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Abstract
Nascent persistent memory (PM) technologies promise the
performance of DRAM with the durability of disk, but how
best to integrate them into programming systems remains
an open question. Recent work extends language memory
models with a persistency model prescribing semantics for
updates to PM. These semantics enable programmers to de-
sign data structures in PM that are accessed like memory and
yet are recoverable upon crash or failure. Alas, we find the
semantics and performance of existing approaches unsatisfy-
ing. Existing approaches require high-overhead mechanisms,
are restricted to certain synchronization constructs, provide
incomplete semantics, and/or may recover to state that can-
not arise in fault-free execution.

We propose persistency semantics that guarantee failure
atomicity of synchronization-free regions (SFRs) —program
regions delimited by synchronization operations. Our ap-
proach provides clear semantics for the PM state recovery
code may observe and extends C++11’s “sequential consis-
tency for data-race-free” guarantee to post-failure recovery
code. We investigate two designs for failure-atomic SFRs
that vary in performance and the degree to which commit
of persistent state may lag execution. We demonstrate both
approaches in LLVM v3.6.0 and compare to a state-of-the-
art baseline to show performance improvement up to 87.5%
(65.5% avg).

CCS Concepts • Computer systems organization →
Architectures; • Software and its engineering → Soft-
ware notations and tools; • Hardware → Memory and
dense storage;
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1 Introduction
Emerging persistent memory (PM) technologies, such as
Intel and Micron’s 3D XPoint [24], aim to combine the byte-
addressability of DRAM with the durability of storage. Un-
like traditional storage devices, which provide only an OS-
managed block-based interface, PM offers a load-store inter-
face similar to DRAM. This interface enables fine-grained
updates and avoids the hardware/software layers of conven-
tional storage, lowering access latency.

Although PMdevices are nascent, the best way to integrate
them into our programming systems remains a matter of
fierce debate [11, 15, 22, 28, 33, 51, 57]. The promise of PM is
to enable data structures that provide the convenience and
performance of in-place load-store manipulation, and yet
persist across failures, such as power interruptions and OS or
program crashes. Following such a crash, volatile program
state (DRAM, program counters, registers, etc.) are lost, but
PM state is preserved. A recovery process can then examine
the PM state, reconstruct required volatile state, and resume
program execution. The design of such recovery processes
is well studied in specialized domains, such as databases and
file systems [9, 19, 37, 45], but open questions remain for
general programming systems.

Reasoning about the correctness of recovery code requires
precise semantics for the allowable PM state after a fail-
ure [7, 10, 11, 13, 51, 57]. Specifying such semantics is com-
plicated by the desire to support concurrent PM accesses
from multiple threads and optimizations that reorder or coa-
lesce accesses.

Recent work has proposed memory persistency models to
provide programmers with such semantics [2, 13, 21, 28, 51].
Such models say that a PM access has persisted when the
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effects of that access are guaranteed to be observed by re-
covery code in the event of a failure. Similar to memory
consistency models, which govern the visibility of writes
to shared memory, persistency models govern the order of
persists to PM. Notably, many persistency models allow the
persist of a PM access to lag its visibility, enabling overlap
of long PM writes with subsequent execution. Both indus-
try [2, 21] and academia [13, 14, 51] have proposed candidate
persistency models, but most of these have been specified
at the abstraction level of the hardware instruction set ar-
chitecture (ISA). Such ISA-level persistency models do not
specify semantics for higher-level languages, where com-
piler optimizations may also reorder or elide PM reads and
writes.

Language-level persistency [30] proposes extending the
memorymodels of high-level languages, like C++11 and Java,
with persistency semantics. In this paper, we argue that the
language-level semantics proposed to date, Acquire-Release
Persistency (ARP) for C++11, are deeply unsatisfying, as they
fail to extend the “sequential consistency for data-race-free
programs (SC for DRF)” guarantee enjoyed in fault-free ex-
ecution to recovery code [5]. ARP specifies semantics that
prescribe ordering constraints at the granularity of individ-
ual accesses. Although ARP bounds the latest point (with
respect to other memory accesses) at which a PM store may
persist, it does not generally preclude PM stores from persist-
ing early, ahead of preceding accesses in memory (visibility)
order. As such, the set of states a recovery program might ob-
serve includes many states that (1) do not correspond to SC
program executions, and (2) could never arise in a fault-free
execution, posing a daunting challenge for recovery design.
Reasoning about recovery can be greatly simplified by

providing failure atomicity of sets of PM updates. Failure
atomicity assures that either all or none of the updates in
a set are visible after failure, reducing the state space re-
covery code might observe. Atomicity (beyond the PM ac-
cess granularity) can be achieved via logging [7, 11, 29, 57],
shadow buffering [13], or checkpointing [52] mechanisms,
which can be implemented in hardware [29, 52], as part of
the programming/runtime system [7], or within the applica-
tion [11, 13, 57].

ATLAS [7] argues to simplify recovery design by guaran-
teeing failure-atomicity of outer-most critical sections. Under
such semantics, the language/runtime guarantees that re-
covery will observe a PM state as it existed when no locks
were held by an application. However, we argue that this ap-
proach suffers from three key deficiencies: (1) its semantics
are unclear for PM updates outside critical sections, (2) it
does not generalize to other synchronization constructs (e.g.,
condition variables), (3) it requires expensive cycle detec-
tion among critical sections on different threads to identify
sets that must be jointly failure-atomic, which leads to high
overhead.

Instead, we propose persistency semantics that provide
precise failure-atomicity at the granularity of synchroniza-
tion free regions (SFRs)—thread regions delimited by syn-
chronization operations or system calls. Prior works have
used the SFR abstraction to define language memory mod-
els [39, 41] and to identify and debug data-races [4, 16, 39].
Under failure-atomic SFRs, the state observed by recovery
will always conform to the program state at a frontier of past
synchronization operations on each thread.

We argue that failure-atomic SFRs strike a compelling bal-
ance between programmability and performance. In a well-
formed program, SFRs must be data-race free. This property
allows us to extend the SC-for-DRF guarantee to recovery
code and avoid the unclear semantics of ARP. Moreover, our
approach avoids the limitations of ATLAS-like approaches.

We implement failure-atomic SFRs in a C++11 implemen-
tation (built on LLVM [34] v3.6.0). A programmer annotates
variables that should be allocated in a persistent address
space. Our compiler pass and runtime system introduce undo-
logging that enables recovery to PM state of a prior SFR
frontier, from which application-specific recovery can then
reconstruct volatile program state. We consider two designs
that strike different trade-offs in simplicity vs. performance.

SFR-atomicity with coupled visibility: In this design,
the persistent state lags the frontier of execution by at most
a single (incomplete) SFR; recovery rolls back to the start of
the SFR upon failure. This approach admits simple logging,
but exposes the latency of PM flushing and commit.

SFR-atomicity with decoupled visibility: In this de-
sign, we allow execution to run ahead of the persistent state.
We defer flushing and commit to background threads using
a garbage-collection-like mechanism. In this design, we pro-
pose efficient mechanisms to ensure that the SFR commit
order matches their execution order.

In summary, we make following contributions:

• Wemake a case for failure atomicity at SFR granularity
and show how this approach provides precise PM se-
mantics and is applicable to arbitrary synchronization
primitives, such as C++11 atomics.

