12.3 ms

In this article, a workload refers to a user-level program with parameter

values for each of the above five parameters. This program spawns and

controls several processes if necessary.

The most important question in developing a synthetic workload is the

question of representativeness [Ferrari 1984]. A synthetic workload should

have enough parameters such that its performance is close to that of an

application with the same set of parameter values.3 TO show that our

workload captures the important features of an 1/0 workload, Figure 3

compares the performance of two I/O-bound applications to the performance

of the synthetic workload with those two applications’ parameter values. We

see that both Sort and TPC-B can be modeled quite accurately. Throughput

and response time are both accurate within a few percent. This accuracy

increases our confidence that the parameters of the synthetic workload

capture the first-order performance effects of an 1/0 workload.

6. SINGLE-PARAMETER GRAPHS

Most current benchmarks report the performance for only a single workload.

The better benchmarks report performance for multiple workloads, usually in

the form of a graph. TPC-B and Sdet, for example, report how performance

varies with load. But even these better benchmarks do not show in general

how performance depends on parameters such as request size or the mix of

reads and writes.

The main output of our self-scaling benchmark is a set of performance

graphs, one for each parameter (uniqueBytes, sizeMean, readFrac, process-

Num, and seqFrac) as in Figure 4. While graphing one parameter, all other

parameters remain fixed. The value at which a parameter is fixed while

graphing other parameters is called the focal point for that parameter. The
vector of all focal points is called the focal uector. In Figure 4, for example,

the focal vector is {uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = O,

processNum = 1, seqFrac = O}. Hence, in Figure 4(a), uniqueBytes is varied

while the sizeMean = 10 KB, readFrac = O, processNum = 1, and seqFrac

= o.

3 Of course, given the uncertain path of future computer development, it is impossible to

determine a priori all the possible parameters necessary to ensure representativeness. Even for

current systems, it is possible to imagine 1/0 workloads that interact with the system in such a

way that no synthetic workload (short of a full trace) could duplicate that 1/0 workload’s

performance,

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.
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3 3

I

(d) processNum

Fig.4. Results from aself-scaling benchmark that scales allparameters. Inthisfi~re, we show

results from a self-scaling benchmark of a SPARCstation 1 with 28 MB of memory and a single

SCSI disk. The benchmark reports the range of workloads, shown as the shaded region, which

perform well on this system, For example, this SPARCstation performs well ifthe total number

of unique bytes touched is less than 20 MB. It also shows how performance varies with each

workload parameter. Each graph varies exactly one parameter, keeping all other parameters

fixed attheir focal point. Forthesegraphs, the focal point isthepoint atwhich all parameters

are simultaneously at their 7570 performance point. The 75V0 performance point for each

parameters defined to be the least restrictive workload value that yields at least 75% of the

maximum performance. The range of workloads which perform well (shaded) is defined as the

range of values that yields at least 7570 of the maximum performance, The 75~0 performance

point found by the benchmark for each parameter is uniqueBytes = 21 MB, sizeMean = 10 KB,

readFrac = O, processNum = 1, seqFrac = O.

Figure 5 illustrates the workloads reported by one set of such graphs for a

three-parameter workload space. Although these graphs show much more of

the entire workload space than current benchmarks, they still show only

single-parameter performance variations; they do not display dependencies

between parameters. Unfortunately, completely exploring the entire five-

dimensional workload space requires far too much time. For example, an

orthogonal sampling of six points per dimension requires 65, almost 8000,

points. On the Sprite DE Citation, each workload takes approximately 10
minutes to measure; thus 8000 points would take almost 2 months to gather!

In contrast, measuring six points for each graph of the five parameters

ACM Transactions on Computer Systems, Vol. 12, No, 4, November 1994.
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Fig. 5, Workloads reported by a set of focal point

single-parameter graphs. This figure

illustrates the range of workloads

reported by a set of single-parameter
proce.ssNum

graphs for a workload of three parame-

ters.
w

/——–—–—–— –
/ /

sizeMwn

reacwac

requires only 30 points and 5 hours. The usefulness of these single-parameter

graphs depends entirely on how accurately they characterize the performance

of the entire workload space. In the section on predicted performance we

shall see that, for a wide range of 1/0 systems, the shapes of these perfor-

mance curves are relatively independent of the specific values of the other

parameters.

