
Decoupling dynamic program analysis from execution in virtual
environments

Jim Chow Tal Garfinkel Peter M. Chen
VMware

Abstract
Analyzing the behavior of running programs has a wide
variety of compelling applications, from intrusion detec-
tion and prevention to bug discovery. Unfortunately, the
high runtime overheads imposed by complex analysis
techniques makes their deployment impractical in most
settings. We present a virtual machine based architec-
ture called Aftersight ameliorates this, providing a flex-
ible and practical way to run heavyweight analyses on
production workloads.

Aftersight decouples analysis from normal execution
by logging nondeterministic VM inputs and replaying
them on a separate analysis platform. VM output can
be gated on the results of an analysis for intrusion pre-
vention or analysis can run at its own pace for intrusion
detection and best effort prevention. Logs can also be
stored for later analysis offline for bug finding or foren-
sics, allowing analyses that would otherwise be unusable
to be applied ubiquitously. In all cases, multiple anal-
yses can be run in parallel, added on demand, and are
guaranteed not to interfere with the running workload.

We present our experience implementing Aftersight as
part of the VMware virtual machine platform and using it
to develop a realtime intrusion detection and prevention
system, as well as an an offline system for bug detec-
tion, which we used to detect numerous novel and seri-
ous bugs in VMware ESX Server, Linux, and Windows
applications.

1 Introduction
Dynamic program instrumentation and analysis en-

ables many applications including intrusion detection
and prevention [18], bug discovery [11, 26, 24] and
profiling [10, 22]. Unfortunately, because these anal-
yses are executed inline with program execution, they
can substantially impact system performance, greatly re-
ducing their utility. For example, analyses commonly
used for detecting buffer overflows or use of undefined
memory routinely incur overheads on the order of 10-

40x [18, 26], rendering many production workloads un-
usable. In non-production settings, such as program de-
velopment or quality assurance, this overhead may dis-
suade use in longer, more realistic tests. Further, the per-
formance perturbations introduced by these analyses can
lead to Heisenberg effects, where the phenomena under
observation is changed or lost due to the measurement
itself [25].

We describe a system called Aftersight that overcomes
these limitations via an approach called decoupled analy-
sis. Decoupled analysis moves analysis off the computer
that is executing the main workload by separating execu-
tion and analysis into two tasks: recording, where system
execution is recorded in full with minimal interference,
and analysis, where the log of the execution is replayed
and analyzed.

Aftersight is able to record program execution effi-
ciently using virtual machine recording and replay [4, 9,
35]. This technique makes it possible to precisely recon-
struct the entire sequence of instructions executed by a
virtual machine, while adding only a few percent over-
head to the original run [9, 35]. Further, as recording is
done at the virtual machine monitor(VMM) level, After-
sight can be used to analyze arbitrary applications and
operating systems, without any additional support from
operating systems, applications, compilers, etc.

Aftersight supports three usage models: synchronous
safety, best-effort safety, and offline analysis. First,
for situations where timely analysis results are critical
(e.g., intrusion detection and prevention), Aftersight ex-
ecutes the analysis in parallel with the workload, with
the output of the workload synchronized with the analy-
sis. This provides synchronous safety that is equivalent
to running the analysis inline with the workload. Sec-
ond, for situations that can tolerate some lag between the
analysis and the workload, Aftersight runs the analysis in
parallel with the workload, with no synchronization be-
tween the output of the workload and the analysis. This
best-effort safety allows the workload to run without be-

ing slowed by the analysis. Often analyses whose perfor-
mance impact would be prohibitive if done inline can run
with surprisingly minimal lag if run in parallel. Third,
Aftersight can run analyses offline for situations where
analyses are not known beforehand or are not time criti-
cal, such as when debugging.

Aftersight is a general-purpose analysis framework.
Any analysis that can run in the critical path of execution
can run in Aftersight, as long as that analysis does not
change the execution (this would break the determinism
that Aftersight’s replay mechanism relies upon). Also,
Aftersight makes the entire system state at each instruc-
tion boundary available for analyses, providing greater
generality than approaches based on sampling. Further,
logs originating from the VMM can be replayed and an-
alyzed in different execution environments(e.g., a sim-
ulator or VMM). This flexibility greatly eases program
instrumentation and enables a variety of optimizations.

We have implemented an Aftersight prototype on the
x86 architecture, building on the record and replay capa-
bility of VMware Workstation. Our framework enables
replay on the QEMU whole-system emulator, which sup-
ports easy instrumentation during replay and analysis.
With this framework, we have implemented an online
security analysis that can be used to detect buffer over-
flow attacks on running systems. We also implemented
an analysis that can perform checks for memory safety
and heap overflows, and we used this analysis to discover
several new and serious bugs in VMware ESX Server,
Linux, and Windows applications.

2 The case for decoupled analysis
Aftersight improves dynamic analysis by decoupling

the analysis from the main workload, while still provid-
ing the analysis with the identical, complete sequence of
states from the main workload. This combination of de-
coupling and reproducibility improves dynamic analysis
in the following ways.

First, Aftersight allows analyses to be added to a run-
ning system without fear of breaking the main workload.
Because Aftersight runs analyses on a separate virtual
machine from the main workload, new analyses can be
added without changing the running application, operat-
ing system, or virtual machine monitor of the main work-
load.

Second, Aftersight offers users several choices along
the safety/performance spectrum. Users who can toler-
ate some lag between the analysis and the workload can
improve the performance of the workload and still get
best-effort safety or offline analysis, while users who re-
quire synchronous safety can synchronize the output of
the workload with the analysis.

Third, with best-effort safety or offline analysis, After-
sight can improve latency for the main workload by mov-

ing the work of analysis off the critical path. Because
analyses no longer slow the primary system’s responsive-
ness, heavyweight analyses can now be run on realistic
workloads and production systems without fear of per-
turbing or unduly slowing down those workloads. For
example, system administrators can use intensive checks
for data consistency, taint propagation, and virus scan-
ning on their production systems. Developers can run in-
tensive analyses for memory safety and invariant check-
ing as part of their normal debugging, or as additional
offline checks that augment testing that must already be
performed in a quality-assurance department. As an ex-
treme illustration of the type of heavyweight analysis en-
abled by Aftersight, computer architects can capture the
execution of a production system with little overhead,
then analyze the captured instruction stream on a timing-
accurate, circuit-level simulator. Even when providing
synchronous safety, Aftersight can sometimes improve
performance compared to running the analysis inline by
leveraging the parallel execution of the workload and the
analysis.

Fourth, Aftersight increases the parallelism available
in the system by providing new ways to use spare cores.
Aftersight can run an analysis in parallel with the main
workload, and it can run multiple analyses in parallel
with each other.

Fifth, Aftersight makes it feasible to run multiple anal-
yses for the exact same workload. Without Aftersight,
the typical way to run multiple analyses is to conduct
a separate run per analysis, but this suffers from the
likelihood of divergent runs and inconsistent analyses.
Aftersight, in contrast, guarantees that all analyses op-
erate on the same execution. In addition, each analy-
sis takes place independently, so programmers need not
worry about unforeseen interactions between the analy-
ses. Nor must they worry about perturbing the source
workload with their analysis. Aftersight allows the num-
ber of simultaneous analyses to scale with the number of
spare processors in a system, all while not affecting the
performance of the primary system.

