Race Detection for Event-Driven Mobile Applications

Jie Yu*!
Gilles A. Pokam?*

TUniversity of Michigan

Chun-Hung Hsiaof
Cristiano L. Pereirat

{chhsiao,jieyu,nsatish,kongzy,pmchen,jflinn} @umich.edu

Abstract

Mobile systems commonly support an event-based model of con-
current programming. This model, used in popular platforms such
as Android, naturally supports mobile devices that have a rich array
of sensors and user input modalities. Unfortunately, most existing
tools for detecting concurrency errors of parallel programs focus
on a thread-based model of concurrency. If one applies such tools
directly to an event-based program, they work poorly because they
infer false dependencies between unrelated events handled sequen-
tially by the same thread.

In this paper we present a race detection tool named CAFA for
event-driven mobile systems. CAFA uses the causality model that
we have developed for the Android event-driven system. A novel
contribution of our model is that it accounts for the causal order
due to the event queues, which are not accounted for in past data
race detectors. Detecting races based on low-level races between
memory accesses leads to a large number of false positives. CAFA
overcomes this problem by checking for races between high-level
operations. We discuss our experience in using CAFA for finding
and understanding a number of known and unknown harmful races
in open-source Android applications.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Reliability; D.2.5 [Testing and Debugging]: Mon-
itors, Testing tools; F.3.1 [Logics and Meanings of Programs]:
Specifying and Verifying and Reasoning about Programs

General Terms Algorithms, Languages, Reliability, Verification

Keywords Race detection, event-driven, mobile application, An-
droid, concurrency, causality model, use-free race

1. Introduction

Mobile computers are increasingly important computing platforms.
The percentage of people owning a smart phone achieves 56%
in 2013, and there are more than 1.7 million mobile applications
available from Apple App Store or Google Play. For many people,
phones and tablets are the primary platform for interacting with
computer systems and the data they store.

!'This work was done when he was at the University of Michigan.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PLDI 14, June 9-11, 2014, Edinburgh, United Kingdom.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2784-8/14/06. . . $15.00.
http://dx.doi.org/10.1145/2594291.2594330

*Twitter, Inc.

Ziyun Kong'
Jason Flinn'

Satish Narayanasamy'
Peter M. Chen'

iIntel, Inc.
{cristiano.|.pereira,gilles.a.pokam }@intel.com

Mainstream mobile devices often have a rich array of sensors
and user input modalities, which provide large asynchronicity to the
input stream of mobile applications. As a result, event-driven con-
current programming models arise naturally among popular mobile
platforms such as Android and iOS. An event-driven model makes
it easy to integrate input from diverse sources such as touchscreens,
accelerometers, microphones, and other sensors.

Wide use of asynchrony in event-driven mobile applications
leads to pernicious concurrency bugs that are hard to find and
debug. Thousands of events may get executed every second in a
mobile system. Even if these events get processed sequentially in
one thread, most events are logically concurrent to each other, as
they may not be ordered by any programmer specified ordering
operations.

Unfortunately, most existing tools such as data-race detec-
tors [11] for finding concurrency errors assume a thread-based
model. Naively applying these tools for event-driven mobile sys-
tems works poorly, because they implicitly assume that events han-
dled in one thread are ordered by the program order. Recent work
proposed a causality model for detecting races in the event-driven
JavaScript applications [18, 20]. However, a causality model that
accounts for the unique causal relations in a mobile system, and a
race detector based on it has been lacking.

This paper presents the first race detection tool named CAFA
for mobile applications. We chose to implement CAFA for the
widely used Android platform [1], as the system and many of
its applications are open-source. An Android application uses a
special thread, named the looper thread, to select events from an
event queue one at a time, and processes them sequentially by
executing their handlers. There may be additional regular threads
that communicate between each other and the looper thread using
conventional synchronization operations.

CAFA is based on our new causality model for Android, which
we use to infer the happens-before relations between events. We
formulate this causality model based on the Android specifica-
tion [1]. A unique aspect of this model is that it accounts for the
causal relations between events due to the operations on the event
queue and the properties of the events (e.g., delay) in an Android
application. In addition, it accounts for the happens-before relations
due to conventional synchronization operations.

We find that naively reporting races between assembly-level
read and write accesses to a memory location in concurrent events
leads to thousands of false positives. The reason is that concurrent
events processed in the same looper thread could be commutative
with respect to each other. Two events are commutative if they
produce a correct result irrespective of the order in which they are
executed by the looper thread. If two concurrent events processed
in the same looper thread are commutative, then any conflicting
memory accesses executed within them are not indicative of a race
error.

Thus, only the conflicting operations in non-commutative events
are indicative of race errors. Automatically determining if two
events are commutative or not is a challenging problem, because
it depends on high-level semantics of those events.

We address this problem by finding races between operations
that are defined at a higher level semantics than low-level read
and write accesses. In this study, we limit our focus to finding
race errors that lead to use-after-free violations. A use-after-free
violation arises when a pointer is dereferenced (used) after it no
longer points to any object (freed). If a use and a free operation
to the same pointer are executed in two concurrent events, it is
possible that there exists an erroneous execution where the use is
executed after the free. We refer to such races as use-free races.
Use-after-free violations are common in Android applications, and
a significant fraction of them are due to use-free races. CAFA finds
such use-free races using our causality model.

While two concurrent events that contain a use-free race are
likely to be non-commutative, it is not always the case. It is possible
that when free is executed before the use, the programmer has taken
care to either not execute the use or reallocate a new object before
the use. We employ two simple heuristics, if-guard and intra-event-
allocation, to filter the false positives due to this reason.

We implemented CAFA by extending several components in
the Android stack. We extended the Android SDK to trace the
event queue and synchronization operations to capture the causal
relations. We modified the Dalvik Virtual Machine [2] to trace
uses, free, allocation, and other low-level accesses necessary to
implement our two heuristics. Finally, we extended the Android
kernel to efficiently support a tracing device.

We studied several Android applications, which included appli-
cations such as FireFox and MyTracks (Google’s GPS tracker). We
found 67 previously unknown harmful races. We also detected 2
known harmful races. 60% of the races detected were harmful.