7. FIRST TRY — SELF-SCALING ALL WORKLOAD PARAMETERS

A self-scaling benchmark is one that adjusts the workloads that it runs and

reports based on the capabilities of the system being measured. Sdet and

TPC-B both do this for one aspect of the workload, that is, load (processNum)

[SPEC 1991a; TPPC 1990]. Sdet reports the maximum throughput, which

occurs at different loads for different systems. TPC-B reports maximum

throughput subject to a response time constraint; this also occurs at different

loads for different systems. This section describes our first attempt to create a

self-scaling benchmark by generalizing this type of scaling to all workload

parameters.

The basic idea behind TPC-B and Sdet’s attempts to avoid obsolescence is

to scale one aspect of the workload load, based on what performs well on a

system. Similarly, as we vary any one of our five workload parameters

(uniqueBytes, sizeMean, readFrac, processNum, and seqFrac), we can search
for a parameter value that performs well on the system. Of course, the

parameter value must be practically achievable (this rules out infinitely large

request sizes and extremely small values for uniqueBytes). One way to choose

this value is to look for a point in a parameter’s performance curve that gives

good, but not maximum, performance. In this section, we set this performance

point at 75% of the maximum performance.

Using a simple iterative approach, it is possible to find a focal vector for

which each workload parameter is simultaneously at its 75% performance

point [Chen 1992]. Figure 4 shows results from a benchmark that self-scales

all parameters. The system being measured is the one-disk SPARCstation of

Figare 2. In Figure 4 the shaded region on each graph is the range of

workloads that perform well for this system, that is, the workload values that

yield at least 75% of the maximum performance. When a parameter is varied,

ACM Transactions on Computer Systems, Vol. 12, No. 4, November 1994.
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the other parameters are fixed at their focal point chosen by the benchmark

(uniqueBytes = 21 MB, sizeMean = 10 KB, readFrac = O, processNum = 1,

seqFrac = O). These are the least restrictive values in the range of work-

loads that perform well. Conclusions that these results help us reach about

this system are as follows:

—The effective file cache size is 21 MB. Applications that have a working set

larger than 21 MB will go to disk frequently.

—1/0 workloads with larger average sizes yield higher throughput. To get

reasonable throughput, request sizes should be at least 10 KB but no

larger than 200 KB. This information may help operating system program-

mers choose the best block size.

—Workloads with almost all reads perform slightly better than workloads

with more writes, but there is not much difference.

—Increasing concurrency does not improve performance. A.s expected, with-

out parallelism in the disk system, workload parallelism is of little value.

—Sequentiality does not affect performance at the global 75% performance

point.

Self-scaling all parameters gives interesting results andl helps us under-

stand a system. However, there are several problems with self-scaling all

workload parameters. First, the iterative process of finding the global 7590

performance point may be slow. Second, there are really two criteria in

choosing the focal vector point for a parameter. Take readFrac as an example.

The first criterion is what has been mentioned above—scaling readFrac to

the value that performs well on this system. But, there is also a second

criterion: the performance curves while readFrac is at its focal point should

apply to workloads where readFrac differs from its focal point. In other words,

the shape of the performance curves at the focal point of readFrac should be

representative of the shape of the performance curves at other values of

readFrac. This can preclude choosing an extreme value. To illustrate, if reads

were 100 times faster than writes, self-scaling all parameters might pick

readFrac = 1.0 as the focal point. But, readl?rac’s focal point of 1.0 may yield

performance graphs for the other parameters that do not apply to workloads

with some writes. It would be better to pick an intermediary value as the

focal point than the 759. performance point. In fact, as we shall see in the

section on predicted performance, general applicability is a more important

criterion than scaling to what performs well, because, if the shape of the

performance curve is generally applicable, we can use it to estimate perfor-

mance for any workload.

The third problem is that the uniqueBytes parameter often has distinct

performance regions. These regions correspond to the various storage hierar-

4 Least restrictive refers to workloads that are either easier for programmers to generate or

easily transformable from more restrictive workloads. For instance, programmers can always

break down a large request into several, smaller requests; thus smaller sizes are less restrictive

than larger sizes.
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chies in the system. In Figure 4(a), uniqueBytes smaller than 21 MB uses the

file cache primarily, while uniqueBytes larger than 21 MB uses the disk

primarily. When uniqueBytes is on the border between the file cache and

disk region, performance is often unstable—small changes in the value of

uniqueBytes can lead to large changes in performance. The 75% performance

point is usually on the border between the storage hierarchy regions, so

choosing the focal point for uniqueBytes to be that point makes it likely that

performance will be unstable. Graphing in the middle of a hierarchy level’s

performance region should be more stable than graphing on the border

between performance regions. Another problem that arises from the storage

hierarchy regions is that each level of the storage hierarchy may give

different performance shapes. Figure 8 shows how, depending on the storage

hierarchy region, reads may be faster than writes (uniqueBytes 15 MB),

slower than writes (uniqueBytes 36 MB), or about the same speed as writes

(uniqueBytes 2MB).