• We demonstrate how SFR-atomicity with coupled visi-
bility simplifies logging, resulting in an average perfor-
mance improvement of 63.2% over the state-of-the-art
ATLAS design [7].

• We further observe that ordering of logs is sufficient
for recoverability and propose SFR-atomicity with de-
coupled visibility. With this design, we show a further
performance improvement of 65.5% over ATLAS.

2 Background and Motivation
We give brief background on memory persistency.
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2.1 Memory Persistency Models
Today’s systems implement several hardware structures that
reorder, coalesce and buffer updates before writing them
to memory. Such reordering complicates using PMs for re-
covery because the correctness of recovery mechanisms
rely on the order in which updates are persisted to the
PM [10, 11, 13, 51, 57]. Several persistency models have been
proposed, both in industry [2, 21] and in academia [13, 14, 51],
to guarantee persist order in modern systems. Intel has re-
cently extended the x86 ISA with an explicit CLWB instruc-
tion that can flush dirty cache lines to the memory controller.
Note that Intel requires platforms to ensure that any buffer-
ing in the memory controller serving PM is persistent, so
completion of a CLWB instruction is enough to guarantee an
update is persistent (without the now-deprecated PCOMMIT
instruction, see [23]). A subsequent SFENCE instruction or-
ders the CLWBwith respect to ensuing stores. Thus, a store fol-
lowed by a CLWB-SFENCE sequence ensures that the store has
persisted before subsequent memory operations are globally
visible. Note, however, that PM stores may (unexpectedly)
persist well before the CLWB if they are replaced from the
cache hierarchy, and failure atomicity is assured only at the
granularity of individual persist operations. Logging mecha-
nisms must be built if larger failure-atomicity granularity is
desired [30] and recovery code must explicitly account for
the possibility that PM stores are replaced from the cache
well before they are explicitly flushed.

2.2 Failure Atomicity
Logging mechanisms such as shadowing [13] and write-
ahead-logging (WAL) [11, 20, 22, 29, 57] provide failure atom-
icity for a group of persists. In shadowing, updates are made
to a shadow copy of the original data. The shadow copy
is then committed by atomically switching a pointer in a
metadata structure (e.g., page table). WAL provides failure
atomicity by either logging the updates in redo or undo logs.
In redo-logging [11, 20, 57], updates are first recorded in per-
sistent logs and then applied in-place in the original location.
Thus, a store implies (at least) two PM writes, one to log
the update and one to mutate the original location. In case
of failure, the recovery process inspects the redo-logs and
reapplies the updates. In contrast, undo-logs record the old
value of a location before it is written. On failure, the recov-
ery process rolls back partial PM updates from undo logs.
Redo-logging requires isolation [11] or redirection [20, 57]
of subsequent loads to the log area, which typically incurs
high overhead (in fault-free execution). In contrast, undo-
logs allow in-place updates to data structures, so subsequent
loads can read these locations directly.

2.3 Logging Mechanisms
Prior hardware and software mechanisms use logging to
provide failure atomicity, but most work has focused on
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Figure 1. (a) Failure atomicity for outermost critical sections
in ATLAS, (b1) Epoch ordering in ARP, (b2) Unclear failure
atomicity semantics in ARP resulting in partial updates in
PM, and (c) Our proposal: failure atomicity for SFRs.

transaction-based programs [11, 22, 32, 38, 57]. Hardware
mechanisms create undo logs [29] or redo logs [14] trans-
parently for transaction-based code, thus enabling failure
atomicity for the transaction, but require complex hardware
structures for log management. Software solutions, such as
Mnemosyne [57] and NV-Heaps [11], implement libraries
that enable failure atomicity for transaction-based programs.
However, in addition to semantic differences, there are signif-
icant challenges in porting existing lock-based programs to a
transactional execution model [6, 7]. We seek to look beyond
transaction-based programs and define durability semantics
for the more general synchronization primitives offered by
modern programming languages. To this end, we define per-
sistency semantics for the synchronization operations in the
C++11 memory model.

3 Persistency Semantics for Languages
We first discuss existing proposals that add persistency se-
mantics to the language memory model. In particular, AT-
LAS [7] and acquire-release persistency (ARP) [30] extend
the C++ memory model with persistency semantics. The two
proposals differ in the granularity of failure atomicity they
guarantee and rely on different synchronization primitives
to ensure correct persist ordering in PM. We discuss each
proposal.

ATLAS: ATLAS provides persistency semantics for lock-
based multi-threaded C++ programs. It guarantees failure
atomicity at the granularity of an outermost critical section,
as shown in Figure 1(a), where a critical section is the code
bounded by lock and unlock synchronization primitives. The
failure atomicity of outer-most critical sections ensures that
recovery observes PM state as it existed when no locks were
held in the program. This guarantee precludes recovery from
observing state that is partially updated by an interrupted
critical section. Failure-atomicity of critical sections is ap-
pealing from a programmability perspective, as it guarantees
recovery may only observe sequentially consistent PM state.

However, ATLAS’s persistency semantics have significant
shortcomings. ATLAS fails to provide any durability seman-
tics for synchronization operations other than mutexes. It
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does not support widely used synchronization primitives,
such as condition variables, and does not offer any seman-
tics for lock-free programs. Moreover, it does not provide
clear semantics for persistent updates outside of critical sec-
tions. Such updates may be partially visible after failure. In
addition, ATLAS requires recording the total order of lock
acquires and releases during execution and a complex cycle-
detection mechanism to ensure that mutually-dependent
critical sections are made failure atomic together. As we will
show, the performance overhead of the required logging and
cycle-detection mechanisms are high.

ARP: ARP specifies persistency semantics that provide
failure atomicity of individual stores. ARP ascribes persists
to ordered epochs using intra- and inter-thread ordering
constraints prescribed via synchronization operations. As
shown in Figure 1(b1), ARP may re-order persists within
epochs but disallows reordering across epochs. However,
ARP constrains only the latest point at which a PM write
may become durable—ARP allows for volatile write-back
caches that reorder PM writes. A PM write may become
durable as soon as it is globally visible. As such, a potentially
unbounded set of writes may be reordered and visible even
though preceding writes (in program order) are lost upon
failure.
Figure 1(b2) shows example code to append a new node

to a persistent linked-list. Under fault-free execution in ARP,
this code first acquires an exclusive lock on the linked-list,
updates the Next pointer of the tail to the newly created
node, and then the tail pointer is updated to the new node.
As ARP does not constrain the durability of the two updates
before the completion of the epoch, the update to tail may
become durable earlier than the update to tail->next. In
case of a failure, an incomplete update to the tail pointer will
result in an inconsistent linked-list. The two updates within
the critical section must be failure-atomic to ensure consis-
tency of the linked-list. Additional logging mechanisms are
required to provide failure atomicity at larger granularity.
We find ARP semantics unsatisfying. Although it may

be possible to construct logging mechanisms that can toler-
ate writes that become persistent far earlier than expected
(e.g., well before preceding store and release operations),
reasoning in such a framework is difficult—a logging mecha-
nism might have to resort to checksums or other complex,
probabilistic mechanisms to detect partial log records. Im-
portantly, a programmer must reason about non-serializable
states when writing recovery code.
We argue instead for persistency semantics that provide

failure atomicity for SFRs. Our approach can support arbi-
trary C++ synchronization operations with clear semantics
and simple runtime mechanisms, avoiding the performance
overheads of ATLAS.