Sixth, Aftersight makes it possible to conduct an anal-
ysis that was not foreseen during the original run. This ex
post facto style of analysis is particularly powerful when
it is difficult to anticipate exactly what must be analyzed.
For example, analyzing computer intrusions invariably
requires one to examine in detail a scenario that was not
foreseen (else, one would have prevented the intrusion).
Debugging performance or configuration problems leads
to a similar need for conducting unforeseen analysis. Af-
tersight allows the user to iteratively develop and run new
analyses, all on the same exact execution.

Finally, by decoupling analysis from the main ex-
ecution, Aftersight allows the analysis and execution
components to be individually optimized to their in-

Figure 1: Overview of current system.

tended function. The main workload execution can be
performed on a platform optimized for realtime per-
formance and responsiveness (such as a commercial
VMM), while analysis can be delegated to a platform op-
timized for ease of instrumentation (such as an extensible
simulator).

3 Architectural overview
Our current Aftersight system targets the x86 architec-

ture and has three main components: the virtual machine
monitor (VMM), deterministic VM record/replay, and an
analysis and instrumentation framework. For our proto-
type, each of these pieces builds on functionality of exist-
ing off-the-shelf components. In this section we examine
aspects of these components that are relevant for decou-
pled analysis. In Section 5 we look at how they can be
modified and integrated to facilitate decoupled analysis.
3.1 VMM

A VMM provides an environment for running arbi-
trary guest operating systems and applications in a soft-
ware abstraction of the hardware [23]. No modifications
to a standard VMM are required to support decoupled
analysis, except for the need to support replay. After-
sight uses VMware Workstation, a highly optimized pro-
duction x86 VMM. VMware Workstation uses a hosted
architecture [28], i.e. it uses a host operating system to
access physical devices like disk or network.

As Aftersight is based on a virtual machine platform, it
inherits a variety of useful and desirable traits. First, any
individual process in the guest VM as well as the guest
OS kernel itself can be a target of Aftersight instrumenta-
tion and analysis. Furthermore, a range of target systems
are supported without extra work: a single implementa-
tion works across OSes, processes, languages, etc.

Next, virtualization is becoming increasingly ubiqui-
tous in a wide range of computing environments. Be-
cause Aftersight can be provided as a service of the vir-
tual infrastructure with nominal overhead, there is a rel-

atively easy path to adoption. With such a primitive in
place, the deployment of new monitoring and analysis
tools can be a continuous, normal part of the execution
of guests.

Finally, operating at the VMM level gives Aftersight
visibility at all layers of the software stack. It can be
used to analyze operating systems, applications, and in-
teractions across components. This generality is criti-
cal for applications ranging from performance analysis,
to tracking the flow of sensitive or potentially malicious
data in a system.
3.2 Deterministic VM record and replay

Aftersight builds upon the replay facilities in VMware
Workstation 1. A deterministic VM record/replay sys-
tem records enough information about a running work-
load to reproduce its exact instruction sequence. To sup-
port replay, a VM must record and replay all inputs to
the CPU that are not included in the state of the guest
memory, registers, or disk. This includes reads from ex-
ternal devices, such as the network, keyboard, or timer,
and asynchronous events such as interrupts. Recording
these nondeterministic inputs enable VM replay to recre-
ate the whole instruction stream [4, 9, 35]. As with other
software-based replay systems [9], VMware Workstation
is not able to replay virtual multiprocessors.

VM replay systems are highly efficient in time and
space overhead [9, 35]. This efficiency comes about
because nearly all instructions produce the same result
given the same inputs, and most instructions use only the
results of previous instructions as their inputs. Because
of this domino effect, a long sequence of instructions can
be exactly reproduced while only supplying a few values
that come “from outside” the system.

A study [35] of VMware’s then-current replay im-
plementation showed performance overheads for SPEC
benchmarks as low as 0.7% and an average of 5% [35].
Another replay implementation for the x86 [9] reported
similar overheads. Overheads will generally be work-
load dependent, however. Worst-case performance ob-
served in [35] reached 31% and 2.6x for some workloads.
However, many of the chief bottlenecks were not funda-
mental [35], and subsequent improvements have lowered
these overheads.

Trading the overhead of analysis for the overhead of
VM replay is a compelling exchange for many heavy-
weight analyses. However, even for lightweight analy-
ses, the ability to run multiple or ex post facto analyses
still provides reason to use decoupled analysis.

While Aftersight uses VM replay, replay can also be
implemented at many levels besides the VM-level, such
as the OS process-level [27], the JVM-level [8], or the

1First released in VMware Workstation 6, where it was an experi-
mental feature.

disk level [32]. VM replay stands out for a couple rea-
sons.

First, a single VM replay implementation enables one
to replay the entire state of all software on that hardware
platform regardless of operating system, language or run-
time environment. In contrast, other types of replay can
only work for a small subset of available software as they
are heavily dependent on the particular language and op-
erating system they are designed for. Reimplementing
replay for each OS or language variant would be a her-
culean task.

Second, a VM replay system often has lower over-
head than higher-level recording. For example, one could
replay the file system at the system-call level, but this
would require all file system calls to be recorded, includ-
ing every read of every file. However, a VM-based
system need only record nondeterministic VM inputs,
and this frees it from recording reads from the file cache
or disk. Similarly, a process-level record/replay system
must record reads from IPC pipes, files, and all system
calls that return data, while these can all be ignored by a
VM-based solution.
3.3 Analysis framework

Aftersight does instrumentation and analysis dynam-
ically during replayed execution. Normally in a VM
record/replay system, the same VMM is used during both
recording and replaying. A key property of Aftersight is
its ability to support heterogenous replay, i.e. the abil-
ity to use one platform to execute and record a workload
and a different platform to replay and analyze, with each
platform tuned for its particular purpose.

The Aftersight prototype relies on a VMM for exe-
cution and recording, whereas replay and analysis can
be done in a VMM or a simulator. A VMM is an ex-
cellent platform for recording, because it is optimized to
minimize recording overhead to support production envi-
ronments. However, platforms such as software simula-
tors are often better suited to supporting general-purpose
analysis.

For example, many VMM environments don’t provide
a simple, low overhead way to instrument every memory
access. This can be implemented on top of page protec-
tions and faulting on every memory access. However, a
software simulator can often accomplish this task faster
and with less effort than a VMM will natively.
Analysis environments Dynamic instrumentation can
be implemented in many ways. Most simply, we can
build ad-hoc hooks into our replaying environment that
supply callbacks when events of interest happen.

In our Aftersight prototype, we implement dy-
namic instrumentation through dynamic binary transla-
tion (BT). BT is the technique of dynamically translating
a set of instructions into an alternate set of instructions

on-the-fly, which are then executed. Techniques such as
caching translations [33] can be used to make this pro-
cess very efficient. Affecting what translations are pro-
duced allows one to very flexibly instrument a running
program.

Our prototype offers two BT environments to analysis
applications: one is based on VMware Workstation, the
other on QEMU [3], which is an open-source x86 simu-
lator. Both offer the ability to run code using BT alone,
or in some combination with native execution [1]. How-
ever, each has its own strengths and limitations.

VMware’s BT is extremely fast, but it is optimized
for performance rather than extensibility. For exam-
ple, VMware’s BT does not support an extensible inter-
mediate representation (IR). An extensible IR is com-
monly used in general purpose BT systems [17, 3] to
abstract the x86’s CISC-style instructions into a more
instrumentation-friendly RISC-style format. However,
these additional translation costs make little sense given
VMware’s specialized use of BT. Also, for efficiency
reasons, VMware BT runs in ring 0, and in an envi-
ronment where dynamic memory allocation is heavily
constrained. Developing general-purpose analyses under
these constraints is quite burdensome, and the resulting
analyses may even be slower from having to work with
limited memory.

