Knockoff: Cheap versions in the cloud

Xlanzheng Dou, Peter M. Chen, Jason Flinn

UNIVERSITY OF MICHIGAN

Cloud-based storage

L

Google Drive

&8
@

Dropbox

&

Microsoft OneDrive

Pros:
Ease-of-management
Reliability
Xianzheng Dou 1

Cloud-based storage

L

Google Drive

&8
@

Microsoft OneDrive

Challenges:
Storage costs
Communication costs

Xianzheng Dou 2

Versioning Increases costs

L

Google Drive

&8
@

Pros:
Recovery of lost data
Auditing
Troubleshooting

Xianzheng Dou 3

Reducing costs: a new direction

 Established methods exploit similarities in data
— Chunk-based deduplication
— Delta compression
— Greater work for incremental gains

* Our goal: explore an orthogonal new dimension
— Deterministically recompute data in lieu of communication, storage

HTcHIOAN | Xianzheng Dou 4
Vil

File: data or computation?

Computation File data

Xianzheng Dou 5

File: data or computation?

Computation File data

Xianzheng Dou 5

File: data or computation?

Computation File data

Xianzheng Dou 6

File: data or computation?

Computation File data

Xianzheng Dou 6

File: data or computation?

Computation File data

Xianzheng Dou 6

File: data or computation?

Computation File data

Xianzheng Dou 6

IIIIIII

File: data or computation?

=l

01 BB

0110 ‘
0001 O
01101

=

Computation

File data

' —_l B
o1 &3 data

0110
000t QI -

Different output data

How can we address non-determinism?

Xianzheng Dou

File: data or computation?

* Deterministic record and replay 5

@ Record

LLogs of nondeterminism

Xianzheng Dou 7

File: data or computation?

* Deterministic record and replay 5

@ Record

LLogs of nondeterminism

Xianzheng Dou 7

File: data or computation?

@ Record

LLogs of nondeterminism

Xianzheng Dou 7

File: data or computation?

* Deterministic record and replay

@ Record

LLogs of nondeterminism

Xianzheng Dou 7

Knockoff

 Selectively substitutes computation for data

* Benefits

— Reduction compared to chunk-based deduplication
« Communication costs: 21%
 Storage costs: 19%

— Benefits increases as we retain versions more frequently
— A new fined-grained versioning policy

EETTE Xianzheng Dou 8
L AL]

* Writing files

“MicHIOAN | Xianzheng Dou 9
" \{]

Knockoff

» Knockoff selectively represents a file as:
d Normal file data (by value)
d Logs of the nondeterminism needed to recompute the file (by operation)

e, —

File

[MTCHIGAN | Xianzheng Dou 10
" A\[1}

Knockoff

» Knockoff selectively represents a file as:
d Normal file data (by value)
d Logs of the nondeterminism needed to recompute the file (by operation)

e, —

File

[MTCHIGAN | Xianzheng Dou 10
" A\[1}

Knockoff

» Knockoff selectively represents a file as:
d Normal file data (by value)
d Logs of the nondeterminism needed to recompute the file (by operation)

I

Xianzheng Dou 10

Knockoff

» Knockoff selectively represents a file as:
d Normal file data (by value)
d Logs of the nondeterminism needed to recompute the file (by operation)

I

Xianzheng Dou 10

An example log for compilation
- —

Log entry Values
1 open rc=3
2 mmap rc=<addr>file=<id,version>
3 gettimeofda rc=0,time=<time>
o
4 pthread lock | rc=0 o
5 SIGCHILD
Xianzheng Dou 11

An example log for compilation
- —

Log entry Values
1 open rc=3
2 mmap rc=<addr> file=<id,version> — Return values from syscalls
3 gettimeofday rc=0,time=<time>
3 sl
4 pthread lock | rc=0 } Ordering of thread synchronization
5 SIGCHILD } Signals

Y Xianzheng Dou 11

IIIIIIII

An example log for compilation
- —

Log entry Values
1 open rc=3
2 mmap rc=<addr>file=<id,version>
3 gettimeofda rc=0,time=<time>
o
4 pthread lock | rc=0 o
5 SIGCHILD
Xianzheng Dou 11

An example log for compilation

Log entry Values
1 open rc=3 /
2 mmap rc=<addr>,file=<id,versio
3 gettimeofda rc=0,time=<time>
o
4 pthread lock | rc=0 o
5 SIGCHILD
Xianzheng Dou 11

Writing files

= —8

By operation

By value
A
m o

Xianzheng Dou 13

Writing files

= —8

By operation

By value
= %+ a
o gy, log_

—_—

Xianzheng Dou 13

Writing files

= p—

By value By operation

Xianzheng Dou 13

Writing files

= —8

By operation
photo editing

- 3 §
By value .Zg 9"6; + =

Xianzheng Dou 14

Writing files

= —8

By value
% cryptographic key generation By operation

Xianzheng Dou 15

* Storing files

“MicHIOAN | Xianzheng Dou 17
" \{]

Storing files

« Store files by value or by operation?