8. A BETTER SELF-SCALING BENCHMARK

There are a variety of solutions to the problems listed above. For the distinct

performance regions uncovered by uniqueBytes, we measure and report

multiple families of graphs, one family for each performance region (Figure 4

reported a single family of graphs). For instance, the first family of graphs is

shown in Figure 7(a)–(d) and has uniqueBytes = 12 MB. The second family of

graphs, shown in Figare 7(fl-(i), has a separate focal point with uniqueBytes

= 42 MB. The self-scaling benchmark delineates performance by measuring

the slope of the uniqueBytes curve (Figare 6).

To improve general applicability of the graphs, we choose the focal point of

each parameter to be more in the “middle” of its range. For parameters such

as readFrac and seqFrac, the range is easily defined (O to 1); hence a

midpoint of 0.5 is the chosen focal point. The remaining parameters are

uniqueBytes, sizeMean, and processNum. For each performance region, the

focal point for uniqueBytes is set at the middle of that region. For the last two

parameters, sizeMean and processNum, the focal point is set at the value

that yields performance half-way between the minimum and maximum.

After these solutions and modifications the revised program is called

simply the self-scaling benchmark.

8.1 Examples

This section contains results from running the self-scaling benchmark on the

five systems described in Figure 2.

8.1.1 SPARCstation 1 +. Figure 7 shows results from the self-scaling

benchmark on the SPARCstation 1 +. The uniqueBytes values that character-

ized the two performance regions are 12 MB and 42 MB. Figure 7(a)–(d) show

the file cache performance region, measured with uniqueBytes = 12 MB.

Figure 7(f)-(i) show the disk performance region, measured with uniqueBytes

= 42 MB. In addition to what we learned from our first self-
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average slope Fig. 6. Slope of uniqueBytes curve for

SPARCstation 1+. This figure plots the slope

of the uniqueBytes curve (Figure 7). The one

area of the graph with slope below the aver-

age slope (–0.06 per second) is near 20 MB.
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scaling benchmark, we see the following:

—Larger request sizes yield higher performance. This effect is more pro-

nounced in the disk region.

—Reads are faster than writes, even when all the data fits in the file cache

(Figure 7(b)). Although the data fits in the file cache, writes still cause
i-node changes to be written to disk periodically for reliability in case of a

system crash. This additional overhead for writing causes writes to be

slower than reads.

—Sequentiality offers no benefit in the file cache region (Figure 7(d)) but

offers substantial benefit in the disk region (Figure 7(i)).

8.1.2 DECstation 5000/200, Figure 8 shows selected self-scaling bench-

mark results for the DECstation 5000/200 (a full set of graphs are in the

Appendix, Figures 18 and 19). The unique13ytes graph (Figure 8(a)) shows

three performance plateaus, uniqueBytes = O to 5 MB, uniqueBytes = 5 to 20

MB, and uniqueBytes >20 MB. Thus, the self-scaling benchmark gathers

three sets of measurements: at uniqueBytes 2 MB, 15 MB, and 36 MB. The

most interesting phenomenon involves readFrac (Figure 8(b)).

In the first performance level (uniqueBytes = 2 MB), reads and writes are

the same speed. At the next performance level (uniqueBytes = 15 MB), reads

are much faster than writes. This is due to the effective write cache of

Sprite’s LFS being much smaller than the read cache, so reads are cached in

this performance region while writes are not. The write cache of LFS is

smaller because LFS limits the number of dirty cache blocks to avoid dead-

lock during cleaning. The effective file cache size for writes is only 5-8 MB,

while for reads it is 20 MB (personal communication, M. Rosenblum, July

1992).5 In contrast, when uniqueBytes is large enough to exercise the disk for

both reads and writes, writes are faster than reads. This phenomenon is due

5 The default limit was tuned for a machine with 128 MB of memory; in production use, this limit

would be changed for the 32-MB system being tested.
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Fig. 7. Results from a better self-scaling benchmark of a SPARCstation 1+. This figure shows

results from the revised self-scaling benchmark of a SPARCstation 1 +. The focal point for

uniqueBytes is 12 MB in graphs (a)–(d) and 42 MB in graphs (O–(i). For all graphs, the focal

points for the other parameters is sizeMean = 20 KB, readFrac = 0.5, processNum = 1, seqFrac