This paper makes the following contributions:

e We present the first causality model for the event-driven An-
droid system.

e We discuss a race detector for finding races that lead to use-
after-free violations using our causality model.

e We evaluate several Android applications and found 67 un-
known and 2 known harmful races.

2. Background and Motivation

In this section we briefly describe the salient features of the event-
driven programming model in Android. Then we discuss code ex-
amples illustrating the nature of concurrency bugs in these systems
and the challenges in detecting them.

2.1 Event Driven Programming Model

We describe Android’s event-driven programming model. It is a
representative of the models used in a majority of current main-
stream mobile platforms.

An Android application consists of several threads, which be-
have like conventional threads. A subset of these threads are desig-
nated as looper threads, whose role is to process events from their
event queues. We describe each of these components below.

Event An event could be generated by an entity external to an ap-
plication (e.g., sensor input, network, operating system), or in-
ternally by a thread or an event executed in the application. An
event may be associated with a time constraint that determines
when it can be processed. The time constraint can be either rep-
resented as an absolute timestamp, or as a delay with respect to
the time when the event is generated. An event can be processed

after its time constraint has been met. An event is processed by
invoking its event handler based on its type.

Event queue Once an event is generated, it is placed in an event
queue. Events in the queue whose time constraints have elapsed
are processed in the order they were queued. Additionally, mo-
bile platforms provide a sendAtFront API that places an event
in the front of the queue. Some platforms provide mechanisms
to prioritize events that need to be responsive, but these are not
commonly used in the applications we studied.

Looper thread Each looper thread is associated with one event
queue. The role of a looper thread is to continuously check
its event queue, select and process one event at a time. Thus,
all events executed in a looper thread are atomic with respect
to each other. This is an important property of event-driven
systems that programmers often rely on. However, the events
in a looper thread are not atomic with respect to operations in
the other threads.

Most event-driven programming models, including Android,
allocate one looper thread for each event queue. Therefore in the
remaining of this paper, we assume that there is only one looper
thread associated with each event queue. The causality model we
propose in Section 3 works on any event-driven programming
model that follows this assumption, but is not applicable to a model
that allows multiple looper threads sharing one event queue.

2.2 Challenges in Detecting Race Errors

Figure 1 presents a real race that leads to a use-after-free viola-
tion in Google’s MyTracks application which is used to record GPS
tracks. The race involves a looper thread from the MyTracks appli-
cation and a regular thread in a different service process.

In the correct execution, when the user resumes the MyTracks
application, it generates an onResume event. This event in turn
invokes a remote procedure call (RPC) to establish a connec-
tion with an external service that tracks the GPS locations. The
response received from the external process generates another
onServiceConnected event which uses the providerUtils object.
Later, the user stops the application, which generates the onDestroy
event.

In the above execution, there is no programmer intended
happens-before relation between the events onServiceConnected
and onDestroy. Therefore, we consider them to be logically con-
current, even though they are executed sequentially in the same
looper thread. Due to the lack of order between these two events,
in another execution they might get executed in the reverse order as
shown in Figure 1(b). This results in a null pointer exception to be
thrown to the user, which is not a desirable behavior for the user.

The first challenge is in accurately modeling the causal relations
between events, so that we can detect conflicting operations in
concurrent events to find such errors. Section 3 presents a causality
model.

The second challenge is in using the causality model to accu-
rately find race errors in concurrent events. A conventional data-
race detector [11] finds race bugs by finding conflicting memory
accesses (read-write or write-write to the same location) that are
not ordered by a happens-before relation. We found that naively re-
porting conflicting memory accesses in concurrent events leads to
thousands of false positives. The reason is that, if two concurrent
events executed in a looper thread are commutative, then they need
not be ordered by a happens-before relation to ensure correctness.

Figure 2 shows an example for commutative events, which we
commonly find in applications. The events are concurrent as there is
no happens-before relation between them. Though the write and the
read in two concurrent events to the variable manager.resideAllowed
conflict, both orders for the events are correct. This conflict could

MyTracks
(Looper Thread)

TrackRecordingService
(Regular Thread for IPC)

onResume() {
bind(TrackRecordingService); RPC

) T
: onBind() {

/ send(onServiceConnected, 0);
}

onServiceConnected() {
/I Start recording a new track
Track track = new Track();
providerUtils.updateTrack(track);

}

onDestroy() {
providerUtils = null;
}

(a)

MyTracks
(Looper Thread)

TrackRecordingService
(Regular Thread for IPC)

onResume() {
bind(TrackRecordingService);
}

onBind() {
send(onServiceConnected, 0);

onDestroy() { }
providerUtils = null;
}

onServiceConnected() {
/I Start recording a new track
Track track = new Track();
providerUtils.updateTrack(track); | Exception thrown!

}

(b)

Figure 1: A use-after-free violation in Google’s MyTracks application. (a) A correct execution. (b) An incorrect execution where an use-after-
free violation manifests owing to the lack of happens-before order between onServiceConnected and onDestroy.

onPause() {
manager.resizeAllowed = false;
~

} ~

~

~
~

R-W conflict! ~~ < | onlayout() {
I if ('manager.resizeAllowed) {
return;

.../l Calculate the new size.
this.columns = newColumns;
this.rows = newRows;
redraw();

Figure 2: A read-write race in the ConnectBot application. The
memory write in onPause cannot be executed between the if state-
ment and the succeeding statements that update the size informa-
tion in onLayout because the two events in the same looper thread
are executed atomically with respect to each other. Thus, this read-
write race is not a bug.

cause an error only if the write to the variable can happen between
the if-condition check and the return statement. This is not possible
because the two events are guaranteed to execute atomically with
respect to each other. Thus, reporting the read-write conflict would
be false race error.

Automatically checking whether two events are commutative or
not is a hard problem, as it depends on the high-level semantics
of the two events. We tackle this problem by limiting our focus
on a class of race errors that lead to use-after-free violations, and
designing heuristics to check for the commutativity of operations
that affect the execution of uses and frees.

3. Modeling Causality

The event-driven programming model described in the previous
section differs substantially from the thread-based concurrency
model that is assumed by most concurrency tools. Unlike in con-
ventional thread-based causality models, we cannot assume that all
the events executed in a thread are ordered by the program order.
We present a causality model for the event-driven Android appli-

cations that relaxes this order, but accounts for additional happens-
before relations due to the event queues.