3.1 C++ Memory Model
The C++ memory model provides synchronization opera-
tions, namely atomic loads, stores, and read-modify-writes,
to order shared memory accesses. These accesses may di-
rectly manipulate synchronization variables, enabling imple-
mentation of a wide variety of synchronization primitives. In
this paper, we refer to accesses to atomic variables that have
load semantics as acquire operations, and those with store
semantics as release operations. The C++ memory model
prescribes a happens-before ordering relation between re-
lease and acquire operation, to enable programmers to order
sharedmemory accesses (formalized later in Section 6.1). The
happens-before relation orders the visibility of data accesses
in (volatile) memory. However, C++ currently provides no
durability semantics for accesses to PM. We extend the se-
mantics of synchronization operations to also prescribe the
order in which PM updates become durable.

4 Design Overview
We extend the C++ memory model with durability semantics
for multi-threaded programs. We leverage synchronization
operations to establish SFR boundaries and assure failure
atomicity at this granularity, as shown in Figure 1(c). An SFR
is a region of code delimited by two synchronization opera-
tions (or system calls) [39, 50]. If a synchronization operation
has store semantics and modifies a location in PM, it forms
its own, single-instruction region ordered before a second
SFR it delimits comprising subsequent writes until the next
synchronization. C++ requires that SFRs be data-race free,
and, in turn, guarantees serializability of SFRs, despite any
compiler and hardware optimizations that reorder accesses
within SFRs to gain performance [1, 5]. That is, programs
are guaranteed to behave as if the updates made within SFRs
become visible to all other threads atomically at the syn-
chronization operation that terminates the SFR. Note that
C++ provides no semantics for programs with unannotated
data-races.
The key advantage of providing failure atomicity at SFR

granularity is that it allows us to extend the appearance of
SC-for-DRF behavior to recovery code as well as fault-free
execution. In the absence of SFR atomicity, loads that observe
PM state after failure in effect race with the PM updates that
may or may not have completed within the SFR running at
the point of failure. As such, C++ places no constraints on
the state recovery may observe. Under failure-atomic SFRs,
the state in PM at recovery follows the program state at a
frontier of past synchronization operations on each thread.

C++ provides synchronization operations that assure SC-
for-DRF. Specifically, we study the inter-thread and intra-
thread happens-before ordering prescribed by synchroniza-
tion operations in multi-threaded applications to order mem-
ory accesses. We extend these guarantees to ensure that the
memory accesses within SFRs become persistent in an order
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consistent with the constraints on when they may become
visible. We formalize these requirements later in Section 6.2.

Further, we propose compile and runtime mechanisms to
provide failure atomicity at SFR granularity. We implement
a compiler pass in LLVM v3.6.0, which instruments syn-
chronization operations and PM accesses with undo-logging
operations. In a traditional undo logging scheme, the state of
the memory locations to be updated is first recorded in undo
logs. Once the logs persist, in-place mutations of data struc-
tures may be made. Once the mutations are complete, state
is committed by invalidating and discarding corresponding
log entries. We investigate two logging designs that vary in
simplicity and performance.

SFR-atomicity with coupled visibility: In this design,
the visibility of the program state in volatile caches is coupled
with its persistent state in PM. The in-place PM mutations
are flushed at the end of each SFR and the undo log is immedi-
ately committed. Thus, the committed state lags the frontier
of execution by at most a single (currently executing) SFR;
recovery rolls back to the start of the SFR, minimizing the
state lost on a failure. This approach admits a simple logging
design where there is only a single uncommitted SFR per
thread and logs are entirely thread-local. However, it exposes
flush and commit latency on the critical execution path.

SFR-atomicity with decoupled visibility: Instead, we
can allow execution to run ahead of the persistent state by
deferring flush and commit. In this approach, the persistent
state still comprises a frontier of SFRs on each thread, but
may arbitrarily lag execution. We use a garbage-collection-
like mechanism to periodically flush PM state and commit
logs. This approach can hide the latency of flushing and
commit with execution of additional SFRs. The key challenge
is that the SFR commit order must match their execution
order. We describe efficient mechanisms to ensure correct
commit.

5 SFR Failure Atomicity
We next describe the logging mechanism we propose to
provide failure-atomicity for SFRs.

5.1 Logging
In both variants of our system, we use undo logging to pro-
vide failure atomicity of SFRs. For the synchronization opera-
tion that begins an SFR, and every PM store operation within
the SFR, our compiler pass emits code to construct an undo
log entry in PM. Figure 2 illustrates the high-level steps our
scheme must perform. Undo logs are appended to thread-
local log buffers in PM. The log entry records the values PM
locations had at the start of the SFR, before any mutation.
The log entry is then persisted by explicitly flushing it from
volatile caches to the PM (step L). Next, our compiler pass
emits an ISA-level memory ordering barrier (to order the
flush with subsequent writes) and the store operation that

L1
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U2REL1

ACQ1L: Create and 
Persist log

U: Update data

P: Persist data

C: Commit log
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Figure 2. (a) Steps in undo logging mechanism, (b) Undo log
ordering in Coupled-SFR when SFRs are durability-ordered,
and (c) Undo log ordering in Decoupled-SFR when SFRs are
durability-ordered.

updates the persistent data structure in place (step U). This
update may remain buffered in volatile write-back caches
or it may drain to PM due to cache replacement, unless we
explicitly flush it. Once updates have been explicitly flushed
and persisted (step P), the corresponding undo log entries
may be committed (step C). The commit operation marks
logs to be pruned, discarded and reused. Our two atomicity
schemes differ in when and how they perform these latter
two steps.
As shown in Figure 2(a), the partial updates within an

SFR are recoverable only when the steps outlined above are
performed in order [32]. For instance, undo logs must be
created and persist before in-place mutations may be made.
Otherwise, it is possible that the mutations are written-back
from caches to PM before the undo log persists. If failure
occurs in the interim, the state as of the start of the SFR
cannot be recovered. Similarly, undo logs may be committed
only after the in-place mutations persist. We ensure proper
ordering between the operations by using mechanisms of an
underlying ISA-level persistency model. In the case of Intel
x86, this requires CLWB (or CLFLUSHOPT or CLFLUSH in older
processors) to flush writes and SFENCE to order with respect
to subsequent operations.
In case of a failure, recovery code begins by inspecting

the uncommitted undo logs. It processes these logs, rolling
back updates that may have drained from uncommitted SFRs.
After rollback, the PM state will correspond to the state that
existed at the start of some frontier of SFRs on each thread.
Subsequent recovery operations (e.g., to prepare volatile data
structures) are assured they will not observe updates from
any partially executed SFR.

Log structure: We adopt an undo log organization similar
to ATLAS [7]. Each thread manages a thread-local header,
located in a pre-specified location in PM, which points to a
linked list of undo log entries. As the undo logs are thread-
private, threads may concurrently append to their logs. The
order of entries in each undo log reflects program order. Log
entries include the following fields:
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• Log type: Entry type, one of STORE, ACQUIRE, or
RELEASE

• Addr: Address of the access
• Value: Value to which to recover for STORE operations, or
the log count (see Section 5.3) for ACQUIRE, or RELEASE

• Size: Access size
• Next: Link to next log entry

5.2 SFR-atomicity with Coupled Visibility
Our first design, SFR failure-atomicity with coupled visibility
(Coupled-SFR), couples execution (more precisely, visibility
of PM reads and writes) and persist of PM updates—persists
may lag execution only until the start of the next SFR. Exe-
cution and persistency advance nearly in lock-step.