= 0.5. Increasing sizes improve performance, more so for disk accesses than file cache accesses

(Figures (a) and (f)). Reads are faster than writes, even when data is in the file cache. This is

because inodes must still go to disk. Sequentially increases performance only for the disk region

(Figure (i)).
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Fig.8. Selected results from self-scaling benchmark of DECstation 5000/200. Inthisfigure, we

show selected results from the revised self-scaling benchmark of the DECstation 5000/200.

Graph (a)shows three plateaus inunqiueBytes, duetothe different effective file cache sizes for

reads and writes. The focal points chosen for uniqueBytes are 2 MB, 15 MB, and 36 MB. The

focal points for the other parameters are sizeMean =40 KB, readFrac =0,5, processNum= 1,

seqFrac = 0.5. Note in graph(b) how reads are much faster than writes at uniqueBytes 15 MB,

slightly slower than writes at uniqueBytes 36 MB, and approximately the same speed at

uniqueBytes 2 MB. These results helped us understand that, due to the default limit on the

number ofdirty file cache blocks allowed, the effective file cache size for writes was much smaller

than the file cache size for reads.

to Sprite’s LFS, which improves write performance by g~ouping multiple

small writes into fewer large writes [Rosenblum and Ousterhout 1991].

8.1.3 HP 730, Convex C’240, Solbourne 5E/905. Figures 9 and 10 give

selected graphs from self-scaling benchmark runs on an HP 730, Convex

C240, and Solbourne 5E/905 (complete results for these malchines, as well as

results for two client-server file systems, can be found in the Appendix). In

this section, we highlight some insights gained from these benchmark results.

Figure 10 shows that the HP 730’s file cache, though (extremely fast, is

quite small (3 MB). The HP/UX operating system severely limits the memory

available to the file cache. SunOS maps files into virtual memory, which

allows the file cache to fill the entire physical memory. HP,IUX, on the other

hand, reserves a fixed amount of space, usually 10%, as the file cache. Since

this system has 32 MB of main memory, the file cache is approximately 3 MB.

The self-scaling benchmark thus uses two focal points, uniqueBytes = 2 MB

and uniqueBytes = 8 MB. Note the high throughput of the HP 730 when

accessing the file cache, peaking at almost 30 MB\s for large accesses. This

high performance is due to the fast memory system of the HP 730 (peak

memory bandwidth is 264 MB/s) and to the use of a VLSI memory controller

to accelerate cache memory write backs [Horning et al. 1991].

Figures 9(a) and 10 shows results from the self-scaling benchmark of a

Convex C240. The curves are similar to the SPARCstation 1+, with three

main differences:

(1) Absolute performance is very high. File cache performance reaches 25
MB/s (Figure 21); disk performance reaches almost 10 MB/s (Figure 10).
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Fig. 9. Selected results from Convex, Solbourne and an unannounced system. This figure gives

selected results from running the self-scaling benchmark on a Convex C240, a Solbourne

5E/905, and an unannounced system. Figure (a) shows how the performance on the Convex

continues to improve with larger sizes, even to average sizes of 1 MB. Figures (b) and (c) show

how writes in the these systems’ file caches are much slower than reads, possibly due to a

write-through file cache. For all these systems, the focal point chosen by the benchmark was

readFrac 0.5, seqFrac 0.5, processNum 1. The focal points for size were 120 KB for the Convex,

45 KB for the Solbourne, and 40 KB for the unannounced system.

(2)

(3)

This high performance is due to Convex’s 200 MB/s memory system and

performance-focused (as opposed to cost performance) implementation.

The effective file cache for the Convex is 800 MB. This is due to the 1 GB

of main memory resident on the computer and an operating system that
gives the file cache use of the entire main memory.

Disk performance continues to improve with increasing request size until

requests are 1 MB (Figure 9(a)), while most other computers reach their

peak performance with sizes of a few hundred kilobytes.

Figures 9(b) and 10 shows self-scaling benchmark results for the Solbourne

5E/905. We see two differences from the other graphs.