In contrast, QEMU is not nearly as fast as VMware
Workstation, but it is much more flexible: it provides an
extensible IR and runs as a regular user-mode process,
which means normal program facilities like malloc,
gdb, etc. are available. In converting it to enable replay,
we stripped out much of its now unnecessary functional-
ity, to the point where it is little more than a simple CPU
simulator. The virtual device model, including the disk,
network, the chipset, and the local APIC, have all been
removed. All that remains are the components needed to
deal with instruction execution and memory access.

Of course, because analysis is decoupled, other
special-purpose analysis environments could be built to
better suit the needs of particular analyses if desired.

4 Online analysis
In two of Aftersight’s three usage models, syn-

chronous safety and best-effort safety, the analysis runs
in parallel with the workload. Aftersight makes it easy
to simultaneously record and analyze a workload. In
our prototype, recording generates a replay log on disk.
Analysis VMs can run on separate cores and process the
log as it is being generated by the primary VM. Analysis
can even take place across multiple machines by reading
the log file over the network, since network bandwidth is
more than adequate for most workloads. Log sizes are
often quite modest [9, 35]. For example, Xu et al. [35]
notes that only 776 KB of compressed log space was nec-

essary to record an entire Windows XP bootup-shutdown
sequence.

This section describes how Aftersight synchronizes
the main workload with the analysis when the two are
running in parallel, and how running the analysis in par-
allel with the workload can speed up the analysis.

4.1 Synchronization
When running in simultaneous record and analysis

mode, analysis results may affect the operation of the pri-
mary VM (e.g., a security check may detect an intrusion
and halt the system). When this feedback is needed, Af-
tersight can take one of two strategies to synchronize the
execution of the primary and analysis VMs.

The need for synchronization arises because the pri-
mary VM executes ahead of the analysis VM. The por-
tion of the primary VM’s execution that has not yet been
run on the analysis VM is speculative. This speculative
portion will usually be committed by the analysis VM as
checks complete. In the rare case when checks fail, the
speculative portion of execution differs from what would
have been executed with inline analysis.

The first method for synchronizing provides syn-
chronous safety, which is equivalent to running the anal-
ysis inline with the workload. To provide this guarantee,
Aftersight defers the output of the primary VM (e.g., net-
work packets) while they are speculative, i.e., until the
analysis reaches the same point in execution. Deferring
outputs while they are speculative ensures that the re-
leased outputs of the primary VM are identical to those
of a system with inline checks, even though the internal
state of the primary VM may differ from a system with
inline checks [19].

In addition to synchronizing the primary’s output with
the analysis VM, we could also limit how far the primary
is allowed to run ahead of the analysis VM. Limiting
the lag between primary and backup limits the amount
of time that the primary’s outputs are deferred, which in
turn limits the amount of timing perturbation the primary
VM may observe (e.g., when it measures the round-trip
time of a network).

Deferring output in the above manner provides the
same safety guarantee as if the analysis were running
inline with the workload. However, it may hurt perfor-
mance by blocking the output of the primary VM.

A different point in the safety/performance spectrum
optimizes performance but relaxes the safety guaran-
tee by giving lazy feedback to the primary VM. In this
case, the main workload executes at full speed and is not
slowed by the work of analysis. Rather, analysis results
are fed back to the main workload as they become avail-
able. This usage model is useful when the analysis is too
heavyweight to run with stronger safety guarantees, or
when the analysis does not require such guarantees, as in

profiling or debugging.
4.2 Accelerating analysis

The analysis VM in Aftersight executes the same in-
structions as the primary VM, and it also does the work
of analysis. Because the analysis VM is doing more work
than the primary VM, it can easily become a bottleneck,
especially when providing synchronous safety. This sec-
tion describes several ways to improve the performance
of the analysis VM, to allow it to better keep up with the
primary VM.

First, a surprising amount of performance can be won
from a basic aspect of replayed VM execution: interrupt
delivery is immediate. x86 operating systems use the
hlt instruction to wait for interrupts; this saves power
compared to idle spinning. During analysis, hlt time
passes instantaneously. One hlt invocation waiting for
a 10ms timer interrupt can consume equal time to tens of
millions of instructions on modern 1+GHz processors.
Section 6.3 provides more detail on the boost this can
have on performance.

Second, device I/O can be accelerated during replay.
For example, network writes need not be sent, and net-
work reads can use data from the replay log. This frees
guests from waiting for network round-trip times, espe-
cially because disk throughput is often greater than end-
to-end network throughput. Disk reads can similarly be
satisfied from the replay log rather than from the analysis
VM’s disk, and this can accelerate the analysis VM be-
cause the replay log is always read sequentially. This op-
timization can also free the analysis VM from executing
disk writes during replay, which frees up physical disk
bandwidth and allows write completion interrupts to be
delivered as soon as the guest arrives at an appropriate
spot to receive them. Disk reads done by the primary
VM may also prefetch data and thereby accelerate sub-
sequent reads by the analysis VM [5].

Third, a number of opportunities allow Aftersight to
memoize operations that happen during record that don’t
need to be fully replayed. An example of this is excep-
tion checking.

There are many times where the x86 needs to check
for exceptional conditions. Although these checks rarely
raise exceptions, executing them adds considerable over-
head in our CPU simulator. Segment limit checks are
an example: every memory reference or instruction fetch
must be checked that it is within bounds for an appropri-
ate segment 2.

2These add enough overhead that QEMU completely ignores the
behavior. This turns out to work for many workloads, but not all. Play-
ing fast and loose with the specification in this way inevitably causes
failures—non-executable stacks are popularly implemented with seg-
ment limits in major x86 Unix derivatives where non-executable page
protections are unavailable (which is true for all non-PAE kernels), but
QEMU makes them behave incorrectly.

Decoupled analysis allows one to reduce the overhead
of exception checking on the analysis VM by leverag-
ing the exception checking that has already occurred on
the main VM. The time and location in the instruction
stream of any exceptions are recorded by the main VM,
and these exceptions are delivered during replay just like
asynchronous replay events. This strategy frees the anal-
ysis VM from the overhead of explicitly checking for ex-
ceptions during replay. Memoizing these checks makes
the CPU simulator faster and less complex, while still
guaranteeing proper replay of a workload that contains
violations of the checks.

There are many x86 checks that can be memoized, al-
though we have not yet implemented this optimization
in Aftersight: debug exceptions, control transfer checks
for segment changes, the alignment check (which when
enabled, ensures all memory accesses are performed
through pointers aligned to appropriate boundaries), and
others.

5 Implementation and integration

While Aftersight builds on existing components, lever-
aging these for decoupled analysis poses a variety of
challenges. This section discusses how to adapt a simula-
tion environment to replay VMM logs and the challenges
posed by the heterogeneous combination of record and
replay components.

Aftersight uses different platforms for recording and
analysis. For recording, Aftersight uses VMware Work-
station, which is designed to minimize the time and space
overhead of recording. For analysis, Aftersight can use
VMware Workstation or QEMU. Simple analyses can
be conducted by modifying VMware Workstation’s BT,
while more general analyses are easiest to implement in
QEMU, which is designed for flexibility rather than pure
speed.