Logging: Under Coupled-SFR, updates within an SFR are
flushed and persist at the end of the SFR. Our compiler pass
emits code to create undo logs, mutate data in place, flushmu-
tations, and commit logs as described in Section 5.1. We emit
log creation code for each PM store as shown in Figure 4(a).
Before the SFR’s terminal synchronization, an SFENCE in-
struction is emitted to ensure that all PM mutations persist
before any writes in the next SFR.

Failure and Recovery: Each thread maintains only undo
logs for its incomplete SFR. Upon failure, recovery code
rolls back updates from the partially completed SFR on each
thread using the logs. Subsequent recovery code observes
the PM state as it was at the last synchronization operation
prior to failure on each thread.

Discussion: The central advantage of Coupled-SFR is that
each thread must track only log entries for stores within its
still-incomplete SFR, and does not interact with any other
thread. The thread-private nature of our commit stands in
stark contrast to ATLAS, which must perform a dependency
analysis and cycle-detection across all threads’ logs to iden-
tify log entries that must commit atomically. Because ac-
cesses within SFRs must be data-race free, there can be no
dependences between accesses in uncommitted SFRs; all

inter-thread dependencies must be ordered by the synchro-
nization commencing the SFR, and hence may depend only
on committed state. The PM state after recovery is easy to
interpret, as it conforms to the state at the latest synchro-
nization on each thread.
However, the downside of Coupled-SFR is that there is

relatively little scope to overlap the draining of persistent
writes with volatile execution—execution stalls at the end
of the SFR until all PM writes are flushed and the log is
committed, potentially exposing much of PM persist latency
on the critical path. Figure 3(a) illustrates an example of how
high persist latencies can delay execution. In Figure 3(a), the
program state on Thread 2 is stalled while the updates in
SFR1

2 remain pending to persist. These stalls further delay
execution on Thread 1, as SFR0

3 is ordered after SFR1
2 by

synchronization operations.

5.3 SFR-atomicity with Decoupled Visibility
The key drawback of Coupled-SFR is that it exposes the high
latency of persists and log commits on the execution critical
path. Instead, we decouple the visibility of updates (as gov-
erned by cache coherence and the C++ memory model) from
the frontier of persistent state; that is, we can allow persistent
state to lag execution—an approach we call Decoupled-SFR.
Nevertheless, Decoupled-SFR must still assure that recovery
will roll PM state back to some prior state that conforms to a
frontier of synchronization operations on each thread. To en-
sure that persistent state does not fall too far behind (which
risks losing forward progress in the event of failure), we pe-
riodically invoke a flush-and-commit mechanism, much like
garbage collection in managed languages. This mechanism
flushes in-place updates and commits logs. However, the key
invariant this mechanism must maintain is that SFRs commit
in an order consistent with their execution. We next describe
how we ensure this property.

Logging: Program state is recoverable if undo logs persist
in the order the SFRs are executed (more precisely, the partial
order in which they became visible, according to the C++11
memory model). In case of failure, undo logs are processed
in reverse order to recover program state to the start of
committed SFRs. The key departure of Decoupled-SFR from
Coupled-SFR is that we defer flush and commit to perform
them in the background, off the critical execution path.

In Figure 2(c), we illustrate logging under Decoupled-SFR.
Like Coupled-SFR, our compiler pass emits logging code in
advance of in-place PM mutations. In addition, we emit log
entries for all synchronization operations. Read synchroniza-
tion operations create ACQUIRE log entries, while write and
read-modify-write emit RELEASE entries. If a RELEASE is to
a location in PM, we emit first a STORE and then a RELEASE
log for it. Log entries are appended to thread-local logs in
creation (program) order. Pseudo-code for the instrumenta-
tion of store, acquire and release operations are shown in
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(d) Recovery in Decoupled-SFR (c) Log commit in Decoupled-SFR (a) Instrumentation of store and sync. operations in Coupled-SFR

(b) Instrumentation of store and sync. operations in Decoupled-SFR

Store(A,val)

U = createLog(&A,val)
persist(U)
fence
str(A)
persist(A)

Acquire(L)

fence
commitLog()
fence
acq(L)

Release(L)

fence
commitLog()
fence
rel(L)

Acquire(L)

do {
    lc = execCount(L)
    acq(L)
} while (execCount(L)!=lc)

U = createLog(&L,lc)
persist(U)
fence

Store(A,val)

U = createLog(&A,val)
persist(U)
fence
str(A)

Release(L)

do {
    lc = execCount(L)
    rel(L)
} while ( !RMW(execCount(L),lc,lc+1) )

U = createLog(&L,lc)
persist(U)
fence

PruneLogs(logEntry)

if(logEntry.type eq STORE)
    persist(logEntry.addr)
    return

/* At this point,  log entry 
   belongs to a sync. op. */
pc = persistCount(logEntry.addr)
while(logEntry.Value neq pc);

fence
commitLog()

if(logEntry.type eq RELEASE)
    fence
    pc.store(pc+1)

RecoverLog(logEntry)

if(logEntry.type eq STORE)
    Store(logEntry.addr,
     logEntry.Value, logEntry.size)
    persist(logEntry.addr)
    return

/* At this point,  log entry 
   belongs to a sync. op. */
pc = persistCount(logEntry.addr)
while(logEntry.Value neq pc);

fence
removeLog()

if(logEntry.type eq ACQUIRE)
    fence
    pc.store(pc-1)

Figure 4. (a) Instrumentation for store and synchronization operations in Coupled-SFR design. (b) Instrumentation for store
and synchronization operations in Decoupled-SFR design. Acquire (acq) and release (rel) operations are atomic loads and
atomic stores to the synchronization variable L. (c) Pseudo-code for log commit operation by pruner threads in Decoupled-SFR
design. (d) Pseudo-code for recovery operation at failure in Decoupled-SFR design.

Figure 4(b). Unlike Coupled-SFR, we do not emit flush or
commit code as part of the SFR. Instead, we delegate these
operations to pruner threads, which operate periodically on
the logs. We next explain how we maintain correct commit
order for SFRs.

Ordering commit: Each program thread has an accom-
panying pruner thread that flushes mutations and commits
the log on its behalf. Like garbage-collection, pruner threads
are invoked periodically to commit and recycle log space.

Recoverability requires that logs are pruned—committing
the updates in the corresponding SFR—in the same order as
the SFRs are executed, else the state after recovery will not
correspond to a state consistent with fault-free execution. As
such, our logging mechanism must log the happens-before
ordering relations between SFRs (as governed by the C++11
memory model) and commit according to this order. We
record happens-before by: (1) adding acquire / release an-
notations to the per-thread logs, (2) maintaining per-thread
logs in program order (thereby capturing intra-thread order-
ing), and (3) tracking order across threads by maintaining a
monotonic sequence number across release / acquire pairs.
We refer throughout to Figure 4(b), which illustrates pseudo-
code for our instrumentation.
We associate a sequence number execCount(L) with

each synchronization variable L. We use a lock-free hashmap
to record execCount(L) for each synchronization oper-
ation, allowing lock-free concurrent access/update of the
counters. The hashmap is located in volatile memory for
faster accesses, because we do not need the hashmap for
recovery and can reinitialize it post-failure. For simplicity,
our implementation assumes execCount(L) is large enough
that we can ignore wrap-around.