(1) The file cache is quite large, about 300 MB (Figure 10(b)). This matches
our expectations, since the main memory for this system is 384 MB.
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Fig. 10. Summary of performance of all systems. This figure compares performance for each of

our five experimental platforms plotted against uniqueBytes, Remember that the self-scaling

evaluation chooses a different workload for each machine; each system in this figure is graphed

at different values of sizeMean. Note that the X axis is graphed in log scale. The HP 730 has the

best file cache performance but the smallest file cache; the Convex C240 has the best disk

performance.

(2) When accessing the file cache, writes are much slower than reads (Figure
9(b)). It appears that the Solbourne file cache uses a writing policy,

possibly write-through, that causes writes to the file cache to perform at

disk speeds. Because writes have essentially no benefit from the file

cache, performance when varying uniqueBytes changes more gradually

than for the other systems. This effect is even more pronounced in an

unannounced system running a beta release operating system (Figure

9(c)). We notified the operating system developers of this performance

problem, and they expect to fix it in forthcoming versions.

Figure 10 compares performance for each of our five experimental plat-

forms plotted against uniqueBytes. Remember that the self-scaling evalua-
tion chooses a different workload for each machine; each system in Figure 10

is graphed at different values of sizeMean. The HP 730 has the best file cache
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performance but the smallest file cache; the Convex C240 has the best disk

performance.

9. PREDICTED PERFORMANCE

The self-scaling benchmark increases our understanding of a system and

scales the workload to remain relevant. However, it complicates the task of

comparing results from two systems. The problem is the benchmark may

choose different workloads on which to measure each system. Also, though

the output graphs from a self-scaling evaluation apply to a wider range of

applications than today’s 1/0 benchmarks, they stop short of applying to all

workloads. In this section, we show how predicted performance solves these

problems by enabling us to estimate the 1/0 performance accurately for

arbitrary workloads based on the performance of a small set of measured

workloads (that is, those measured by the self-scaling evaluation).

A straightforward approach for estimating performance for all possible

workloads is to measure a comprehensive set of workloads. However, measur-

ing all possible workloads is not feasible within reasonable time constraints.

A more attractive approach is to use the graphs output by the self-scaling

evaluation (such as Figure 7) to estimate performance for unmeasured work-

loads. This is similar in concept to work done by Saavedra-Barrera et al.

[1989], who predict CPU performance by measuring the performance for a
small set of Fortran operations.

We estimate performance for unmeasured workloads by assuming that the

shape of a performance curve for one parameter is independent of the values

of the other parameters. This assumption leads to an overall performance

equation of Throughput(X, Y, Z .“” ) = fx(X) x fy(Y) x fz(Z) “.” , where

X, Y, Z,... are the parameters. Pictorially, our approach to estimating perfor-

mance for unmeasured workloads is shown for a two-parameter workload in

Figure 11. In the self-scaling evaluation, we measure workloads with all but

one parameter fixed at the focal point. In Figure 11, these are shown as the

solid-line throughput curves Throughput processNum, sizeMean ~) and

Throughput processNum ~, si.zeMean), where processNum ~ is processNum’s
focal point and sizeMean~ is sizeMean’s focal point. Using these measured

workloads, we estimate performance for unmeasured workloads

Throughput processNum, sizeMeanl) by assuming a constant ratio between

Throughput processNum, sizeMean ~) and Throughput processNum,

sizeMeanl). This ratio is known at processNum = processNum~ to be

Throughput processNum ~, sizeMean ~)/ Throughput processNum ~,sizeMeanl).

To measure how accurately this approximates actual performance, we mea-

sured 100 workloads, randomly selected over the entire workload space (the

range of each parameter is shown in Figure 7).

Figure 12 shows the prediction accuracy of this simple product-of-single-

variable-functions approach. WJe see that, over a wide range of performance

(0.2 MB/s to 3.0 MB/s), the predicted performance values match extremely
well to the measured results. Fifty percent of all workloads have a prediction

error of 10% or less; 759?0 of all workloads had a prediction error of 159Z0 or
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Fig. 11. Predicting performance of unmeasured workloads. In this figure, we show how to

predict performance with a workload of two parameters, processNum and sizeMean. The solid

lines represent workloads that have been measured; the dashed line represents workloads that

are being predicted. The left graph shows throughput graphed against processNum with size-