B 7 =

* A tradeoff between latency and costs
— Current versions: by value
— Past versions: by value or by operation

[MicHiGAN | Xianzheng Dou 18
"\]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

m

Regeneration time = 20S < Materialization delay = 60S

[“MicHioan | Xianzheng Dou 19
"\]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

= M

Regeneration time = 20S < Materialization delay = 60S

[“MicHioan | Xianzheng Dou 19
"\]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

m

Regeneration time = 100S > Materialization delay = 60S

[“MicHioan | Xianzheng Dou 20
"\]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

X &=

Regeneration time = 100S > Materialization delay = 60S

[“MicHioan | Xianzheng Dou 20
"\]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

 Longest path > materialization delay

Total regeneration time = 20S

E <
20s i ligati —
(165 | Materialization delay = 60S

“Wrcnioan | Xianzheng Dou 21
" A\[1}

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

 Longest path > materialization delay

A
30s
l Total regeneration time = 50S
= <
20s i ligati —
(165 | Materialization delay = 60S

[MTCHIGAN | Xianzheng Dou 29
" \{]

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

@ 20- Longest path > materialization delay
 log |
/
A
30s
| log |
l Total regeneration time = 80S
= >
20s i ligati —
(165 | Materialization delay = 60s

Xianzheng Dou 23

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

@ 20: Longest path > materialization delay
 log |
/
A
30s
| log |
l Total regeneration time = 80S
= >
20s i ligati —
(165 | Materialization delay = 60s

[MTCHIGAN | Xianzheng Dou 24
" A\[1}

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

@ 05 * Longest path > materialization delay
log
/
N
30s

Total regeneration time = 80S

l
B .
20s i ligati —
(165 | Materialization delay = 60s

Xianzheng Dou 24

Storing past versions

« Maximum materialization delay
— Time bound for reconstructing any version

@ . + Longest path > materialization delay
— A greedy algorithm

log |
x @ Materialization delay = 60S

Xianzheng Dou 25

Storing past versions: versioning policies

* Frequency of versioning

o

\\\Q =
\}J »

Xianzheng Dou 26

Storing past versions: versioning policies

* Frequency of versioning

e

Q¢
\}J b

I 1

1

No versioning Version on close \ersion on write Eidetic versioning

Xianzheng Dou 26

Storing past versions: versioning policies

* Frequency of versioning

-

‘\\Q
\}J »

I 1

1

No versioning Version on close \ersion on write Eidetic versioning

Memory-mapped files
Any past transient state in memory?

Xianzheng Dou 26

Optimization: log compression

» Chunk-based deduplication is effective for file data
— Executions of the same application have similar patterns
— Can it also be applied to computation (logs of nondeterminism)?

 Delta compression

BT Xianzheng Dou 28
Vil

Optimization: log compression

* Problem: a smattering of values differ in each log

/

\

/

pthread_unlock

rc=0

., V
| MICHIGAN |
Vil

VIWANAANAAANN

Xianzheng Dou

Log entry Values Log entry Values
1 open rc=3 1 open rc=3
2 pthread lock | rc=0 2 pthread lock | rc=0
3 mmap re=<addr> file=<id,version> 3 mmap re=<addr> file=<id,version>
4 read re=<size> file=<id version> 4 read rc=<size>.file=<id,version>
5 gettimeofday | rc=0,time=9.90 5 gettimeofday | rc=0,time=1.10
6 write rc=<size> 6 write re=<size>
7 7 pthread unlock | rc=0

VIWANAANANANANANANA

29

Optimization: log compression

* Problem: a smattering of values differ in each log

~ D\ ~ N
Log entry Values Log entry Values
1 open rc=3 1 open rc=3
2 pthread lock | rc=0 2 pthread lock | rc=0
[Delta compression: 42% reduction

7 pthread_unlock | rc=0 [pthread_unlock | IC—U

VIWAAANANAANANN VIWVAAANANAAAN

., V
| MICHIGAN |
Vil

Xianzheng Dou 29

e Evaluation

EETE Xianzheng Dou 30
" A\[1}

Evaluation

* How much does Knockoff reduce bandwidth usage?
« How much does Knockoff reduce storage costs?
* What 1s Knockoff’s performance overhead?