3.1 Overview

An execution of an event-driven program in Android involves
looper threads that process many events, as well as regular threads
orchestrated by programmer-specified synchronizations such as
locks, thread forks, and joins. In addition, events are generated
through sends. The event handlers are either assigned along with
event generation, or pre-assigned via a set of event listeners, which
are functions that can be registered to the Android system and per-
fermed to process a specific class of events. Therefore, the causality
model should account for the following three types of causal orders.

e We accounts for the conventional causal orders, including the
program order in a regular thread or an event, and the or-
ders due to programmer-specified synchronization operations,
thread forks, and thread joins. This type of causal orders is sim-
ilar to what we have in the conventional thread-based causal-
ity model, except for two major differences. First, there is no
program order between events processed by a looper thread,
because programmers do not intend to provide orders between
events that are generated concurrently. Second, no causal order
is assumed between unlocks to succeeding locks. That is be-
cause programmers do not intend to provide orders using locks
in most scenarios, so assuming orders between critical sections
protected by the same lock may introduce false happens-before
relations.

We accounts for the causal orders due to event generation and
execution: events are sent before being executed, and event lis-
teners are registered before being performed. In addition, we
conservatively assume causal relations between events gener-
ated in response to actions taken by entities external to an ap-
plication, such as network input, mouse clicks, or sensor read-
ings, since these events might be causally ordered owing to user
interactions.

We accounts for the causal orders due to the event queues. In
Androids event-driven programming model, events sent to the
same event queue are atomically processed in the FIFO order
by one looper thread once their time constraints are met, except

Trace — Operation™
Operation — begin(t) | end(t) | rd(t, x) | wr(t,z) |
fork(t,u) | join(t,u) | wait(t, m) | notify(t, m) |
send(t, e, delay) | sendAtFront(t,e) |
register(t,1) | perform(t,1)

t € Thread U FEvent x € Var
u € Thread m € Monitor
e € Fvent [€ Listener

Figure 3: Operations in an event-driven program.

for those prioritized via the sendAtFront APIL. Therefore, it is
incorrect to assume that there is never any order between events.

In the remaining of this section, we assume that there is only one
event queue and one looper thread for simplicity. The model can
be easily extended to model any event-driven systems that allocate
only one single looper thread to every event queue. However, if a
system allocates multiple looper thread to process one event queue,
then no causal order can be guaranteed from the atomic FIFO
processing order since events sent to the same event queue can be
processed by concurrent looper threads. Therefore, our model is not
applicable to such a system.

3.2 Event-driven Program Trace

We start with a definition of an execution trace of a event-driven
program in Android. A program execution consists of a number
of logically concurrent tasks, which are either events or regular
threads that are spawned by programmers’ code with thread forks.
A trace of an execution is the list of operations performed by
the various tasks in that execution. These operations are listed in
Figure 3, which are described below.

The first set of operations are those that are analyzed in a
conventional thread-based concurrency tools:

e begin(t) and end(t): begins and ends a task ¢, respectively.

e rd(t,z) and wr(t, z): reads and writes a value to variable z in
task ¢, respectively.

e fork(t,u): forks a new thread u from task ¢. join(t, u): waits
in task ¢ until thread v ends.

e wait(t,m) stalls task ¢ until notify(t,m), where m is the
monitor.

While we account for mutual exclusion between the critical
sections protected by the same lock, we do not assume a happens-
before relation due to locks, as discussed in 3.1. Instead, we check
the locksets for mutual exclusion, assuming that the critical sections
are race-free since programmers handle them explicitly through
locks.

The second set of operations are related to events:

e send(t, e, delay): enqueues a new event e at the end of the
event queue in task ¢. e would be executed after delay millisec-
onds has elapsed since it is enqueued.

e sendAtFront(t,e): enqueues a new event e at the front of the
event queue in task ¢. sendAtFront is used when the program-
mer wants to prioritize an event over earlier events.

e register(t,l) and perform(t,1): models the event listener pro-
gramming construct in Android. An event listener can be per-
formed as part of an event only after it has been registered with
the runtime.

3.3 Causality Model

The happens-before relation <, for a trace « is the smallest tran-
sitive closure over the operations in « that includes the following
rules.

The first set of rules account for convensional happens-before
relations:

Program-order rule: a <, b if a occurs before b in o, and both
a and b are performed by the same task.

Fork-join rule: fork(t,u) <« begin(u)and end(u) <a join(t,).
Signal-and-wait rule: notify(t1, m) <o wait(t2, m).

The second set of rules account for the happens-before relations
for event generation and execution:

Event listener rule: register(t,l) <o perform(e,l).

Send rule: send(t, e, delay) <« begin(e) and sendAtFront(t, e)
< begin(e).

External input rule: If e; and e2 are generated from the external
world, then end(e1) <a begin(ez2).

The last external input rule listed above conservatively assumes
a happens-before relation between events generated by entities
external to an application. This assumption could lead to false
negatives, but not false positives. We partly address this problem
by tracing all the dependent applications and service processes in
the Android system.

We derived the atomicity and event queue rules by understand-
ing the guarantees provided to the programmer by the Android API.

Atomicity rule: If begin(e1) <o end(ez), then end(e1) <a
begin(ez).

The above rule models the fact that all events executed in a
looper thread are atomic with respect to each other. If any operation
in event e; happens before any operation in e, then all operations
in e; and ez are ordered. For example, in Figure 4a, fork(A,T)
happens-before perform(B, L), using which we can derive that
end(A) happens-before begin(B). Henceforth, for brevity, we
simply state that event A happens-before B, instead of end(A)
happens-before begin(B).