For replay and analysis, compatibility is an issue for
both platforms. When VMware Workstation replays a
log, no compatibility issues arise with devices, chipset,
etc. because the emulation code is identical. However,
because it relies directly on the hardware for CPU emula-
tion, replay is generally infeasible if the processor is sig-
nificantly different (e.g., attempting to replay a log from
an Intel CPU on an AMD platform). In contrast, with a
CPU simulator like QEMU we can easily support a wide
range of CPU families on a single hardware platform.
However, QEMU does not have the same device models
as the recording platform. In this next section, we look
at how Aftersight bridges the compatibility gap between
the VMware Workstation recording and QEMU in two
areas: I/O device emulation and hardware performance
counters.

5.1 Device emulation
The first gap between our recording platform

(VMware Workstation) and one of our analysis platforms
(QEMU) is device emulation. QEMU emulates different
I/O devices than VMware, which prevents QEMU from
directly consuming the log recorded by VMware.

To understand the problem and the solution we
adopted, it is helpful to consider two different meth-
ods for recording device interactions. The first method
is to record all outputs from an emulated device to the
CPU. During replay, the recorded values would be re-
supplied to the CPU (presumably the guest OS device
drivers). This method is ideal for compatibility between
the recording and analysis platform because no device
emulation is needed during replay.

However, VMware Workstation and other VM replay
systems [9] use a second method to record and replay
device interactions. Instead of recording the output from
the emulated devices, they record the nondeterministic,
external inputs to those devices. During replay, these
recorded inputs are redelivered to the devices, and these
allow the emulated devices to be deterministically re-
played along with the CPU.

VM replay systems use this second method for two
reasons. A main reason is that the second method al-
lows a replaying session to “go live”—to stop replaying
and start responding to new input—at any point while re-
playing. In contrast, recording and replaying the outputs
of the emulated device without replaying the emulated
device itself means that the emulated device is not avail-
able to go live. Another reason is that it can drastically
reduce the amount of data that must be recorded. For ex-
ample, to replay a disk read operation, the first method
must record the actual data being read from the emulated
disk, while the second method need only record the non-
deterministic inputs to the disk (note that the inputs from
the CPU to the disk are deterministic and need not be
recorded).

Unfortunately, recording only the nondeterministic in-
puts to the device leads to a compatibility problem dur-
ing analysis. Whereas the VM recording system assumes
that the replaying system can replay the emulated device,
QEMU and other flexible analysis systems usually will
not emulate the exact same devices used during record-
ing.

Aftersight bridges the compatibility gap between
recording and analysis for devices by adding a relogging
step to replay. We modified VMware’s replay system to
record a new log during replay, which contains all out-
puts from the emulated device to the CPU, including re-
sponses to I/O requests, interrupt delivery, and effects on
memory. This log is equivalent to one generated by the
first method of replaying devices and has the same com-
patibility advantages, i.e. the analysis system needs no

device emulation during replay.
While our modified VMware VMM supports relog-

ging, none of our modifications to support relogging im-
pact the record side operation of the VMM, since relog-
ging is only active during replay.

5.2 Hardware performance counters
The second gap between our recording platform

(VMware Workstation) and one of our analysis platforms
(QEMU) is hardware performance counters. VM replay
implementations will normally use hardware counters to
determine when a nondeterministic event happens dur-
ing recording, as well as to trigger that event during re-
play [4, 9]. These counters record aspects of the dynamic
instruction stream that help to uniquely position an event
in time such as the instruction count [4], or the number
of branches executed [9].

Instructions added dynamically by BT, as well as by
analysis instrumentation, disrupt counts kept by the hard-
ware by adding dynamic instructions in an unpredictable
manner. This makes hardware counters difficult to use
directly by our CPU simulator.

Instead, our CPU simulator emulates the accounting
provided by the hardware counters in the translations it
emits. These translations include a small amount of code
to update counts and dispatch to an event handler when it
is time to deliver an asynchronous nondeterministic event
(such as an interrupt or DMA).

QEMU doesn’t normally allow interrupt delivery
within a basic block [2] of instructions. Instead, these
events are delayed until the current basic block com-
pletes. The VMware recording system contains no such
artificial restriction, so we needed to remove this re-
striction of QEMU to replay VMware’s log. When our
stripped-down QEMU reaches a basic block containing
a replay event, it will emit new translations for the block.
The block is split into two halves: the block of instruc-
tions before the replay event, and the block after. Checks
between basic blocks will determine that the BT system
can deliver the event.

6 Evaluation
Aftersight makes it possible to run heavyweight anal-

yses on realistic workloads with several options along
the safety/performance spectrum. In this section, we
evaluate the performance of Aftersight under three usage
models. We first show how Aftersight can provide syn-
chronous safety with slightly higher performance than a
system using inline analysis. Next, we show how Af-
tersight with best-effort safety makes it possible to run
heavyweight analyses in parallel with the main workload
and how the techniques described in Section 4.2 allow
heavyweight analyses to keep up with the main work-
load. Last, we demonstrate the utility of enabling heavy-

-50

0

50

100

150

Ru
nt

im
e

(s
ec

on
ds

)

No check Inline Aftersight
Main
VM

Aftersight
Analysis

VM

123 142 123 125

Figure 2: Aftersight performance with synchronous
safety.

weight analyses that are built and applied after the main
workload completes.
6.1 Synchronous safety

We first evaluate how Aftersight performs when pro-
viding safety that is equivalent to running the analysis
inline with the main workload. In this usage model, Af-
tersight runs the analysis in parallel with the main work-
load, and defers the output of the workload until the anal-
ysis reaches that output. Aftersight’s main benefits for
this usage model are the ability to add new analyses with-
out fear of breaking the workload and the ability to con-
duct later analyses that were not envisioned at the time
of the run.

When providing synchronous safety, Aftersight’s per-
formance is limited by the analysis VM. A reasonable
expectation is that the performance of the analysis VM
will be comparable to that of an inline system (or slower,
due to replaying overhead). While this can be true for
many workloads, the analysis VM in Aftersight can also
run faster than an inline system by taking advantage of
the work done by the primary VM (Section 4.2). We
demonstrate an example of this phenomenon through the
following experiment.

We evaluate Aftersight with synchronous safety on a
workload that uses wget to fetch a directory of linked
web pages from a local lighttpd web server. The di-
rectory of web pages consists of 5000 HTML files, each
200 KB. The workload starts with a cold file cache and
spends most of its time fetching data from disk. The
check running in the analysis VM mimics a trivial on-
access virus scanner by computing for 2 ms on each disk
request.

Figure 2 compares the performance for Aftersight with
synchronous safety with running the analysis inline with
the workload. The analysis VM in Aftersight always
trails the primary VM that it is replaying, so the workload
is considered complete when the analysis VM completes.

Although the analysis VM is slowed by the overhead of
replaying, it leverages the disk reads performed by the
primary VM to regain this performance. The net ef-
fect on this benchmark is that Aftersight achieves slightly
better performance than inline analysis.

6.2 Best-effort safety
We next demonstrate how Aftersight enables heavy-

weight analyses to execute concurrently with a work-
load with best-effort safety. Our analysis enforces pro-
tection for guest address spaces at the granularity of in-
dividual bytes of memory. This supports checking for a
wide range of memory errors, though we only apply it to
catching heap overflows in our example.

An in-memory bitmap specifies whether each byte of a
particular address space is writable or not. The bitmap is
organized as a two-level page table to conserve space. To
implement the checks, the analysis dynamically instru-
ments instructions that write to memory. These writes
are translated to look up the appropriate protection bits in
the bitmap and check if they allow writing. If they do, the
write proceeds normally, otherwise the analysis invokes
an error handler. When running the analysis in parallel
with the main workload (online), the error handler can
invoke a feedback action that takes corrective measures.
For example, the system can automatically suspend the
primary VM when an error is detected.