For operations with release semantics (see Figure 4(b) Re-
lease), the instrumentation code observes the current value of
execCount(L). Then, execCount(L) is incremented with
an atomic memory access. The loop in this pseudo-code ac-
counts for the possibility of racing RELEASE operations. A
log entry is emitted reflecting the identity of the synchroniza-
tion variable L and the observed value of execCount(L),
which is recorded in the log entry’s Value field.

A subsequent ACQUIRE operation that synchronizes-with
a RELEASE observes the sequence number of that release (see
Figure 4(b) Acquire). Note that it is critical that the acquire
operation and the observation of the sequence number are
atomic, which we arrange by reading the execCount(L)
field twice, before and after the acquire—a mismatch in-
dicates two racing release operations (unlikely in well-
structured code), which we handle by synchronizing again.

Log commit: The pruner threads must together commit
logs in sequence number order. We use a second monotonic
counter per synchronization variable, the persist counter
(persistCount(L)), also placed in a lock-free hashmap,
to synchronize and order SFR commit across pruner threads.

The pseudo-code for log commit and pruning is depicted in
Figure 4(c). Each pruner thread processes its thread-private
log starting at the entry indicated in its corresponding log
header. Upon reaching an entry for a synchronization opera-
tion, the pruner thread may need to wait for other pruner
threads to ensure commit is properly ordered. We consider
each kind of log entry in turn:
STORE: The pruner thread ensures the corresponding mu-

tation is persistent by flushing the corresponding address
with a CLWB operation (using the Addr field recorded in the
log).
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ACQUIRE: The pruner thread spins on persistCount(L)
until it is equal to the execCount(L) recorded in the Value
field of the log entry. This spin awaits commit of the SFRwith
which the acquire synchronized. The SFR is then committed.
RELEASE: The pruner thread spins on persistCount(L)

until it is equal to the execCount(L) recorded in the Value
field of the log entry. This spin waits for commit of the pre-
ceding release of the same synchronization variable. Then, a
fence is issued to ensure the CLWB operations of any preced-
ing STORE log entries are ordered before commit. The SFR
may then be committed. After commit, persistCount(L)
is incremented, which unblocks the pruner thread that will
commit the next SFR for this synchronization variable. Note,
again, the need for a memory fence after commit to ensure
that the commit operation is ordered before subsequent com-
mits and the increment of persistCount(L).
Log pruning: Pruner threads prune (discard) log entries

when an SFR is committed. To prune a group of entries
belonging to an SFR, the pruner atomically modifies the
pointer in its log header to point to a later log entry. The
log space may then be freed/recycled. As the log entries
belonging to an SFR are committed atomically, only after the
updates within the SFR have persisted, the pruner threads
guarantee SFR failure-atomicity.

Failure and Recovery: In Decoupled-SFR, the state af-
ter failure and recovery must conform to a frontier of past
synchronization operations on each thread. Recovery code
inspects the uncommitted undo logs and rolls back updates
in the reverse order of log creation. Much like the com-
mit operation of pruner threads, the recovery code uses
the execCount(L) sequence number recorded in the Value
field of log entries to apply undo logs in reverse order. The
pseudo-code for this recovery is shown in Figure 4(d). First,
the recovery process scans all undo logs and records the
highest observed sequence number for each synchronization
variable in a hashmap. Then, STORE log entries are replayed
in reverse creation order to roll back values in PM. As the
logs roll back, replayed log entries are pruned when travers-
ing ACQUIRE or RELEASE entries, thus allowing recovery
even in the event of multiple/nested failures. Once PM state
is recovered, application-specific recovery code takes over
to reconstruct any necessary volatile state.

Optimizations: We enable certain optimizations to make
log pruning more efficient. First, we can often commit
batches of SFRs atomically. If persistCount(L) matches
the Value in all synchronization log entries for consecutive
SFRs (i.e., no need to wait), we commit them together. Second,
a pruner thread processes STORE log entries for a single SFR
together: it issues multiple CLWB operations to flush updates
in parallel. Importantly, processing entries as a group allows
us to coalesce multiple updates to the same address within
an SFR. Note that we still log all writes to the same memory
addresses within the SFR separately, which avoids the need

to check if the memory address has previously been logged
within the SFR on the critical execution path.

Finally, if a pruner thread commits its last log entry, it
blocks to conserve CPU. Execution threads wake all pruners
when log entries accumulate above some threshold. Note
that, since pruner threads may have to wait for one an-
other to process dependent log entries, they should be gang-
scheduled.

Discussion: Under Decoupled-SFR, persistent state may
arbitrarily lag execution state. Hence, although recovery
arrives at a state consistent with a synchronization fron-
tier, forward progress may be lost. Programmers must be
aware of this possibility. If state loss is not desired (e.g., if
the program will perform an operation with an irrecover-
able side-effect), Decoupled-SFR provides a psync operation,
which stalls execution and triggers pruner threads to drain
their logs.

6 Durability Invariants
We briefly discuss invariants that a logging implementation
must meet to ensure failure-atomicity of SFRs and describe
how the Coupled-SFR and Decoupled-SFR implementations
ensure these invariants.

6.1 Preliminaries
We introduce a notation to describe persist ordering, fol-
lowing the approach in prior works [30, 31], and present a
summary of persist ordering as it relates to the C++ memory
model. C++ provides atomic (std::atomic<>) primitives,
which allow programmers explicit control over the ordering
of memory accesses. Atomic variables may be loaded and
stored directly (without, e.g., a separate mutex) and hence
facilitate the implementation of a wide variety of synchro-
nization primitives. We formalize persist ordering using the
following notation for memory operations to a location l
from a thread i .

• ACQ i
l : an atomic load or read-modify-write

• RELil : an atomic store or read-modify-write
• M i

x : a non-atomic operation on memory location x

We indicate ordering constraints among memory events
with the following notation:

• M i
x ≤sb M i

y :M i
x is sequenced-beforeM i

y in thread i
• RELil ≤sw ACQ j

l : A release operation on location l in
thread i “synchronizes with” an acquire operation on loca-
tion l in thread j.

• M i
x ≤hb M j

y :M i
x in thread i happens-beforeM j

y in thread
j

The C++ memory model achieves inter-thread ordering
using the “synchronizes-with” ordering relation and intra-
thread ordering using the “sequenced-before” ordering rela-
tion. The “happens-before” relation is the transitive closure
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of “synchronizes-with” ≤sw and “sequenced-before” ≤sb or-
derings.
Memory operations must follow the sequenced-before or-

dering relations within a thread. A release operation RELil
orders prior memory access M i

x and an acquire operation
ACQ i

l orders subsequent memory access M i
y on thread i.

Further, the C++ memory model achieves the inter-thread
ordering using the “synchronizes-with” order relation be-
tween an acquire and release operation. A release operation
RELil in thread i synchronizes-with the acquire operation
ACQ j

l in thread j. The synchronizes-with relation orders
memory access M i

x in thread i with memory access M j
y in

thread j:

(M i
x ≤sb RELil ≤sw ACQ j

l ≤sb M j
y ) → M i

x ≤hb M j
y (1)

We now use the happens-before ordering relation between
the memory accesses to define the order in which SFRs must
be made durable in PM.