The final set of rules account for the happens-before relations
due to the event queue:

Event queue rule: When the sends of two events are ordered, then
these two events are also ordered if any of the following condi-
tions holds:

1. If send(t1, e1, delay,) <a send(tz2, ez, delay,) and delay,
< delay,, then end(e1) <o begin(ez2).

2. If send(t1,e1,delay;) <o sendAtFront(tz,e2) and
sendAtFront(t2,e2) <a begin(e1), then end(e2) <a
begin(e1).

3. If sendAtFront(ti,e1) —<a send(tz,es,delay,), then
end(e1) <o begin(ez).

4. If sendAtFront(ti,e1) <o sendAtFront(ta,e2) and
sendAtFront(t2,e2) <a begin(e1, then end(e2) —a
begin(e1).

The first event queue rule orders two events, if their sends are
ordered, provided the delay condition holds. In Figure 4b, a regular
thread executes two sends with the same delay in the program order.
Enqueued events are processed in the FIFO order, guaranteeing
that event A happens-before B. However, even when two sends
are ordered, if the delay of the earlier event is even slightly greater

Looper Thread T Looper Thread 7' Looper Thread T
begin(A) begin(T) begin(T)
: * +1 * 5
fork(d, T) \ : time ¢ send(T, A, 1) . time ¢ send(T, A4, 5) .
begin(T) 143 o5 2
 enda) o time £+2 : send(T, B, 1) ﬂ time ++2 | send(T, B, 0)
’ . register(T,
‘\‘ : time r+4 begin(A) time ++4 begin(B) .
begin(B) y y
en en
,end(A4) (T) end(B) _(T)
perform(B, L) LW : '
end(T) time ++8 begin(B) time 48 begin(4)
end(B) .
. end(B) end(A4)
A—B : A—B : By A
() (b) ©
Looper Looper Thread T Looper Thread T
begin(C) begin(T) begin(T)
1
time ¢ send(C, 4, 0) A L L
time ¢ send(T, 4, 0) . time ¢ send(T, 4, 0) .
time 2 sendAtFront(C, B) o .
+ time #+2 sendAtFront(T, B) E time 42 begin(A)
end(C) .
I t "2
time +5 begin(B) . time t+4 begin(B) . time 4) sendAtFront(T, B) .
end(T) :
end(B) « _ end(B) .
time 1+8 begin(A)’ time 48 begin(4) time 48 begin(B) e”dlm
end(A) end(A) end(B)
: B— A4 : B¥% A : A% B
(d) © ®

Figure 4: Examples illustrating causal relations due to atomicity and event queue rules. The derived happens-before relations are noted in
each figure, and the dotted arrows indicate these derived relations. A cross implies that a happens-before relation cannot be derived. (a) The
atomicity rule: since fork(A,T) < perform(B, L), A happens-before B. In (b) to (f), the right columns show the statuses of the event
queue. For each event, the earliest time when it can be processed is marked on top of each cell. (b) A happens-before B as their sends are
ordered and their delays are the same. (c) A is processed after B owing to its higher delay, and thus no happens-before can be derived between
A and B. (d) Event queue rule 2: since sendAtFront(C, B) < begin(A), B is guaranteed to be enqueued in the front of the queue before
A can be processed, so B always happens-before A. (e) and (f) show two scenarios where the sendAtFront(C, B) < begin(A) property is
not true, and as a result no happens-before relation can be derived between A and B.

than the delay of the latter event, then we cannot infer any happens-
before between the two events, because there is a chance that the
latter event can execute before the earlier event. For example, in
Figure 4c, the send of A happens-before the send of B, but it is
possible for B to execute before A as its delay is the lesser of the
two.

The second event queue rule accounts for the happens-before
due to a special send function in Android named sendAtFront. As
explained in Section 3.2, sendAtFront enqueues an event at the
beginning of the event queue. This results in subtle new happens-
before relations. As shown in Figures 4e and 4f, although send(A)
happens-before sendAtFront(B), the two events A and B are not
ordered, because both execution orders are possible as shown in
the figures. However, there is one special condition under which
we can derive a happens-before relation between events A and B.
This is when it is guaranteed that sendAtFront (B) happens-before
begin(A). Figure 4d shows one such instance where such a guaran-
tee can be made. In this example, send(A) and sendAtFront(B)
are both executed within event C'. Also, event C' is executed by the
same looper thread as the one that processes events A and B. Since

it is guaranteed that C ends before any other event can be pro-
cessed, it in turn guarantees that sendAtFront(B) happens-before
begin(A).

The third event queue rule simply states that if sendAtFront(A)
happens-before send(B), then we can always derive that event
A happens-before B. The fourth event queue rule states that if
sendAtFront(A) happens-before sendAtFront(B), then under a
certain condition similar to the condition in the second rule, we can
derive that event A happens-before B. Notice that Android API
does not allow programmers to specify a delay with sendAtFront
as it is meant for programmers to specify high priority events that
need to be processed as soon as possible.

4. Race Detection

Data races are common concurrency bugs in multithreaded pro-
grams. Our initial study of bugs reported for open-source Android
applications indicates that race-related bugs are prevalent in event-
driven programs as well. However, conventional thread-based data
race detectors work poorly if we apply them to find bugs in event-

driven systems. In this section, we briefly discuss the limitations
of these thread-based data race detectors, and present our race de-
tector that finds use-after-free violations using the causality model
discussed in the previous section.

4.1 Use-Free Races

Conventionally, a data race is defined as a pair of memory accesses,
of which at least one is a write, and are not ordered by a happens-
before relation. This definition, however, is not useful for detecting
bugs in a mobile application. For example, there are 1,664 such
races in a 30-second trace of ConnectBot, and most of them are
not harmful bugs. One major reason is that we find a number of
read-write and write-write races between concurrent events that
are commutative. Two concurrent events are commutative if they
produce a correct result irrespective of the order in which they are
executed. Figure 2 shows a false positive example in ConnectBot.

We tackle this problem by limiting our focus on finding use-
after-free violations due to races between concurrent events, and
devising two heuristics to check if the racy events are commutative
or not. A free is a write operation that sets an object pointer to
null. A use is a read operation to an object pointer that would be
dereferenced later. There is a use-free race if a use and a free are
not ordered by a happens-before relation according to the causality
model. Note that a use-free race is a special kind of read-write race,
and may trigger a use-after-free violation if the free is executed
before the use. By limiting our focus on this special kind of data
race, we can find meaningful bugs without introducing lots of false
positives.