Ntean fixed at sizeMeanf. Theright paphshows throughput versus size&Iean with processlVum

fixed at processNumF. Wepredict thethroughput curve versus processNum with sizeMean fixed

at sizeMeanl by assuming that Throughput processNum, sizeMean f )/ Throughput( prOcessNum,

sizeMeanl ) is constant (independent of processNum) and fixed at Throughput

( processNum f, sizeMean ~)/Throughput( processNumf, sizel!kanl ).
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Fig. 12. Evaluation of prediction accuracy for SPARCstation 1 + with 1 c[isk. This figure graphs

the predicted performance against the actual (measured) performance for the SPARCstation in

Figure 7. Each point represents a single workload, with each parameter value randomly chosen

from its entire range shown in Figure 7, The closer the points lie to the solid line, the better the

prediction accuracy. Median error is 10%. Performance for each workload ranges from 0.2 MB/s

to 3.0 MB/s. For comparison, we show the single performance point predicted by Andrew,

IOStone, and Bonnie (sequential block write), and Sdet as horizontal dashed lines. clearly these
sing] e-point benchmarks do not predict the performance of many workloa~ds.
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Fig. 13. What parameters cause error? This figure shows the correlation between parameter
values and prediction error for the SPARCstation 1 +, Error is most closely correlated to the
value of uniqueBytes (the analogous graphs of error versus sizeMean, readFrac, processNum,
and seqFrac are flat by comparison). Prediction is particularly poor near the border between
performance regions. As expected, sharp drops in performance lead to unstable throughput and
poor prediction.

less. In contrast, any single-point 1/0 benchmark would predict all work-

loads to yield the same performance. For example, Andrew’s workload and

IOStone’s workload both yield performance of 1.25 MB/s, leading to a

median prediction error of 5070. Bonnie’s sequential block write yields a

performance of 0.32 MB/s, for a median prediction error of 657o. These are

shown by the dashed lines in Figure 12.

Where do the points of high error occur? Is there a correlation between

certain parameters and regions of high error? Figure 13 shows how median

error varies with each parameter. Error is most closely correlated to the value

of uniqueBytes. Prediction is particularly poor near the border between

performance regions. As expected, sharp drops in performance lead to unsta-

ble throughput and poor prediction. This confirms our use of two distinct

uniqueBytes regions for prediction versus a single focal point. Other

than uniqueBytes, prediction accuracy is fairly independent of the parameter
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Fig. 14. Prediction accuracy using interpo-

lation on an orthogonal sample, This figure

shows that interpolation using an orthogo-

nal sample gives poorer prediction than

does a prediction model based on products

of single-parameter functions. Even when

using twice as many workloads to do pre-

diction, median error is twice as high (22%).

values. Taking out the points of high error increases the prediction accuracy

significantly (Figure 24 in the Appendix).

A skeptic would claim that the enhanced accuracy over single-point bench-

marks is due entirely to using more points to make predictions, rather than

the validity of the product-of-independent-functions model. To rebut such a

claim, we show next the accuracy of predicting performance using more

workload points but not using the product-o f-single-parameter-functions ap-

proach. This prediction is done by using multidimensional interpolation orI an

orthogonal sampling of workloads. Orthogonal sampling means selecting a

fixed number of evenly spaced values from each parameter’s range and

measuring all combinations of workloads with those parameter values. For

example, assume that a workload consists of two parameters, readFrac,

ranging from O– 1, and uniqueBytes, ranging from 1 MB to 9 MB. Taking

three values from each parameter would lead to an orthogonal sampling of

nine total workloads of (readFrac, uniqueBytes) pairs: (O, 1 MB), (O, 5 MB),

(O, 9 MB), (0.5,1 MB), (0.5,5 MB), (0.5,9 MB), (1,1 MB), (1.,5 MB), and (1,9
MB),

For the SPARCstation 1+, our original approach of using a product of

single-parameter functions requires the 84 points, each taking approximately

10 minutes to measure, that are returned by the self-scaling benchmark.~ As

can readily be seen, orthogonal sampling inherently requires many more

6 Six of the nine graphs have 10 points each; one (uniqueBytes) uses 20 points; two (processNum)

use only two points each, due to the limited range of processNum.
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System
Median Enhanced Repeatability
Error Error Error

