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Versioning Increases costs
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Reducing costs: a new direction

 Established methods exploit similarities in data
— Chunk-based deduplication
— Delta compression
— Greater work for incremental gains

* Our goal: explore an orthogonal new dimension
— Deterministically recompute data in lieu of communication, storage
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File: data or computation?
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How can we address non-determinism?
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Knockoff

 Selectively substitutes computation for data

* Benefits

— Reduction compared to chunk-based deduplication
« Communication costs: 21%
 Storage costs: 19%

— Benefits increases as we retain versions more frequently
— A new fined-grained versioning policy
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* Writing files
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Knockoff

» Knockoff selectively represents a file as:
d Normal file data (by value)
d Logs of the nondeterminism needed to recompute the file (by operation)
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An example log for compilation
- —

Log entry Values
1 open rc=3
2 mmap rc=<addr>file=<id,version>
3 gettimeofda rc=0,time=<time>
o
4 pthread lock | rc=0 o
5 SIGCHILD
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An example log for compilation
- —

Log entry Values
1 open rc=3
2 mmap rc=<addr> file=<id,version> — Return values from syscalls
3 gettimeofday rc=0,time=<time>
3 sl
4 pthread lock | rc=0 } Ordering of thread synchronization
5 SIGCHILD } Signals
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An example log for compilation
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Writing files
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Writing files
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* Storing files
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Storing files

« Store files by value or by operation?

B 7 =

* A tradeoff between latency and costs
— Current versions: by value
— Past versions: by value or by operation

[MicHiGAN | Xianzheng Dou 18
"\ ]



Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

m

Regeneration time = 20S < Materialization delay = 60S
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

 Longest path > materialization delay

Total regeneration time = 20S
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

 Longest path > materialization delay

A
30s
l Total regeneration time = 50S
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version
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Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

@ . + Longest path > materialization delay
— A greedy algorithm
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Storing past versions: versioning policies

* Frequency of versioning
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Storing past versions: versioning policies
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Memory-mapped files
Any past transient state in memory?
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Optimization: log compression

» Chunk-based deduplication is effective for file data
— Executions of the same application have similar patterns
— Can it also be applied to computation (logs of nondeterminism)?

 Delta compression
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Optimization: log compression

* Problem: a smattering of values differ in each log

/

\

/

pthread_unlock

rc=0

., V
| MICHIGAN |
Vil

VIWANAANAAANN

Xianzheng Dou

Log entry Values Log entry Values
1 open rc=3 1 open rc=3
2 pthread lock | rc=0 2 pthread lock | rc=0
3 mmap re=<addr> file=<id,version> 3 mmap re=<addr> file=<id,version>
4 read re=<size> file=<id version> 4 read rc=<size>.file=<id,version>
5 gettimeofday | rc=0,time=9.90 5 gettimeofday | rc=0,time=1.10
6 write rc=<size> 6 write re=<size>
7 7  pthread unlock | rc=0
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Optimization: log compression

* Problem: a smattering of values differ in each log

~ D\ ~ N
Log entry Values Log entry Values
1 open rc=3 1 open rc=3
2 pthread lock | rc=0 2 pthread lock | rc=0
[ Delta compression: 42% reduction

7 pthread_unlock | rc=0 [ pthread_unlock | IC—U
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e Evaluation
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Evaluation

* How much does Knockoff reduce bandwidth usage?
« How much does Knockoff reduce storage costs?
* What 1s Knockoff’s performance overhead?

* For more experimental results, please refer to our paper
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Experimental setup

» User study

— 8 participants performed several simple tasks in one hour
« 20-day study

— A single-user longitudinal study

 Avariety of programs used
— Various Linux utilities, text editors and programming languages
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Bandwidth usage: user study
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Variances across applications
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100
Knockoff

80

60

40

Bandwidth savings(%)

20

A B C D E F G

Version on close

Xianzheng Dou 36



Variances across users

100
Knockoff
80
60

40

Bandwidth savings(%)

20

A B C D E F G

Version on close

Xianzheng Dou 36



Relative storage costs for past versions
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Performance overheads

» 7-8% performance overheads
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Conclusion

* A new dimension for reducing costs
 Selectively substitute computation for data

A general-purpose system for deterministic recomputation
— Reduces storage and communication costs for existing versioning policies
— Enables eidetic versioning
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Thank you!
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Varying the materialization delay
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Monetary costs

Knockoff savings
Price($ per GB) No version Version on close Version on write
20-day study | User study | 20-day study | User study | 20-day study | User study
4G network 4.50 21.0% 21.8% 21.2% 21.7% 22.9% 46.3%
Expensive ISP 0.20 20.3% 18.4% 20.5% 18.5% 22.0% 43.3%
Cheap ISP 0.05 18.1% 13.8% 18.2% 14.5% 19.2% 34.9%
Hypothetical ISP 0.005 8.2% 4.9% 8.4% 5.8% 8.2% 11.5%

Table 2: Relative cost savings from using Knockoff for different versioning policies. We show costs for a typical 4G
cellular network, an expensive current ISP, a cheap current ISP, and a hypothetical ISP that is an order of magnitude
cheaper than the cheap current ISP.

“Wrcnioan | Xianzheng Dou 42
" A\[ 1}



| MICHIGAN |
Vil

Workload characteristics

20-day study | User study
Disk read (MB) 5473 2583
Disk write (MB) 6706 4339
File open count 261523 418594
Number of executions 3803 1146
Number of programs 75 63
Table 1: Workload characteristics
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