We implemented the analysis in VMware Workstation
by modifying the binary translation done during replay.
On each write, the translation saves two scratch registers
and the CPU flags, checks the protection bits in a bitmap,
then restores the two scratch registers.

To use this analysis, the guest kernel specifies the de-
sired protection for each byte of memory of an address
space. We modified a guest Linux kernel to use this fa-
cility to do heap-overflow bounds checks on dynamically
allocated kernel objects. Linux already includes a facility
for adding “red zone” buffers to the start and end of every
kmalloc object. We use this facility and add code to set
the bitmap permission bits for these redzones appropri-
ately. Only kernel code needs checking, since normal
page protections prevent user code from touching kernel
heap objects.

Without Aftersight, this analysis is too slow to be used
in production settings. We measured the speed of analy-
sis without Aftersight by running the checks inline in the
VMware binary translator of the main workload. The
results are shown in Figure 3. For a kernel compila-
tion benchmark, running the benchmark with the anal-
ysis inline (i.e. without Aftersight) takes 191.10 seconds
(a 2.48x slowdown compared to running the benchmark
without the analysis). Running the workload with Af-
tersight reduces the time to complete the benchmark to
84.86 seconds. With best-effort safety, Aftersight re-

0

100

200

Ru
nt

im
e

(s
ec

on
ds

)

77 85

191

InlineNo check Aftersight
Main
VM

Figure 3: Comparison of kernel compile overhead with
heap buffer overflow detection: Aftersight runs a ker-
nel compilation benchmark nearly 2x faster than inline
checking. Checks are still run concurrently with variable
lag.

duces the perturbation on the main workload by moving
the overhead of analysis off the critical path of the main
workload and into a separate analysis system. The main
workload pays for this in the form of record/replay over-
head, which for this benchmark is 10.4%.

A potential disadvantage of decoupling this analysis
from the main workload is that the detection of a write
violation may occur long after the offending instruction
execution. However, even delayed feedback can be very
useful. For example, we ran an SSH server in the primary
VM, logged into it from an outside client, and invoked
a system call that contains an erroneous heap overflow.
As before, we check byte-level write protections in an
analysis VM. We measured how long it takes the analysis
VM to discover the problem, assuming that prior to the
SSH connection, both the primary and analysis VMs are
synchronized to the same point in time.

In Figure 4 we see the progress of the primary and
analysis VM, measured in #branches executed vs. wall
clock time. As shown by the horizontal distance on the
graph between identical branch counts in the primary and
analysis VM, the analysis VM lags the primary VM by
varying amounts during the run. In this experiment, there
was a 0.86 second latency between the write violation in
the primary VM and its detection in the analysis VM.

Decoupled analysis can lead to delays between an
event in the main VM and the analysis of those events in
the analysis VM. This delay is not a problem for analyses
that don’t need to provide feedback to the main VM, or
for analyses that have no response time requirement on
their feedback (such as optimization or bug finding). The
delay is not ideal for analyses that implement security or
correctness checks. However, delayed feedback can still
be very useful, and is certainly preferable to being unable

5 10 15 20 25
wall clock time (seconds)

0

2

4

6

8

10

12

14
w

or
kl

oa
d

pr
og

re
ss

 (t
ot

al
br

an
ch

es
 e

xe
cu

te
d

in
 m

ill
io

ns
)

primary
analysis

write
violation

and
detection

ssh
login

Figure 4: Measuring latency of simultaneous record and
analysis for write protection violations: The two dotted
lines at the end show when the write violation occurs and
when it is identified by the analysis (shown separated by
0.86 seconds).

to run heavyweight analyses at all.

6.3 Idle-time boost
Section 6.2 showed that decoupling analysis from the

main workload with best-effort safety can improve the
performance of the main workload, but that the analy-
sis may complete significantly after the workload. Since
heavyweight analyses may be much slower than the main
workload, a natural question is “How can heavyweight
analyses keep up with the main workload over a long
run?”. Section 4.2 describes some techniques that help
a replaying analysis VM to keep up with a main VM,
and this section evaluates the effectiveness of these tech-
niques. In particular, we observe that idle time in the
primary can provide enough time for the analysis VM to
catch up during replay, even for very heavyweight anal-
yses.

As an example of a heavyweight analysis platform, we
configure the VMware Workstation binary translator to
translate all guest instructions (instead of just guest ker-
nel instructions), but still with a relatively small (2.9 MB)
code cache. Even with no extra analysis, this configura-
tion of VMware Workstation runs several times slower
than the normal configuration.

We measured the overhead of this analysis system on a
CPU-bound workload, which is winLAME (a GUI fron-
tend to the LAME mp3-encoder) in a Windows XP VM,
encoding .wav files into mp3 format. The test machine
is a two-processor, dual core 2GHz AMD Opteron (con-
taining four logical CPUs) running Debian Linux. On
this workload, the analysis VM takes 4.65x as long to

complete the workload as the main VM, due to the over-
head of the slower binary translator,

Most realistic workloads can be replayed much faster
by skipping over idle time in the main workload. To see
how idle time can provide a boost, we ran this analysis
again with an interactive, desktop workload. In the pri-
mary VM, we use Windows XP and:

• Start Firefox. Edit the proxy settings to get out of
the corporate network.

• Visit slashdot.org, scroll through the front page,
browsing for one minute.

• Visit internal website and download an Excel
spreadsheet containing numbers used in this paper.

• Close Firefox. Start Excel, open the spreadsheet.

• Create a chart, and plot two curves using data in the
spreadsheet. Add a trend line to one of the curves.

• Close Excel. Open Powerpoint, and create a custom
animation using four block arrows flying in from
different directions. Close Powerpoint.

Figure 5 shows the results of this experiment. Fig-
ure 5(a) shows the progress of the primary VM and the
analysis VM as wall clock time progresses. Horizontal
gaps between the two curves occur where bursts of high
CPU utilization cause analysis to lag the primary.

Figure 5(b) more clearly illustrates these bursts by
showing the instantaneous compute rates of the primary
and the analysis. Figure 5(b) shows that the primary
contains many compute spikes. Meanwhile, the analy-
sis runs at a more constant pace because it is limited by
the speed of binary translation. These compute spikes
can cause significant lag (one spike causes the main VM
to execute 6x faster than the analysis VM). However, as
shown in Figure 5(a), the idle times in the workload al-
lows the analysis VM to eventual catch up from this lag.

Figure 5(c) graphs the lag between the main VM and
the analysis VM as the workload progresses. This graph
demonstrates two major benefits of decoupled analysis
with best-effort safety. First, note that the analysis VM
can lag behind the main VM significantly (10-11 sec-
onds on average, and as high as 35 seconds behind).
These periods of high lag imply that running the anal-
ysis inline with the main VM or with synchronous safety
would cripple the interactive performance of the main
VM (imagine waiting 35 seconds between clicking a but-
ton and waiting for the corresponding menu to appear!).
In contrast, Aftersight with best-effort safety decouples
the analysis, so that users of the primary VM don’t expe-
rience this lag. Instead, the primary’s responsiveness is
completely independent of the speed of analysis, e.g. but-
ton clicks and menu selections occur at full speed.