6.2 SFR Durability
Atomic loads, stores, and read-modify-write operations de-
limit SFRs. We say that a store operation is visible post-
recovery if the effects of the store may be observed by code
that runs after failure and recovery. Our logging designs
must ensure that an SFR is failure-atomic:

Atomicity Invariant: If there exists a PM update within
an SFR that is visible post-recovery, then all updates in the SFR
must be visible post recovery.
The Atomicity Invariant guarantees that the updates

within an SFR are not partially visible after failure. We say
that an SFR is durable if all its updates are visible post-
recovery.
Further, our logging must ensure that SFRs become

durable in an order consistent with the C++11 memory
model. We use the happens-before ordering relation between
the memory accesses to prescribe the order SFRs must be
made durable.
Suppose SFRi and SFR j denote SFRs on threads i and j

respectively. Consider memory operations M i
x and M j

y on
threads i and j respectively, such thatM i

x ∈ SFRi , andM j
y ∈

SFR j . We say that SFRi is durability-ordered before SFR j if:

∃
(
M i

x ∈ SFRi ,M j
y ∈ SFR j

)
|M i

x ≤hb M j
y , SFR

i ≤do SFR j

(2)
where SFRi ≤do SFR j → SFRi must be made durable before
SFR j .

Finally, we require that durability-order between SFRs is
transitive and irreflexive:

(SFRi ≤do SFR j ) ∧ (SFR j ≤do SFRk ) → SFRi ≤do SFRk
(3)

Following Equation 2, logging must satisfy:
Durability Invariant: If an SFR is durable, SFRs that are

durability-ordered before it must also be durable.

Note that the SFRs are unordered if there exists no tran-
sitive durability-ordering relation between them. The key
correctness requirement of the recovery mechanism is that
the state that the recovery code observes after failure must be
consistent with the ordering constraints expressed in Equa-
tion 2-3. We now describe how our designs, Coupled-SFR
and Decoupled-SFR, satisfy the atomicity invariant to guar-
antee SFR failure-atomicity and the durability invariant to
ensure SFR durability is properly ordered.

6.3 Coupled-SFR
Under Coupled-SFR, each thread maintains a thread-local
pointer to a list of log entries for at most one incomplete
SFR. The log is committed atomically using commitLog as
shown in Figure 4(a) before the synchronization operation
that ends the SFR is executed. CommitLog atomically prunes
the entire list of undo log entries by zeroing the pointer in
the thread-local header. The SFR is durable when the logs
commit. This atomic commit satisfies theAtomicity Invariant,
thereby ensuring failure-atomicity of SFRs.

Figure 2(b) illustrates the SFRs, SFR1 and SFR2, as ordered
by the happens-before ordering relation. Note that execution
of the memory accesses in SFR1 are ordered before those in
SFR2 by the happens-before ordering relation between REL1
on thread 1 and ACQ1 on thread 2. The ordering relation
between REL1 and ACQ1, implies SFR1 is durability-ordered
before SFR2 by Equation 2. As shown in Figure 2(b), SFR1
becomes durable in the commit stage (step C1 in Figure 2(b))
before the release operation. Further, the subsequent acquire
operation is sequenced-before the commit operation (step C2
in Figure 2b) in SFR2. The two ordering relations guarantee
that SFR1 becomes durable before SFR2 in Coupled-SFR.

6.4 Decoupled-SFR
Similar to Coupled-SFR, under Decoupled-SFR, each thread
maintains a thread-local pointer to the head of its undo logs.
The pruner threads commit logs atomically by adjusting
the log header to point to a subsequent log entry for a syn-
chronization operation, as shown in Figure 4(c). The atomic
commit ensures that one (or more) SFRs are made durable
atomically.
Figure 2(c) shows the order of creation of undo logs for

SFR1, which is durability-ordered with SFR2. The durability-
order relation implies that SFR1must be made durable before
SFR2. During execution, Decoupled-SFR assigns ascending
sequence numbers to the synchronization operations. The
log entry corresponding to the release operation records a se-
quence number from execCount(L), atomically increments
it and then performs the release operation. Consequently,
the acquire operation that synchronizes-with the release op-
eration records the updated sequence number in its log entry
followed by executing SFR2. As shown in Figure 4(c), the
pruner threads commit the log entry in ascending sequence
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Table 1. Benchmarks.

Benchmark Description

Concurrent queue (CQ) Insert/Delete nodes in a queue
Array Swap (SPS) Random swap of array elements
Persistent Cache (PC) Update entries in persistent hash table
RB-tree Insert/Delete nodes in RB-Tree
TATP Update location trans. from TATP [49]
Linked-List (LL) Update/Insert/Delete nodes in a linked-list
TPCC New Order trans. from TPCC [56]

number order. Thus, the logs for SFR1, which are sequenced-
before the release operation, commit before SFR2, which
are sequenced-after the acquire operation. The two ordering
relations guarantee the durability of SFR1 before SFR2.

7 Evaluation
We implement a compiler pass that can emit code for both
our logging approaches in LLVM [34] v3.6.0. The compiler
pass instruments stores and synchronization operations to
create undo logs according to the pseudo-code in Figure 4.
We also provide a library containing the recovery code that
rolls back undo logs upon failure, recovering to a frontier
of past synchronization operation, and the runtime code
for log pruning in Decoupled-SFR. We first describe our
experimental framework including our system configuration,
the benchmark suite that we use, and the designs we consider
in our experiments.

System configuration: We perform our experiments on
an Intel E5-2683 v3 server class machine with 14 physi-
cal cores, each with 2-way hyper-threading, operating at
2.00GHz. Since byte-addressable persistent memory devices
are not yet commercially available, we use Linux tmpfs [55],
memory-mapped in DRAM, to mimic the persistent address
space of a PM-enabled system. Note that it is widely ex-
pected that the access latency of actual PM devices will be
higher than that of DRAM (likely by 2-10x) [60]. In our ex-
perimental setup, we expect to underestimate the cost of
flushing mutations to PM in ATLAS and Coupled-SFR. In
Decoupled-SFR, because we delegate flush operations for
in-place updates to the pruner threads, we expect to hide
the flush latency. Hence, we expect to obtain similar perfor-
mance for Decoupled-SFR even with slower PM devices. As
such, we believe our evaluation is conservative in estimat-
ing the performance advantage of Decoupled-SFR over the
alternatives.
Our Haswell-class server machine does not offer clwb

instructions, instead providing a clflush operation to flush
the data out of the cache hierarchy to the memory controller.
Systems supporting clwb, which avoids some undesirable
overheads of clflush, are expected to be available in the
near future. To our knowledge, no available x86 platform
provides mechanisms to ensure that data are indeed flushed
to memory. Instead, Intel presently requires the memory
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Figure 5. Execution time of Coupled-SFR and Decoupled-
SFR designs normalized to ATLAS. No-persistency design,
with no durability guarantees, shows an upper bound on
performance.

controller in PM-enabled systems to guarantee durability
(e.g., via battery backup or flush-upon-failure) [23]. As a
result, we rely on sfence operation to order the drain of
updates.