SPARCstation 1+ 10% 7% 2%
DECstat.ion500Q/200 12% 10% 3%

HP 730 13% 8% 3%

I Convex C240 14% 8% 5%

Fig. 15. Summary of median prediction errors, This table summarizes the prediction errors on

all systems. “Enhanced Error” on all machines but the Convex refers to the prediction error on

the sample of workloads not in the thrashing region between the file cache and disk locality

regions. For the Convex, prediciton error was most closely correlated with sizeMean, so enhanced

error refers to points with sizes smaller than 300 KB. The last column in the table lists the

inherent measurement error, which was measured by running the same set of random workloads

twice and using one run to “predict” performance of the other run.

points. Sampling three values per dimension requires 162 points.7 Figure 14

shows that even with twice as many points, interpolation using an orthogonal

sampling gives much worse prediction accuracy than does the product of

single-parameter functions: the median error using orthogonal sampling is

225% versus 107. using the product of single-parameter functions, and it

takes twice as long to collect the necessary information.

Figure 15 summarizes prediction accuracy for the other systems (Figure 24

shows the prediction scatter plots with enhanced accuracy). Median error is

low for all systems: 12% for the DECstation 5000/200, 13% for the HP 730,

and 149% for the Convex C240. Not including the points of highest error,

which in most systems is the border region between the file cache and disk,

median error drops to 7– 109?o.

Performance evaluators sometimes want to measure more than absolute

performance. Their end goal is often to compare two systems head to head,

generally as the ratio of performances. Once the self-scaling benchmark is

run on two systems, predicted performance can be used to estimate ratios for

arbitrary workloads without further measurement. Figure 17 shows the

accuracy of estimating the ratio of performance between our test systems

over a variety of workstation, scientific, and database 1/0 workloads, de-

scribed in Figure 16. In particular, note Figure 17(a), which compares the HP

730 and the Sprite DECstation 5000/200. Depending on the workload, the

HP can be three times faster to five times slower than the DECstation.

Predicted performance gives accurate estimates over this wide range of

ratios.

10. CONCLUSIONS

We have proposed a new approach to 1/0 benchmarking—self-scaling evalu-

ation and predicted performance. Self-scaling evaluation scales automatically

to all current and future machines by scaling the workload to the system

under test. It gives insight also on a machine’s performance characteristic by

revealing its performance dependencies for each of five workload parameters.

7 Normally this would be 35, or 243 points. However, due to the limited range of processNum,

only two points are required for this dimension, which brings the total required to 162.
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Title Example
umque w

Bytes (MB) Frac
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image

process
250 0.5 0.8
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100 1

database 500 0.1 0.2 LI 2

Fig. 16. Workloads to be run on all systems. This table describes the workloads we use when

comparing two systems.

Predicted performance restores the ability to compare two machines on the

same workload lost in the self-scaling evaluation. Further, it extends this

ability to workloads that have not been measured by estimiiting performance

based on the graphs from the self-scaling evaluation. We have shown that

this prediction is far more accurate over a wide range of workloads than any

single-point benchmark.

We believe self-scaling evaluation and predicted performance could fundam-

entally affect how manufacturers and users view 1/0 evaluation. First, it

condenses the performance over a wide range of workloads into a few graphs.

If manufacturers were to publish such graphs over a range of 1/0 options,

users could use predicted performance to estimate, without further measure-

ments, the 1/0 performance of their specific workloads.

Second, by taking advantage of the self-scaling evaluation’s ease of use,

manufacturers could easily evaluate many 1/0 configurations. Instead of

merely reporting performance for each 1/0 configuration on a few workloads,

the evaluation would report both the performance for many workloads and

the 1[/0 workloads that perform well under this configuration. Hence, manu-

facturers could better identify each product’s target application area. As the

price of each configuration is easily calculated, the price/performance of

systems that match the users needs are also easily calculated. This can help

buyers make choices such as many small disks versus a few large disks, more

memory, and a larger file cache versus faster disks, and so on.

Third, system developers could benefit by using the self-scaling evaluation

to understand the effects of any hardware and software changes. Unllike

traditional benchmarks, these effects would be shown in both the perfor-

mance and the workload selection from the self-scaling evaluation.