Figure 1 shows a typical example of a use-free race: the use
of providerUtils in onServiceConnected is racy with the free to
provideUtils in onDestroy. In this case, reversing their execution
order would cause a harmful program behavior and thus it is a
use-after-free violation.

However, even if two events contain use-free races, it is possible
for the racy events to be commutative for two reasons. The first rea-
son is that if the use is not executed when the event containing the
free is processed first, then no use-after-free violation would occur.
For example, as can be seen in Figure 5, onPause and onFocus are
commutative, because it is guaranteed that when onFocus is pro-
cessed before onPause, the use in onPause will not be executed ow-
ing to the if-condition guarding the use.

The second reason is that, if the pointer accessed by the use is
assigned to a valid object address before the use is executed, then no
use-after-free violation would be triggered. We call such an assign-
ment an allocation to the pointer. For example, in Figure 5, onPause
and onResume are commutative, because within onResume, there is
always an allocation before the use.

In the rest of this section, we present an algorithm to find use-
free races that may potentially cause use-after-free violations. Also,
to reduce false positives, we present two effective heuristics, if-
guard and intra-event-allocation. They check for the common cases
of commutative events containing use-free races and filter the race
warnings.

4.2 Finding Use-Free Races

There are well-known algorithms for finding data races based on
a conventional causality model, such as the vector clock algo-
rithm [11]. However, there are several challenges in adapting such
an algorithm to use the event-driven causality model described in
Section 3:

e The vector clock algorithm does not scale well as the number of
concurrent tasks grows. In an event-driven system, the number
of events can be very large (in the thousands). Also, many
implementations assume that the number of tasks is known a
priori, which is often not true in an event-driven system.

Looper

onPause() {
handler = null;
}

onFocus() {
if (handler != null)
handler.run();

onResume() {
handler = new Handler();
handler.run();

Figure 5: An example of commutative events that contain uses and
frees.

e There are operations whose happens-before relations rely on
future operations, and thus the happens-before relations cannot
be derived when these operations are observed. Figure 4a gives
one such example. The relation end(A) < begin(B) is derived
based on fork(A,T) < perform(B, L), and thus cannot be
derived at the time begin (B) is observed, since perform (B, L)
is a future operation with respect to begin(B).

To infer all happens-before relations, we need more complex
checks on past operations than what are maintained in the vec-
tor clock algorithm. For example, in Figure 4d, the relation
end(B) < begin(A) is derived based on send(C,A,0) <
sendAtFront(C, B) < begin(A), which cannot be easily
checked through comparing the vector clocks of end(B) and
begin(A) since the latter relations involve past operations of
end(B) and begin(A).

Because of the above reasons, we decided to collect the traces
during an execution, and then run an offline algorithm to find use-
free races. The offline algorithm first builds the happens-before
graph for a trace «. It is a directed acyclic graph consisting of all
operations in the trace as its vertices. For any operations a and b,
a <« bif and only if there is a path from a to b in the graph. Then to
test if two operations are ordered, we simply perform a reachability
test on the happens-before graph.

4.3 Pruning False Positives

To reduce the number of false positives, we present two simple
heuristics: if-guard and intra-event-allocation. These heuristics rec-
ognize two common programming patterns that make concurrent
events containing use-free races commutative. Both heuristics are
only applicable to events that are sent to the same event queue and
processed by the same looper thread.

If-Guard Check Programmers often check if a pointer is null
before using it. Branch instructions used to perform this check can
be leveraged to check if a use is safe or not. Therefore, in addition to
log the operations described in Figure 3, we also log the following
branch instructions that test on object pointers: if-eqz (jump if a
pointer is null), if-nez (jump if a pointer is not null), and if-eq (jump
if two pointers are equal).

The if-guard check for if-eqz and if-nez is illustrated in Figure 6.
The heuristic works as follows. Suppose there is an if-eqz instruc-
tion at address pc, and it performs a forward jump to address pc +
offset if pointer is null. Then we assume that the code between pc
and pc + offset is executed only if the branch is not taken at run-

pc: if-eqz pointer, +offset pc: if-nez pointer, +offset
pc + offset:
pc + offset:
oo:
pc - offset: pc - offset:
pc: if-eqz pointer, -offset

pc: if-nez pointer, -offset

Figure 6: An illustration of the if-guard check. In each case, the
branch instruction is located at pc and conditionally jumps forward
or backward to pc + offset or pc - offset respectively. co indicates
the end of the current function. If a use of pointer in the shadowed
area is executed after the branch instruction at runtime, pointer
would be guaranteed non-null, so the use would be safe.

time, which guarantees that pointer would be non-null, and any use
of pointer in this code region would thus be safe. Therefore, any
use-free races involving such uses are ignored. Similar arguments
can be applied to backward jumps, and to if-eqz instructions.

Note that the assumption we make is not sound. Without a
control flow analysis, we cannot ensure that the code between pc
and pc + offset is executed only if the branch is not taken. However,
this assumption is often true for compiler-generated code in most
applications. Hence we design the if-guard check based on this
assumption.

In addition, we have found that the if-eq instruction that tests
on two object pointers is often used to check if an object pointer is
equal to this object in Java. Therefore, the if-eq instruction provides
the same safety guarantee as if-nez does, and it is included in the
if-guard check as well.

Intra-event-allocation If there is an allocation after a free in an
event, then the null value written by the free will never become vis-
ible to any other event executed in the same looper thread. There-
fore, use-free races involving such a free are ignored. Similarly, if
there is an allocation before a use within the same event, then it is
guaranteed that the use cannot read any null value written by a free
outside the event. Any use-free races involving such a use are also
filtered.

5. Implementation

We built a tool called CAFA to detect use-free races in Android ap-
plications. CAFA consists of a customized Android ROM (based
on the Android Open Source Project [1] 4.3) and an offline analy-
sis tool. The customized ROM instruments several key components
in Android (e.g., the Dalvik Virtual Machine (DVM), and the core
framework libraries) to collect execution traces for target applica-
tions and system services. The collected traces are later used by
the offline analysis tool to reconstruct the happens-before graphs
and detect use-free races. The customized ROM can be directly in-
stalled on some of the Android devices such as Google Nexus 4.
CAFA is completely transparent, and thereby can trace and analyze
unmodified Android applications.