* For more experimental results, please refer to our paper

[MIcHIGAN | XianZheng Dou
" \{ 1

31

Experimental setup

» User study

— 8 participants performed several simple tasks in one hour
« 20-day study

— A single-user longitudinal study

 Avariety of programs used
— Various Linux utilities, text editors and programming languages

BT Xianzheng Dou 32
Vil

Bandwidth usage: user study

[MTCHIGAN | Xianzheng Dou 33
" A\[1}

U
o
o

I
o
o

N
o
o

Data sent to the server (MB)
= w
o o
o o

Bandwidth usage: user study

Already achieve 80%-85% reduction

No versioning Version on close Version on write Eidetic

B Chunk-based deduplication

Xianzheng Dou

Knockoff

U
o
o

I
o
o

N
o
o

Data sent to the server (MB)
= w
o o
o o

Bandwidth usage: user study

Already achieve 80%-85% reduction

No versioning Version on close Version on write Eidetic

B Chunk-based deduplication

Xianzheng Dou

Knockoff

Bandwidth usage: user study

S U
o o
o o

Data sent to the server (MB)
w
o
o

500 F24%
100
0
No versioning Version on close Version on write Eidetic

B Chunk-based deduplication Knockoff

Xianzheng Dou 33

Bandwidth usage: user study

U
o
o

I
o
o

- 47%

}24% F25% :

Data sent to the server (MB)
N w
o o
o o

=
o
o

No versioning Version on close Version on write Eidetic

B Chunk-based deduplication Knockoff

Xianzheng Dou 33

Bandwidth usage: user study

U
o
o

I
o
o

- 47%

}24% F25% :

Data sent to the server (MB)
N w
o o
o o

=
o
o

No versioning Version on close Version on write Eidetic

B Chunk-based deduplication Knockoff

Xianzheng Dou 33

Variances across applications

60

50

40

30

20

Bandwidth savings(%)

10

0
Linux Graph Libreoffice Programming Text Web Total

utility editing editing browsing

Version on close

BT Xianzheng Dou 35
Vil

Variances across applications

60

50

40

30

20

Bandwidth savings(%)

10

0

Linux Graph Libreoffice Programming Text Web Total
utility editing editing browsing

Version on close

[MTCHIGAN | Xianzheng Dou 35
" \{]

Variances across users

100
Knockoff

80

60

40

Bandwidth savings(%)

20

A B C D E F G

Version on close

Xianzheng Dou 36

Variances across users

100
Knockoff
80
60

40

Bandwidth savings(%)

20

A B C D E F G

Version on close

Xianzheng Dou 36

Relative storage costs for past versions

2.5

1.5

Relative storage cost
[N

0.5
0
Version on close Version on write Eidetic
B Chunk-based deduplication Knockoff
Xianzheng Dou 37

Relative storage costs for past versions

2.5

2
)
Q 0
g 1.5 }23/0
lo]0)
(©
S 1 F19%
Q
=
=
© 0.5
Q
o

0

Version on close Version on write Eidetic
B Chunk-based deduplication Knockoff
Xianzheng Dou 37

Relative storage costs for past versions

2.5

2
)
Q 0
g 1.5 }23/0
lo]0)
(©
S 1 F19%
Q
=
=
© 0.5
Q
o

0

Version on close Version on write Eidetic
B Chunk-based deduplication Knockoff
Xianzheng Dou 37

Performance overheads

» 7-8% performance overheads
1.2

1 o o o e e e e e e e e e Baseline
0.8
0.6
0.4

0.2

No Versioning Version on close Version on write Eidetic

Vil

Conclusion

* A new dimension for reducing costs
 Selectively substitute computation for data

A general-purpose system for deterministic recomputation
— Reduces storage and communication costs for existing versioning policies
— Enables eidetic versioning

BT Xianzheng Dou 39
Vil

Thank you!

“MicHIOAN | Xianzheng Dou
" \{]

Varying the materialization delay

Version on write —a—
Version on close —
S| Eidetic —— |
G\e\e
o
O ..
% .
g 2| y
[e)
wn (F— — —
o 1.5 u\e\g
=
E """"" al
&) 1 —a—a— 1 l\'
""""" |
0.5
0 | | | | | | | | | | | | |
5 10 15 30 45 60 |deal
Materialization delay (seconds)
-~ Xianzheng Dou 41

[MicHiGAN |
Vil

Monetary costs

Knockoff savings
Price($ per GB) No version Version on close Version on write
20-day study | User study | 20-day study | User study | 20-day study | User study
4G network 4.50 21.0% 21.8% 21.2% 21.7% 22.9% 46.3%
Expensive ISP 0.20 20.3% 18.4% 20.5% 18.5% 22.0% 43.3%
Cheap ISP 0.05 18.1% 13.8% 18.2% 14.5% 19.2% 34.9%
Hypothetical ISP 0.005 8.2% 4.9% 8.4% 5.8% 8.2% 11.5%

Table 2: Relative cost savings from using Knockoff for different versioning policies. We show costs for a typical 4G
cellular network, an expensive current ISP, a cheap current ISP, and a hypothetical ISP that is an order of magnitude
cheaper than the cheap current ISP.

“Wrcnioan | Xianzheng Dou 42
" A\[1}

| MICHIGAN |
Vil

Workload characteristics

20-day study | User study
Disk read (MB) 5473 2583
Disk write (MB) 6706 4339
File open count 261523 418594
Number of executions 3803 1146
Number of programs 75 63
Table 1: Workload characteristics

Xianzheng Dou

43