Benchmarks: We study a suite of seven write-intensive
multi-threaded micro-benchmarks and benchmarks, listed
in Table 1, which have been used in prior studies of per-
sistent memory systems [11, 29, 30, 51]. The Concurrent
Queue (CQ), similar to that of prior works [30, 51], inserts
and removes nodes from a shared persistent queue. The Ar-
ray Swap, RB-tree and Persistent cache (PC) are similar to
the implementations in NV-Heaps [11]. Our TATP bench-
mark executes the update location transaction of the TATP
database workload [49], which models the home location
registration database of a telecommunications provider. Our
TPCC benchmark executes the new-order transaction from
the TPCC database workload [56], which models an order
processing system. The Linked-List benchmark uses a hand-
over-hand locking mechanism to update, insert, and remove
nodes in a persistent linked-list. All the benchmark run 12
concurrent execution threads and perform 10M operations
on the persistent data structure.

Design options: We compare the following designs: (a)
ATLAS: a state-of-the-art logging approach that provides
failure-atomicity of outermost critical sections, (b) Coupled-
SFR: our mechanism for SFR failure-atomicity with coupled
visibility, (c) Decoupled-SFR: our mechanism for SFR failure-
atomicity with decoupled visibility, and (d) No-persistency: a
design that provides no recoverability of the program. We in-
clude No-persistency to show an upper bound for our perfor-
mance improvements and quantify the cost of recoverability.
No-persistency provides no recovery guarantees.

7.1 Performance Comparison
Figure 5 contrasts the execution time of Coupled-SFR and
Decoupled-SFR with that of ATLAS. In this experiment, we
perform two operations per SFR for the concurrent queue
(CQ), persistent cache (PC), array swap (SPS), RB-tree, and
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Figure 6. Distribution of logging overhead in Coupled-SFR
and Decoupled-SFR designs.

linked-list (LL). The other two benchmarks TATP, and TPCC
implement open specifications and so each SFR includes
as many write operations as are required to implement the
mandated behavior of update location and new order transac-
tions, respectively. ATLAS performs the slowest in all bench-
marks (except in CQ) because it records the order of execu-
tion of critical sections (as opposed to Coupled-SFR), and
flushes the PM mutations within each critical section on
the critical execution path (as opposed to Decoupled-SFR).
Decoupled-SFR enables light-weight recording of SFR order
and performs flush and commit operations on pruner threads,
off the critical execution path. As a result, Decoupled-SFR
achieves up to 80.1% and 66.0% performance improvement
in array swap and persistent cache, respectively, which em-
ploy fine-grained locking and have the highest concurrency.
Linked-list uses hand-over-hand locking and must acquire
several locks in the linked-list before operating on a node.
Decoupled-SFR performs best with 87.5% improvement in
Linked-list, as it greatly simplifies logging as compared to
the ATLAS.

It is interesting to note that Coupled-SFR performs better
than Decoupled-SFR in array swap, persistent cache, and
linked-list. This might seem counter-intuitive, as Coupled-
SFR admits simpler logging at the cost of committing logs
at every synchronization operation. However, these bench-
marks perform only two stores per SFR. As a result, the cache
flush operations on the critical path under Coupled-SFR in-
cur less overhead than the more complex logging code of
Decoupled-SFR.

As the number of stores per critical section grows, ATLAS
fails to scale. ATLAS does not support concurrent commit
and must rely on only a single helper thread to commit and
recover log entries. Therefore, as the number of PM writes
scaleswith the number of execution threads, the single helper
thread can no longer keep up with the required commit rate
and the log grows until available log capacity is exhausted.
On the contrary, both Coupled-SFR and Decoupled-SFR per-
form distributed pruning and do not suffer from this issue.
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Figure 7. Cost per throughput of Coupled-SFR and
Decoupled-SFR normalized to ATLAS. The No-persistency
design shows cost/throughput for a non-recoverable imple-
mentation.

CQ has no concurrency as all the threads contend to ac-
quire a single lock to access the queue. Coupled-SFR per-
forms worse than ATLAS in CQ as the flush and commit
operations are done in the critical execution path by each
thread, incurring delay. We show a separate comparison
between Coupled-SFR and Decoupled-SFR with a varying
number of PM writes per SFR in Section 7.4.

7.2 Logging Overhead
We study the overhead of each of the various steps performed
in logging for our Coupled-SFR and Decoupled-SFR designs.
In Figure 6, we incrementally enable steps in undo logging
and study the distribution of execution time in each step.
Note that none of these incomplete designs implement a re-
coverable system; we study them only to quantify overheads.
In Coupled-SFR, the majority of time is spent in creating

the logs entries and flushing them to PM. Note that there
is no overhead in Coupled-SFR due to log ordering as the
log entries are committed at the end of each SFR. Overall,
Coupled-SFR spends 39% of the execution time in flush and
log commit when there are two operations per SFR.
In contrast, Decoupled-SFR spends less than 1% of exe-

cution time flushing updates and committing logs as these
operations are performed by pruner threads in the back-
ground. The remaining 1% overhead is due to the pruning of
the final few logs when the benchmarks complete. Our result
indicates that the pruner threads are able to keep up with
program execution. We also measure the log size overhead
in the Decoupled-SFR design. Across our experiments, the
log size in Decoupled-SFR is typically less than a few KB
and never grows above 100 KB. On average, log creation
costs 26.6% and recording of log order costs 16.3% of the total
execution time in Decoupled-SFR.

7.3 CPU Cost per Throughput
We next evaluate the cost of the background activity required
by both ATLAS and Decoupled-SFR to commit their logs. Al-
though the pruner/helper threads do not delay execution on
the critical path, they nonetheless consume CPU resources
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Figure 8. Sensitivity study showing speedup of Decoupled-
SFR normalized to Coupled-SFR with increasing number of
stores per SFR.

and therefore can increase the total CPU cost to complete the
benchmarks. We measure this overhead by dividing the total
CPU utilization (in CPU-seconds) consumed by all threads
over the course of benchmark execution by the achieved
throughput (operations/transactions per second). For this
metric, lower is better (less CPU overhead per unit of for-
ward progress). Figure 7 shows the normalized CPU-cost
per throughput of each benchmark for all four designs. We
find that the cost of Coupled-SFR is the lowest as compared
to ATLAS and Decoupled-SFR, as the threads executing the
program commit the logs themselves. As we create as many
pruner threads as there are execution threads in the pro-
gram, Decoupled-SFR requires higher CPU resources to flush
and commit the logs. In concurrent queue, which (despite
its name) has no concurrency, the cost per throughput of
Decoupled-SFR is equivalent to ATLAS, because there exists
a single total order across all logs on all threads, and so the ac-
tions of the pruner threads are serialized. As No-persistency
does not create any logs, it has the lowest cost per through-
put of all designs, and illustrates the cost of recoverability.
Overall, Coupled-SFR and Decoupled-SFR have 72.1% lower
and 33.2% lower CPU-cost per throughput than ATLAS.