In this section, we mainly discuss our instrumentation frame-
work. We omit the details of the offline analysis tool as its im-
plementation is pretty straightforward. This section is organized
as follows. We first provide an overview for our instrumentation

App system_server

‘ Application ‘ ‘ Services ‘ [] new
|:| unmodified
|:| instrumented

‘ Dalvik | a1 | ‘ ‘ Dalvik | NI] ‘

’ Java Libs | CAFA ‘ ‘ Java Libs | CAFA ‘
‘Native Libs| CAFA ” ‘Native Libs| CAFA ‘

ADB CAFA
Android Kernel | Binder IPC Logger (—— Analyzer

Figure 7: CAFA architecture overview. RED represents newly
added components, BLUE represents unmodified components, and
GREEN represents instrumented components.

framework. Then, we provide details about how we instrument var-
ious components in Android that allows us to capture the causalities
described in Section 3. Finally, we discuss how we find and instru-
ment potentially racy operations to capture use-free races.

5.1 Overview

Figure 7 shows the architecture of CAFA. We introduce a new
logger device in Android kernel. All execution traces are sent to
this logger device. The CAFA offline analyzer, which may reside
in a remote server, can directly read traces from this logger device
through the Android Debug Bridge (ADB). One can also choose to
dump traces into a flash storage and process them later. We add
a new native library called CAFA which provides interfaces for
writing traces to the logger device. Each component in Android
that needs instrumentation is linked with this native library (e.g.,
the Dalvik Virtual Machine and the core native utility library). We
also add a Java binding for the CAFA native library to provide
interfaces for Java programs (e.g., Java core library and Android
core framework).

Inter-Process Communications (IPC) are heavily used in An-
droid. For example, whenever an application wants to access sys-
tem services like the GPS and camera services, it has to initi-
ate Remote Procedure Calls (RPC) with a remote process called
system_server. If we only collect traces for the target application
just like most conventional race detectors do, we may miss many
causalities caused by IPCs. For instance, an application may initiate
an RPC call with the GPS service asking for the current location.
Later, it receives a message from the GPS service containing the co-
ordinates of the current location. If we do not collect traces for the
GPS service, we may miss the causality between the RPC call and
the receipt of the message in this case. Therefore, we collect traces
not only for target applications, but for system services as well.
We also instrument the IPC framework in Android (called Binder)
which enables us to establish causalities across process boundaries.

5.2 Instrumentation for Capturing Causalities

As we described above, we need to instrument various components
in Android to collect execution traces so that the offline analysis
tool can later reconstruct the happens-before graph based on these
traces. The following lists the major components that we have
instrumented.

e Java Core Library. To track thread forks and joins, we in-
strument the Java core library in Android (i.e., we modify the
java.lang.Thread class) to emit a trace entry every time a thread
is forked or joined.

e Dalvik Virtual Machine. We also need to instrument all the
thread begins and ends, as well as all synchronization prim-
itives used by Java programs (e.g., java.lang.Object.wait and
synchronized{...}). We achieve that by modifying the Dalvik
Virtual Machine in Android. We assign a unique object ID for
each object created by the virtual machine. This unique ID will
later be used by the offline analyzer to capture those causalities
caused by threading and synchronizations.

Android Core Library. We also instrument the Android core
framework library at both the native and the Java layer to
capture traces like event begins and ends as well as sending
of events (e.g., in android.os.Handler and android.os.Looper).
These traces are crucial for us to analyze the causalities caused
by event queues as we discussed in Section 3. In addition, the
causalities caused by event listeners are done by instrument-
ing the listener registration functions and the internal func-
tions that invoke the listeners. Currently we instrument for all
event listeners in the android.app, android.view, android.widget,
and android.content packages. Although we have accounted
for most causalities due to event listeners, the packages listed
above do not contain all event listeners and thus some causali-
ties would be missed by CAFA.

Binder IPC Framework. In order for the offline analyzer
to capture the causalities caused by IPCs, we instrument the
Binder IPC framework in Android. In fact, all the Remote Pro-
cedure Calls in Android are handled by the Binder IPC frame-
work. A unique transaction ID is generated each time a process
initiates a RPC call. The Binder transaction data is piggybacked
with this transaction ID and sent to the remote process that han-
dles this RPC call. All transaction related operations are also
recorded and tagged with the corresponding transaction IDs.
Later, the offline analyzer can capture the causalities caused by
those IPCs by correlating transaction operations with the same
transaction ID.

Other IPC Channels. In Android, some latency critical IPCs,
such as the display events and the input events, are performed
through pipes (or Unix domain sockets), instead of the Binder
IPC framework. CAFA handles these IPCs similarly by tagging
those messages sent through pipes (or Unix domain sockets)
with uniquely generated IDs.

5.3 Logging Potentially Racy Operations

Logging the low-level read and write operations as well as cer-
tain branch instructions is mainly done by instrumenting the DVM
bytecode interpreter to log all related Dalvik bytecode instructions.
In addition, method invocation/return and certain branch instruc-
tions are also instrumented for logging. All of the instrumentation
are done in the portable interpreter mode, and we are also porting
CAFA to the fast interpreter mode for better efficiency. Currently
we don’t support CAFA in JIT interpreter mode due to the com-
plexity of tracing accesses in native code. The detailed instrumen-
tation in the DVM bytecode interpreter for use-free race detection
is described as follows.

e Frees. The Dalvik instruction set provides a set of instructions
to write values to object pointers (e.g., i-put-object, s-put-object,
and a-put-object). We instrument the DVM bytecode interpreter
to emit a trace entry when such an instruction is executed. The
log includes the ID of the object being dereferenced (if any),
the address of the object pointer, and the written value. If the
written value is null, then the instruction is a free; otherwise it
is an allocation.

Uses. Unlike frees, uses are harder to detect. A use involves
a read from an object pointer (e.g. i-get-object, s-get-object,

and a-get-object) to get an object, followed by an instruction
that dereferences the object. The dereference instruction can be
either an access to a field of the object, or a method invocation
on the object. We instrument the DVM bytecode interpreter to
emit a trace entry for the former read instruction to log the
address of the pointer and the ID of the object it gets, and
another entry that logs the ID of the dereferenced object for
the latter field access or method invocation. The difficulty is
that when we see a dereference instruction, we only know the
ID of the dereferenced object, but have no idea which pointer
it dereferences, since we cannot afford a data flow analysis at
runtime. Therefore, we match a dereference instruction with
its nearest previous pointer read that gets the same object ID.
Although this heuristic is neither sound nor complete, it works
well in practice.