Future work for this research includes finding ways to shorten the running

time, feeding back information from predicted performance into which focal

points the self-scaling benchmark chooses, and, of course, running the bench-

mark on more systems, particularly network file servers and mainframes.
We look forward to having others try this evaluation tool on a variety of

systems. A copy of the benchmark is available for anonymous ftp on

ftp.cs.berkeley. edu under ucb/benchmarks/pmchen/benchmark.tar.Z.
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Fig. 17. Measured versus predicted ratio. This figures shows how accurately systems can be

compared using performance prediction. For comparison, the performance ratio given by Andrew

is shown as a dashed line. Predicting performance using the output of the self-scaling benchmark

captures this variability in the ratio of two systems’ performance in a way that no single-point

benchmark can.
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Fig. 18. Self-scaling benchmark for DECstation 5000/200—Part 1. This figure shows results

from the revised, self-scaling benchmark of the DECstation 5000/200. C,raph (e) shows three

plateaus in uniqueBytes, due to the different effective file cache sizes for reads and writes.

Graphs for the third plateau are shown in Figure 19. The focal point for uniqueBytes is 2 MIB in

graphs (a)–(d) and 15 MB in graphs (O–(i). For all graphs, the focal points for the ol;her

parameters is sizeMean = 40 KB, readFrac = 0.5, processNum = 1, seq.Frac = 0.5, Note how

reads can be faster than writes (g), slower than writes (Figure 19b), or the same speed (b).
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Fig, 19. Self-scaling benchmark for DE Citation 5000/200—Part 2. This figure continues the

results from the revised, self-scaling benchmark of the DE Citation 5000/200. The focal point for

these graphs is uniqueBytes = 36 MB, sizeMean = 40 KB, readFrac = 0.5, processNum = 1,

seqFrac = 0.5.
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Fig. 20. Self-scaling benchmark of HP 730. In this figure, we show results from the revised

self-scaling benchmark of the HP 730. The focal point for uniqueBytes is 1.8 MB in graphs (a)-(d)

and 8 MB in graphs (f!-(i). For all graphs, the focal points for the other Parameters are

sizeMean = 32 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. From graph (e), we see that

the file cache is much smaller than the main memory size would lead us to believe (3 MB instead

of 32 MB). Also note the extremely high performance, up to 30 MB/s, when, uniqueBytes is small

enough to fit in the file cache.
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Fig. 21. Self-scaling benchmark of Convex C240. In this figure, we show results from the

revised self-scaling benchmark of the Convex C 240. The focal point for unique Bytes is 450 MB in

graphs (a)–(d) and 1376 MB in graphs (O–(i). For all graphs, the focal points for the other

parameters is sizeMean = 120 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Note how

large the file cache is (800 MB), reflecting how much main memory the system has (1 GB). Also

note how large sizeMean grows before reaching its maximum performance (graphs (a) and (f)).
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Fig. 22. Self-scaling benchmark of Solbourne. In this figure, we show results from the revised

self-scaling benchmark of the Solbourne. The focal point for uniqueBytes is 180 MB in graphs

(a)-(d) and 540 MB in graphs (O-(i). For all graphs, the focal points for the other parameters is

sizeMean = 45 KB, readFrac = 0.5, processNum = 1, seqFrac = 0.5. Note how much slower

writes are than reads when using the file cache (graph (b)). Apparently, the cache write-back

policy on the Solbourne causes writes to perform at disk speeds even when accesses can be

satisfied by the file cache.
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Fig, 23, Self-scaling results for two client-server configurations. This figure shows the results

from a self-scaling benchmark of two client-server configurations, The configuration used in

graph (a) is an HP 720 client workstation accessing an HP 730 (same as Figure 2) file server

running DUX (HP’s Distributed Unix protocol). The configuration used in graph (b) is a

SPARCstation 1 + client workstation accessing a separate SPARCstation 1 + file server running

Sun’s NFS protocol. Both configurations use an ethernet network to connect the client and

server. The main reason the HP configuration gets much higher performance is that the DUX

protocol allows clients to cache both reads and writes, allowing 1/0s to proceed at memory

speeds rather than disk or network speeds.
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Fig. 24, Enhanced prediction accuracy. This figure shows the enhanced prediction accuracy

when the points of high error are taken out. For the SPARCstation 1 +, workloads with

uniqueBytes between 20 and 27 MB are taken out, and median error drops from 10% to 7 ‘ZO.For

the D:ECstation 5000/200, workloads with uniqueBytes between 5 and 10 MB are taken out, and

median error drops from 12V0 to 10%. For the HP 730, workloads with rmiqueBytes between 3

and 4 MB are taken out, and median error drops from 1370 to 8%. For the Convex C240,

workloads with very large mean sizes (greater than 300 KB) are taken out, and median error

drops from 14% to 87..
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