0

500

1000

1500

2000

2500

0 50 100 150 200 250 300 350
wall clock time (seconds)

w
or

kl
oa

d
pr

og
re

ss
 (t

ot
al

br
an

ch
es

 e
xe

cu
te

d
in

 m
ill

io
ns

)

source (native)

binary translator
(2.9MB c-cache)

(a) Desktop interactive
(Firefox, Excel, Powerpoint,

Windows XP)

0

50

100

150

200

250

300

0 50 100 150 200 250 300 350
wall clock time (seconds)

in
st

an
ta

ne
ou

s
ra

te

(m
ill

io
ns

 o
f b

ra
nc

he
s/

se
c)

source (native)
binary translator

(b) Desktop interactive
instantaneous rate

6x

(c) Desktop interactive lag

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

wall clock time (seconds)

la
g

(s
ec

on
ds

)

Figure 5: Plotting the progress of a source workload, and
a online tandem analysis of that workload running on an-
other core: a desktop interactive session shows how anal-
ysis (running in a binary translator that is several times
slower) is allowed to lag during bursty periods of com-
puting, and catch up when bursts end.

Second, this graph illustrates how idle times between
bursts of CPU activity enable the analysis VM to catch
up with the main VM. Although the lag gets as long as 35
seconds during this workload, the analysis VM is able to
catch up by the end of the workload. Catching up in this
manner is only possible because of decoupled analysis.
Synchronizing the main VM with the analysis VM would
limit the speed of the main VM during bursts of CPU
activity to that of the analysis VM, and it would limit the
speed of the analysis VM during idle periods to that of
the (idling) main VM.

Idle time in real-world workloads is quite common.
In an informal poll, idle time was over 95% for several
desktop computers used by full-time computer program-

mers for compiling programs, editing tex, e-mail, web
browsing, and running VMs. Idle time was over 75%
for a production web server and mail server at the EECS
department of a large public university.

Idle time can also be deliberately increased in many
systems, and this may help heavyweight analyses keep
up with the main VM. For example, idle time can be in-
creased in server farms by adding more servers and bal-
ancing load across them.

6.4 Offline analysis
This section demonstrates how Aftersight enables

heavyweight analyses to be built and applied after the
main workload completes.

To illustrate this capability, we implemented an analy-
sis that ensures every instruction executed by the source
workload meets a set of memory safety guarantees: that
a dereferenced pointer must point to valid stack or heap
data, that any bit of stack or heap data used in control
flow or as a pointer/index must be initialized before use,
and that there are no memory leaks (roughly, that the
guest executes “Valgrind-safe” [26]).

Asserting continual satisfaction of these constraints is
a very expensive job—properly implementing a check
for uninitialized data requires a full taint propagation
analysis [26]. Our tool implements this taint analysis and
does it at bit-level precision, largely following the imple-
mentation given by [26]. The analysis tracks the state
of each bit in all guest memory and registers according
to the state machine shown in Figure 6. To initialize the
state of each bit, the checker interposes on all memory al-
location requests for the heap (through calls to memory
allocator functions) and stack (through manipulations of
the stack pointer). To maintain the value of the state of
each bit, the checker interposes on every instruction exe-
cuted by the workload, for example to propagate the state
of source memory or registers to destination memory or
registers. The tool uses symbol information to identify
calls to the appropriate heap allocator for the system.
When analyzing a particular user process, the target pro-
cess first identifies itself by making a hypercall.

The analysis is built using Aftersight’s QEMU-based
CPU simulator. The analysis is extremely heavyweight
(on the order of 100x) and is best suited to running of-
fline.

Implementing this analysis in Aftersight yields two
important benefits relative to traditional tools such as
Valgrind and Purify. First, Valgrind and Purify slow their
target program too much to be used for long-running,
realistic workloads, and they may perturb their target
programs too much to capture realistic interactive work-
loads. In contrast, Aftersight allows long-running, inter-
active workloads to run with little overhead by allowing
the work of analysis to be run later. Second, tools such

Figure 6: Memory consistency checker: a state machine
is associated with every bit of guest memory and regis-
ters, and finds uses of garbage data and dangling point-
ers.

as Valgrind and Purify can only be applied to user-level
code. They cannot be applied to OS or VMM code, even
though such code is critical to reliability and safety. In
contrast, analyses implemented in Aftersight can be ap-
plied to all software running in the virtual machine, in-
cluding the operating system or even another VMM run-
ning inside VMware Workstation.

We have used this tool to find serious bugs in large,
complex systems, including kernel code such as VMware
ESX Server and Linux. The rest of this section describes
bugs we found with this analysis.
ESX Server We used our analysis tool in the develop-
ment of VMware ESX Server [30] by running ESX in-
side a VM hosted by VMware Workstation. We found 10
type safety errors, over half of which were classified as
critical or show-stopper bugs, and were able to fix them
during development.

For example, in one bug the ESX Server kernel has a
utility data structure for recording statistics whose use is
sprinkled throughout the code. It takes an array of values
as argument, and stores it:

Histogram_New(..., const uint32 numBuckets,
const Histogram_Datatype*

const bucketLimits) {
...
histo = Heap_Alloc(heap,

sizeof(struct Histogram) +
bucketCountsSz);

if (histo != NULL) {
histo->numBuckets = numBuckets;
...
histo->limits.arbitrary.bucketLimits =

bucketLimits;
}

...

This array of values is used when manipulations to the
statistics occur. Unfortunately, the structure is allocated
on the heap, and some callers initialize it with an array
from the stack:

SCSIAllocStats(Heap_ID heap,
ScsiStats *stats) {

Histogram_Datatype limits[...];
...
stats->cmdSizeHisto =

Histogram_New(..., limits);
...

Under certain circumstances, this would cause a crash,
but the tool was able to diagnose the problem without re-
producing the crash by noticing that using the data struc-
ture caused references to data located in popped off stack
frames.
Linux We also applied our analysis tool to the Linux
kernel by running it as the guest kernel in a VM. Our
tool diagnosed a long-overlooked type safety error in an
old part of the core Linux kernel. Its UDP stack makes
use of uninitialized stack garbage on reception of UDP
packets through recvfrom. Whenever recvfrom is
called, a msg structure containing a field msg_flags
would be allocated on the stack, but never initialized:

/* from net/socket.c */
asmlinkage long sys_recvfrom(...) {

...
struct msghdr msg;
...
msg.msg_control = NULL;
msg.msg_controllen = 0;
msg.msg_iovlen = 1;
msg.msg_iov = &iov;
iov.iov_len = size;
iov.iov_base = ubuf;
msg.msg_name = address;
msg.msg_namelen = MAX_SOCK_ADDR;
if (sock->file->f_flags & O_NONBLOCK)
flags |= MSG_DONTWAIT;

err = sock_recvmsg(sock, &msg, size, flags);
...

Following the call stack down through sock_-
recvmsg, this structure is passed to udp_recvmsg,
which uses msg_flags:

Backtrace:
#0 udp_recvmsg

(linux-2.6.20.1/net/ipv4/udp.c:843)
#1 sock_common_recvmsg

(linux-2.6.20.1/net/core/sock.c:1617)
#2 sock_recvmsg

(linux-2.6.20.1/net/socket.c:630)
#3 sys_recvfrom

(linux-2.6.20.1/net/socket.c:1608)
#4 sys_socketcall

(linux-2.6.20.1/net/socket.c:2007)

#5 syscall_call
(linux-2.6.20.1/arch/i386/kernel/entry.S:0)

/* net/ipv4/udp.c */
int udp_recvmsg(..., struct msghdr *msg, ...)
{

...
if (.. && msg->msg_flags&MSG_TRUNC)) {
...