Calling Context Stack. The calling context stack is traced for
3 purposes: (1) To provide context information for reasoning
about races. (2) To compute the relative address of each instruc-
tion so they can be mapped to the static Java code. (3) To log
method invocations that dereference objects. For each method
invocation, its method and return addresses are logged. We only
log the name of a function upon its first invocation to reduce
the size of a trace. For a method return, the method and return
addresses are logged again. In addition, method exits through
exception throwing are also logged.

If-Guard Check. We instrument the DVM bytecode interpreter
to log the if-eqz, if-nez, or if-eq instructions that test on object
pointers. For an if-eqz instruction, a trace entry is emitted only
when the branch is not taken; for an if-nez or if-eq instruction,
a trace entry is emitted only when the branch is taken. The
entry contains the current and target addresses of the branch
instruction, as well as the ID of the testing object. Since we only
have the object ID but no pointer address, we use a heuristic
similar to the one that recognizes uses: a branch instruction is
matched with its nearest previous pointer read to decide which
pointer it tests on.

6. Evaluation

‘We applied CAFA on various open-source Android applications and
successfully detected many real use-after-free violations. In this
section, we first briefly describe the applications we tested, and
then provide the accuracy and performance evaluation. All of our
experiments were conducted on the latest 16GB model of Google
Nexus 4, which is equipped with a Qualcomm Snapdragon S4 Pro
quad-core ARMvV7 processor. We built CAFA on the Android Open
Source Project 4.3 r1.1.

6.1 Tested Applications

We used CAFA to detect use-free races in 10 popular open-source
Android applications described as follows. These applications were
picked from the built-in applications of the Android Open Source
Project, the list of free and open-source Android applications in
Wikipedia [3] and the F-Droid repository [4]. Each trace was col-
lected through an execution of 10-30 seconds on the instrumented
system.

ConnectBot? is an SSH client for Android. The version we
tested is 1.7, which contains a known bug.3 To collect the trace,
we clicked on a remote host from the host list, and entered the
password when a password prompt showed up. The trace stopped
after we successfully logged in to the remote host.

2http://code.google.com/p/connectbot/

3https://code.google.com/p/connectbot/source/detail?r=
90632bd675a9

MyTracks® records the user’s moving information through col-
lecting the GPS signals and using Google Maps to get the geo-
graphical information. We tested on version 1.1.7, which contains
the bug shown in Figure 1. The trace was collected via running this
application to record a short track, pausing it through switching to
another application, and then switching it back.

ZXing® uses the built-in camera on a mobile phone to scan a
barcode and then decode it to digital numbers. We tested on version
4.5.1. When collecting the trace, we scanned a real barcode, paused
it by switching to the home screen, then switched it back and did
another scan.

ToDoList® is an application such that you can add a to-do list
widget on the screen to put notes and check completed tasks. We
tested on version 1.1.7. The operations we performed to collect the
trace are adding two notes to the widget, and then deleting them.

Browser is the built-in browser in the Android Open Source
Project. When collecting the trace, we visited the Google home-
page, search for “cse,” click the link to the CSE department of Uni-
versity of Michigan, and then click the back button after the page
is completely loaded.

Firefox' is a powerful open-source browser by Mozilla, and is
available on Android. We tested on Firefox 25. We performed the
same operations as testing Browser to collect the trace.

VLC? is an open-source media player on Android. We tested the
latest version (0.2.0). We played a video clip for a few seconds,
paused it and switched to the home screen, then switched back and
continued playing for a few more seconds.

FBReader’ is a free e-book reader on Android. We tested on
version 1.9.6.1. We used this application to read its tutorial from
the first page to the last page, rotate the phone, then move back to
the first page to collect the trace.

Camera is the built-in camera software in the Android Open
Source Project. We collected the trace by taking a picture, switch-
ing to the home screen, then switching back and taking another
picture again.

Music is the built-in audio player in the Android Open Source
Project. To collect the trace, we played an MP3 file for a few
seconds, paused the music and switched to the home screen, then
switched back and resumed the music for a few more seconds.

6.2 A Survey of Use-After-Free Violations

We have found several use-after-free violations among the tested
applications. Most of these violations might be triggered when
the application switches to the paused state. Typically, a clean-
up procedure (e.g., freeing pointers) is called at this moment. As
a result, any event that is scheduled after the pause event, which
might be sent from another thread or process, would crash the
application if it tries to use the freed pointers. For example, ZXing
contains a bug of this kind.

Usually use-after-free violations would cause exceptions when
they are triggered. Some of these exceptions would be caught
to prevent the applications from crashing. However, sometimes
these exceptions are not handled properly such that the behav-
iors of the applications do not meet a user’s expectation. We con-
sider such races buggy and believe that programmers should take
care of such races more carefully. For example, CAFA reported

“http://code.google.com/p/mytracks/
Shttp://code.google.com/p/zxing/
Shttps://github.com/chrispbailey/ToDo-List-Widget
Thttp://www.mozilla.org/en-US/firefox/fx/
8http://www.videolan.org/vlc/
“http://fbreader.org/FBReader]

that MyTracks contains use-after-free violations in the following
method in MyTracks.java:

public void onServiceConnected(...) {
try {
// TODO: Send a start service intent and broadcast

// service started message to avoid the hack below
// and a race condition.

startRecordingNewTrack(...);
} finally {
}
}

The startRecordingNewTrack method contains the racy code il-
lustrated in Figure 2. As described in the TODO comment, instead
of fixing the program state in the finally block to avoid a crash, a
more appropriate way is to enforcing a happens-before order be-
tween this event and the racing event.

Another example of improperly handled exceptions can be
found in ToDolList, where the author simply resolved the excep-
tion with the following code:

try {

db.updateNote(...);
} catch (NullPointerException npe) { /* do nothing */ }

Although the above code prevents the application from crash-
ing, the latest user input would not be written to the database and
the data would be lost.