7.4 Sensitivity Study of Operations/SFR
The size of logs varies with the number of store operations
performed in SFRs. We perform a sensitivity analysis to
study how the performance of our designs compare as the
number of stores per SFR increases. Figure 8 illustrates the
performance of Decoupled-SFR for the four benchmarks,
normalized to Coupled-SFR. With two stores per SFR, we
see that Coupled-SFR performs better than Decoupled-SFR.
Decoupled SFR is slower because the overhead of creating
and updating the execCount(L) and persistCount(L) to
maintain undo log order in Decoupled-SFR is higher than
the performance gain of delegating flush operations for only
two stores to pruner threads. As the number of store opera-
tions increase, the flush operations and log commits delay
execution in Coupled-SFR. As a result, at 64 stores per SFR,
Decoupled-SFR performs 1.74x faster than Coupled-SFR. For
benchmarks such as CQ, RB-tree and TPCC, we have already

shown in Figure 5 that Decoupled-SFR performs 1.98×, 1.53×
and 1.10× better than Coupled-SFR, respectively.

8 Related Work
We briefly address related works that propose hardware and
software solutions for PM systems.

Library-based solutions: NV-Heaps [11] and
Mnemosyne [57] provide library-based application-
level interfaces for building persistent objects in PM.
Both provide libraries to create virtually mapped regions
in persistent memory, along with primitives to update
persistent data mapped to the memory. They use write-
ahead logging to provide failure atomicity for transactions.
SoftWrAP [18] and REWIND [8] provide software libraries
to perform transactional updates to PM. SoftWrAP uses
alias tables to redirect the updates within the failure-atomic
transactions to a log space in DRAM and commits the
updates when the transactions retire. Similar to SoftWrAP,
DUDETM [35] updates the redo logs for transactions
in DRAM, and then persists and merges the logs in PM.
Kamino-Tx [42] avoids logging by replicating the heap,
performing updates within transactions on a working copy
of the heap, and copying changes to the backup heap when
transactions commit. Transactions simplify logging, both
in hardware and software. However, our approach differs
from software-annotated transaction-based solutions in that
it is applicable to general-purpose programs that are not
transaction-based, especially those that use synchronization
mechanisms like conditional waits or complex locks that
do not readily compose with transactional models. In this
work, we seek to provide persistency semantics for arbitrary
(non-transactional) synchronization.

Runtime logging solutions: NVthreads [20] extends
ATLAS [7] to provide durability guarantees to lock-based
programs. NVthreads uses copy-on-write to make updates
within a critical section and then merges the updates to the
live data at a 4KB page granularity at the end of outermost
critical sections. Due to the expensive merge operations at
the end of the critical sections, NVthreads suffers a high
performance overhead in applications with frequent lock ac-
quisition and release operations like the benchmarks that we
study in this paper. Moreover, we extend durability semantics
to more general synchronization constructs that NVthreads
and ATLAS do not support. Boehm et al. [6] elaborates on
the ATLAS programming model further and defines recovery
semantics for updates to persistent locations both within and
outside critical sections. ARP [30] and Izraelevitz et al. [26]
propose language-level persistency models. Both works pro-
vide persist ordering, but fail to provide failure atomicity at
a granularity larger than individual persists. Moreover, they
offer unclear semantics at failure, as writes may be replaced
from the cache hierarchy and persist well before other, ear-
lier writes, exposing non-SC state to recovery. TARP [31]
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and Izraelevitz et al. [27] offer x86 and ARM ISA encodings
of language-level persistency models. Kolli et al. [32] in-
troduces efficient implementation of transactions, namely
synchronous-commit and deferred-commit transactions, that
minimize persist dependencies by deferring commit of undo
logs until the transactions conflict.
WSP [47] proposes mechanisms to flush the precise ar-

chitectural state of a program at the moment of failure to
PM. JUSTDO logging [25] recovers an application to its state
right before the failure, and requires persisting of architec-
tural state including stack-local variables before executing a
critical section. It assumes the cache hierarchy is persistent
to avoid high PM access latency when preserving volatile
program state. Both WSP and JUSTDO logging fail to pro-
vide recoverability from failures other than power interrup-
tions (e.g. kernel panic or application crash). SCMFS [59],
BPFS [13], NOVA [61], NOVA-Fortis [62] and PMFS [15]
propose filesystems that leverage low latency of PMs.

Checkpointing-based solutions: ThyNVM [52] pro-
poses dual-scheme checkpointing mechanism to provide
crash consistency support for DRAM+NVM systems. It elim-
inates stalls for checkpointing by overlapping execution
and checkpointing. CC-HTM [17] leverages HTM to pro-
vide fine-grained checkpointing of transactions to PM. Sur-
vive [44] provides a fine-grained incremental checkpointing
for hybrid DRAM+PM systems. Other works checkpoint the
volatile state using cache persistence by ensuring that a bat-
tery backup is available to flush the volatile state to PM upon
power failure [48], or by bypassing caches altogether [58].

Energy harvesting systems: A group of studies look at
application consistency requirements for energy harvesting
devices. As the energy supply for this class of devices is
intermittent, these works explore mechanisms to maintain
data consistency in PM while ensuring forward progress. Al-
paca [40] provides a task-based programming model, where
tasks present an abstraction for the atomicity of updates in
PM. Alpaca requires programmers to annotate tasks and task-
specific shared variables in the program. We provide a more
generic mechanism built upon existing C++ synchronization.
Idetic [43] and Hibernus [3] detect imminent power failure
and periodically checkpoint volatile state, but may leave data
in PM inconsistent [12]. This group of works propose con-
sistency mechanisms for power failures alone, whereas we
consider more general fail-stop failures.

Hardware-based solutions: Pelley et al. [32, 51] pro-
poses persistency models closely aligned with the hardware
memory consistency model to order writes to PM. His work
proposes strict and relaxed persistency models that vary in
the constraints imposed on the updates as they persist to
PM. BPFS [13] uses epoch barriers to order persists in hard-
ware. The persists within an epoch can be reordered while
persist reordering across epochs is disallowed. DPO [33],
Doshi et al. [14], HOPS [46], and Shin et al. [54] propose
hardware mechanisms for efficiently implementing epoch

persistency models. They implement hardware structures in
the cache hierarchy that record and drain persists to the PM
in order. ATOM [29] improves upon undo-logging mecha-
nism for PM by decoupling the update of undo log from the
in-place update to the persistent data-structure. It relies on
hardware structures in the memory hierarchy that order logs
before the actual updates to PM. Proteus [53] implements a
software-assisted hardware solution to persist transactions
atomically to PM. It involves significant modifications to
the processor pipeline to record logs and order logs with
respect to subsequent stores. Liu et al. [36] proposes an en-
cryption mechanism based on counter-mode encryption. It
employs hardware mechanisms to ensure atomicity of data
and the associated counter used for its encryption in PM.
Kiln [63] and LOC [38] provide a storage interface to PM to
programmers, but rely on programmers to ensure isolation.
Unlike hardware-based solutions, we use synchronization
primitives in the C++ memory model to provide ordering
and failure-atomicity to the PM updates.

9 Conclusion
Past works have proposed language-level persistency mod-
els prescribing semantics for updates to PM. However, we
showed that the existing language-level persistency mod-
els either lack precise durability semantics or incur a high
performance overhead. We made a case that failure-atomic
SFRs strike a compelling balance between programmability
and performance. We then examined two designs, Coupled-
SFR and Decoupled-SFR, for failure-atomic SFRs that vary
in performance and the amount by which the PM state may
lag execution. We show that our designs simplify logging
and outperform the state-of-the-art implementation by 87.5%
(65.5% avg).
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