In this case, the test on msg_flags gated a check-
sum computation, so although no crash would result
from this erroneous use of msg_flags, it would cause
random, unnecessary extra computation to occur on re-
ception of UDP packets.

We discovered this bug in Linux 2.6.20.1 and reported
it to kernel developers, who fixed it in the next major
release. This bug existed in the code for many years (all
prior versions of 2.6 and all versions of 2.4 we checked
back to 2002).

Putty We also tested a common Windows SSH client
called Putty. Our tool found one memory leak that was
invoked whenever a menu item was selected. We are cur-
rently investigating other user programs as well.

7 Future work
There are many interesting open questions about how

to optimize and synchronize record and analysis.

Workload memoization Memoizing state generated
by native hardware during record can avoid the need for
re-computation during analysis, and this can be used to
accelerate analysis. We use this kind of memoization
when simulating SMM (system management) mode [13].
Our CPU simulator does not implement x86’s SMM
mode because the version of QEMU we started with did
not support it. However, the VMware VMM is more
faithful about this part of the architecture, and some
target workloads do contain execution in SMM. After-
sight memoizes SMM to maintain compatibility for these
workloads. In its relogging step, Aftersight records the
changes to memory made in SMM (some of which may
be used outside SMM, for example by the guest BIOS
code). During replay, the analysis infrastructure repro-
duces these effects at the proper time, thus avoiding the
need to simulate SMM code.

In addition to helping compatibility, memoization can
also be used to accelerate replay. For example, consider
an analysis where we are only interested in the execu-
tion of a specific user process. With memoization, we
could use relogging to summarize the execution of all
other code in the system into their effects on memory and
registers. In essence, this turns the execution of the OS
and other processes into the equivalent of a single DMA
operation. This would allow subsequent replay and anal-
yses to ignore writes to pages not mapped into the current

process, context switches to other processes, and most
kernel activity. Focusing on one process would also al-
low us to accelerate the simulator by not emulating the
hardware MMU. Instead we could simply use mmap or
its equivalent to set up the address space for the process
and allow memory accesses to run natively.
Feedback modes Simultaneous record and analysis
mode can use different types of feedback loops to syn-
chronize. We discussed the tradeoffs between two basic
approaches, blocking and lazy feedback modes, in Sec-
tion 4. However, one limitation of these approaches is
that they fail to take into account the semantics of the
OS, application, or analysis.

If we add more intelligence to our synchronization
strategy we can take advantage of natural join points
that occur. For example, when analyzing a web server
for security, we can impose a synchronization restriction
that the analysis VM must be in-synch with the primary
whenever the primary initiates an outgoing TCP con-
nection (delaying the primary, if necessary, to guarantee
the synchronization), assuming we expect such events to
be important but relatively rare. Synchronizing on such
an event provides a hard guarantee that can prevent the
spread of an attack, yet maximizes the amount of time
the analysis machine has to catch up with the primary.

8 Related work
Replay facilities in a VMM have been discussed by a

number of researchers [4, 9, 35] and used for a variety of
purposes. For example, Bressoud and Schneider log non-
determinism to support re-execution of a whole machine
(OSes and applications) and use this to tolerate fail-stop
faults on HP PA-RISC [4]. ReVirt [9] uses VM replay
on x86 systems to enable ex post facto analysis for com-
puter forensics. Aftersight uses VM replay for another
purpose, which is to enable heavyweight dynamic anal-
ysis to be used on realistic workloads without perturb-
ing them. Aftersight is also more flexible than these past
VM replay systems because it allows analyses to run in
a different environment from the primary, such as a sim-
ulator. Aftersight also leverages the fact that replicas can
run faster than the primary to make online analysis more
practical.

Researchers have suggested using replay implemented
at the virtual-machine level or in hardware to conduct
various types of offline analyses, such as computer foren-
sics [9, 14], debugging [15, 16, 34], and architectural
simulation [35]. Aftersight makes more types of analysis
practical by allowing the analysis to run in a simulator,
which reduces the cost of context switching between the
replaying virtual machine and the analysis code. Anal-
yses like taint analysis, which require frequent switches,
are impractical without this capability. Aftersight also
extends the use of VM replay to both online and offline

analysis.
Other researchers have sought to run analyses online

and in parallel with the original program via software or
hardware support. Patil and Fischer proposed running an
instrumented “shadow process” in parallel with the orig-
inal program [21] and used this approach to implement
memory safety checks. Speck [19] and SuperPin [31]
fork multiple analysis processes from an uninstrumented
process, using record/replay to synchronize the analysis
processes. Whereas these past approaches can only ana-
lyze an application process, Aftersight expands the scope
of decoupled analysis to include the operating system
and all applications running on a machine. Aftersight
also uses a more complete replay system that handles
asynchronous interrupts.

Oplinger and Lam leverage proposed hardware sup-
port for thread-level speculation (TLS) to enable the
original program to run in parallel with monitoring
code [20]. They depend on proposed hardware support
for TLS to detect data dependencies and rollback the
original program if it causes a conflict. Similarly, Zhou,
et al. use proposed hardware support for TLS to run
memory-monitoring functions in parallel with the orig-
inal program [36]. In contrast to this prior work, Af-
tersight requires no hardware support and works on to-
day’s commodity processors. Without support for TLS,
current processors cannot quickly fork a new thread. In-
stead, Aftersight uses virtual-machine replay to contin-
uously mirror the dynamic state of the original program
on the analysis machines, thereby making it possible for
them to analyze this state on spare processors or cores.
Aftersight also includes new optimizations to accelerate
the analysis machines by leveraging information gener-
ated by the original program.

A recent workshop paper briefly describes a similar
approach to executing analyses in parallel with the orig-
inal program [6]. As with TLS, their system requires
hardware support to mirror the dynamic state of the
original program onto spare processors by logging de-
tailed data from each instruction, including the instruc-
tion counter, type, and input/output identifiers. The large
volume of log data slows performance down by 4-10x.
In contrast, Aftersight requires no hardware support, and
runs with low overhead.

Other research has looked at combining simulators
and hypervisors. For example, Ho, et al. [12] allowed
switching back and forth between QEMU and Xen, and
SimOS allows users to switch between direct execution
and detailed simulation [22]. Aftersight differs from
these systems by decoupling the analyses from the main
workload and allowing both modes to run at the same
time. This takes advantage of parallelism in processor
cores and eliminates the user-visible overheads of analy-
sis.

Besides decoupled analysis, there are a variety of other
ways to reduce the overhead of heavyweight analysis.
For example, sampling reduces analysis overhead [7] but
can miss relevant events and only works for specific anal-
yses. Hardware solutions [29] can also reduce the per-
turbation to the main workload causes by analysis, but
requiring custom hardware makes this approach less at-
tractive.

9 Conclusions
Dynamic program analysis has a wide range of com-

pelling uses. Unfortunately, powerful analyses typically
add substantial overhead which perturbs the workload, so
the vast majority of program execution takes place with
very little checking. This means that many critical soft-
ware flaws remain overlooked, when they could be de-
tected during testing, quality assurance, and deployment.
Similarly, in operational settings, the high overhead of
analysis deters the use of many potentially promising
techniques for intrusion detection and prevention.

We have presented Aftersight, a system that helps
overcome these limitations by decoupling dynamic pro-
gram analysis from execution through virtual machine
replay. This allows analysis to be carried out on
the replayed execution, independent of the main work-
load. This mechanism allows several choices along
the safety/performance spectrum, such as synchronous
safety, best-effort safety, and offline analysis. Syn-
chronous safety achieves performance comparable to in-
line analysis, while best-effort safety and offline anal-
ysis make it possible to apply slow, expensive analy-
sis techniques on realistic production workloads without
perturbing their performance.

We discussed how Aftersight supports the use of dif-
ferent record and replay platforms and the benefits of
allowing each to be independently optimized based on
their need for performance or extensibility. We presented
our prototype of Aftersight, and evaluated it with several
online and offline analyses.

Dynamic program analysis is a promising technique
for solving many problems. However, without a means
of overcoming its performance costs, it will continue to
see limited use. In light of the ubiquitous adoption of vir-
tualization technology, we believe decoupled analysis, as
demonstrated by Aftersight, offers a promising approach
to enabling the use of this technique in a much broader
set of applications.

References
[1] K. Adams and O. Agesen. A Comparison of Software and Hard-

ware Techniques for x86 Virtualization. In ASPLOS, pages 2–13,
October 2006.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles,
Techniques, and Tools. Addison-Wesley, Reading, MA, 1986.

[3] F. Bellard. QEMU, A Fast and Portable Dynamic Translator.
In Proc. USENIX Annual Technical Conference, pages 41–41,
Berkeley, CA, USA, 2005. USENIX Association.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-based Fault Tol-
erance. ACM Trans. Comput. Syst., 14(1):80–107, 1996.

[5] F. Chang and G. A. Gibson. Automatic I/O hint generation
through speculative execution. In Proceedings of the 1999
Symposium on Operating Systems Design and Implementation
(OSDI), February 1999.

[6] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and
S. W. Schlosser. Log-Based Architectures for General-Purpose
Monitoring of Deployed Code. 2006 Workshop on Architectural
and System Support for Improving Software Dependability, Oc-
tober 2006.

[7] T. M. Chilimbi and M. Hauswirth. Low-Overhead Memory Leak
Detection Using Adaptive Statistical Profiling. In ASPLOS, Oc-
tober 2004.

[8] J.-D. Choi and H. Srinivasan. Deterministic replay of Java mul-
tithreaded applications. In Proc. 1998 SIGMETRICS Symposium
on Parallel and distributed tools (SPDT), August 1998.

[9] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen.
ReVirt: enabling intrusion analysis through virtual-machine log-
ging and replay. In OSDI, pages 211–224, New York, NY, USA,
2002. ACM.

[10] S. L. Graham, P. B. Kessler, and M. E. McKusick. Gprof: A
Call Graph Execution Profiler. In SIGPLAN ’82 Symposium on
Compiler Construction, pages 120–126, June 1982.

[11] R. Hastings and B. Joyce. Purify: A tool for detecting memory
leaks and access errors in C and C++ programs. In Proc. Winter
1992 USENIX Conference, pages 125–138, 1992.

[12] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand. Prac-
tical Taint-Based Protection Using Demand Emulation. In Eu-
roSys, pages 29–41, New York, NY, USA, 2006. ACM Press.

[13] Intel. IA-32 Intel Architecture Software Developer’s Manual.
Volumes I, II, and III, 2006.

[14] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting
past and present intrusions through vulnerability-specific predi-
cates. In SOSP, pages 91–104, October 2005.

[15] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging Oper-
ating Systems with Time-Traveling Virtual Machines. In Proc.
USENIX Annual Technical Conference, pages 1–15, 2005.

[16] S. Narayanasamy, G. Pokam, and B. Calder. BugNet: Contin-
uously Recording Program Execution for Deterministic Replay
Debugging. In ISCA, pages 284–295, Washington, DC, USA,
2005. IEEE Computer Society.

[17] N. Nethercote and J. Seward. Valgrind: A Framework for Heavy-
weight Dynamic Binary Instrumentation. In PLDI, pages 89–100,
New York, NY, USA, 2007. ACM Press.

[18] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-
matic Detection, Analysis, and Signature Generation of Exploits
on Commodity Software. In Proc. Network and Distributed Sys-
tem Security Symposium (NDSS), 2005.

[19] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Parallelizing
Security Checks on Commodity Hardware. In ASPLOS, March
2008.

[20] J. Oplinger and M. S. Lam. Enhancing Software Reliability using
Speculative Threads. In ASPLOS, pages 184–196, October 2002.

[21] H. Patil and C. N. Fischer. Efficient Run-time Monitoring Using
Shadow Processing. In Proc. International Workshop on Auto-
mated and Algorithmic Debugging (AADEBUG), pages 119–132,
May 1995.

[22] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Using
the SimOS Machine Simulator to Study Complex Computer Sys-
tems. Modeling and Computer Simulation, 7(1):78–103, 1997.

[23] M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Cur-
rent Technology and Future Trends. IEEE Computer, May 2005.

[24] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-
son. Eraser: A Dynamic Data Race Detector for Multithreaded
Programs. ACM Transactions on Computer Systems, 15(4):391–
411, 1997.

[25] B. A. Schroeder. On-Line Monitoring: a Tutorial. IEEE Com-
puter, 28(6):72–78, June 1995.

[26] J. Seward and N. Nethercote. Using Valgrind to Detect Unde-
fined Value Errors With Bit-Precision. In Proc. USENIX An-
nual Technical Conference, pages 2–2, Berkeley, CA, USA, 2005.
USENIX Association.

[27] S. Srinivasan, S. Kandula, C. Andrews, and Y. Zhou. Flash-
back: A light-weight rollback and deterministic replay extension
for software debugging. In Proc. USENIX Technical Conference,
June 2004.

[28] J. Sugerman, G. Venkitachalam, and B.-H. Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Mon-
itor. In USENIX Annual Technical Conference, pages 1–14, 2001.

[29] J. J. P. Tsai, K.-Y. Fang, H.-Y. Chen, and Y.-D. Bi. A Noninterfer-
ence Monitoring and Replay Mechanism for Real-Time Software
Testing and Debugging. IEEE Transactions on Software Engi-
neering, 16(8):897–916, August 1990.

[30] C. A. Waldspurger. Memory Resource Management in VMware
ESX Server. In OSDI, pages 181–194, December 2002.

[31] S. Wallace and K. Hazelwood. SuperPin: Parallelizing Dynamic
Instrumentation for Real-Time Performance. In Proc. 2007 In-
ternational Symposium on Code Generation and Optimization
(CGO), pages 209–217, March 2007.

[32] A. Whitaker, R. S. Cox, and S. D. Gribble. Configuration Debug-
ging as Search: Finding the Needle in the Haystack. In OSDI,
December 2004.

[33] E. Witchel and M. Rosenblum. Embra: Fast and Flexible Ma-
chine Simulation. SIGMETRICS Perform. Eval. Rev., 24(1):68–
79, 1996.

[34] M. Xu, R. Bodik, and M. D. Hill. A flight data recorder for en-
abling full-system multiprocessor deterministic replay. In ISCA,
pages 122–135, New York, NY, USA, 2003. ACM Press.

[35] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man. ReTrace: Collecting Execution Trace with Virtual Machine
Deterministic Replay. In Proc. 2007 Workshop on Modeling,
Benchmarking and Simulation (MoBS), June 2007.

[36] P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torrellas. iWatcher:
Efficient Architectural Support for Software Debugging. In ISCA,
June 2004.