6.3 Precision

Table 1 shows the use-free races detected by CAFA in the tested
applications. CAFA reported 115 use-free races, among which, 69
of them could lead to use-after-free violations and thus are harmful.
These violations are further classified into 3 categories: (a) intra-
thread violations due to races that happen between events in a
looper thread; (b) inter-thread violations due to races that happen
between threads but cannot be detected by a conventional data
race detector; (c) conventional violations due to races that happen
between threads and can be detected by a conventional detector.
Here the “conventional” detector assumes a total order for all events
in the same looper thread, but no causal order between unlock
operations and their succeeding lock operations. Because we relax
the event order within the looper thread, we are able to capture
more inter-thread races than a conventional detector. In summary,
60% of the reported races are harmful. Note that the intra-thread
violations are bugs, and the inter-thread and conventional violations
are considered bugs in a DRFO memory model [7], but may not
necessarily be bugs in a stronger memory model such as SC [14].

We also analyzed the causes of false positives, including false
races and benign races, and classified them into three major cate-
gories.

Type I false positives are false races due to missing happens-
before order for event listeners. As described in Section 5, currently
we only instrumented the event listeners in specific packages of
the Android library. Having a more thorough instrumentation, we
believe it would be very promising to remove most of the false
positives of this class.

Type II false positives are benign races that happen primarily
because the if-guard and intra-event-allocation heuristics we used
are not able to precisely check if two events are commutative. For
example, the if-guard check infers that a use is safe only if there is

Lo Races True races False positives
Application | Events | i@ T ® [© [T 1 I
ConnectBot 3,058 3 0 2 0 1 0 0

MyTracks 6,628 8 1 3 0 |0| 4 0
ZXing 4,554 5 0 2 0 1 1 1
ToDolist 7,122 9 8 0 0|0 1 0
Browser 3,965 35 0 8 9|1 7 0
Firefox 5,467 25 0 6 10 | 4 5 0
VLC 2,805 7 0 0 1 0] 5 1
FBReader 3,528 9 1 3 1 2| 2 0
Camera 7,287 9 1 1 0 0 5 2
Music 6,684 5 2 0 00| 2 1
Overall 115 1312531]9]32 5

Table 1: Races reported by CAFA. (a) Races that lead to intra-thread
violations. (b) Races that lead to inter-thread violations. (c) Races
that lead to conventional violations.

6.0x T T T T T T T T T
g 50x E
= —
2 40x | g
(@)
el
[}
N 30x -
5]
£
S 20x H -
1.0x P &L &
Q, %y S oy %, Y. %n o D, %
O/) S o, 4. e O R 2.)
N QQF (4 (/& &0/ o G@Q o,@ (al
®o, S 4 8.

Figure 8: The slowdown for CAFA to collect traces on various
applications.

a pointer test, but if the programmer uses a boolean flag to indicate
that the pointer is safe for dereference, if-guard would not infer this
information.

Type III false positives are false races that happen because CAFA
mistakenly matched dereference instructions to incorrect pointer
reads. When such mismatches happen, the pointer reads would be
incorrectly recognized as uses, and false races would be reported
if there are racing frees. Currently CAFA only uses the traces to
recognize use operations. It can be improved by performing a static
data flow analysis on the Dalvik bytecode of the applications to
accurately match the dereference instructions to the corresponding
pointer reads.

6.4 Performance

Figure 8 shows the slowdown of CAFA when collecting traces for
each application. The slowdown is between 2x to 6x compared to
their uninstrumented executions. The running time of the offline
analysis depends on the number of events in a trace. For most
applications, the running times vary from 30 minutes to 10 hours,
except for ToDolList and Music, which took about 16 hours and 1
day respectively, due to the excessive amount of events.

7. Related Work

In this section, we discuss closely related work. We first compare
our work with existing data race detection techniques in the litera-
ture. Then, we discuss techniques for detecting other types of bugs
in mobile applications.

7.1 Race Detection for Thread-based Programs

Many studies have been done in the literature to detect data races,
either statically [10, 22], or dynamically [11, 15]. However, these
techniques are mostly designed for thread-based programs, and
usually work poorly for event-based programs. For example, Fast-
Track [11] assumes that all memory accesses from the same thread
are totally ordered, thus no race will be reported for accesses exe-
cuted in the same thread. As we already pointed out, this assump-
tion is too strict (missing potentially races) for event-based pro-
grams since events executed in the same thread in an event-based
program can be logically concurrent.

7.1.1 Race Detection for Event-based Programs

Recently, a few researchers have shifted their focuses, and start
looking at race detection techniques for event-based programs. We-
bRacer [18] and EventRacer [20] are two recent studies focusing on
detecting races for one type of event-based programs: web applica-
tions. A web application is typically executed by the browser in a
single thread in an event-driven style. These authors have shown
that even if there is only one thread executing, races are still possi-
ble. For example, a buggy web application may allow a JavaScript
function to be invoked even before it is loaded by the browser,
causing unexpected behaviors. To detect such type of races, these
authors redefined the happens-before relation (causality) for web
applications, based on which they build tools and have successfully
found races in many popular web sites.

Though closely related, our work differs with theirs in the fol-
lowing aspects. First, ours model the event queue and theirs do not:
two events are executed in order if they are generated in order. This
property is absent in their work and thus their algorithm is not ap-
plicable for detecting such causalities. We argue that this is impor-
tant rule since a programmer would expect such a behavior. This
property makes our work more general and can be easily applied to
various types of event-based applications that rely on event queues,
including web applications on which their work has focused and
actor based programs [5, 6, 8]. Second, the types of bugs they tar-
geted are also web application specific. In contrast, we focus on
a more general type of bugs: use-after-free violations. Finally, we
target Android applications, which have a hybrid threading model
(looper threads combined with regular threads), where events can
spawn regular threads and communicates with other events and
threads through the shared memory. This poses more challenges
when modeling causality for them.

P [9] is a domain-specific language to write asynchronous event-
driven code. A P program can be fully verified using model check-
ing. However, P is mostly designed for writing device drivers,
which usually have relatively small size. Its technique cannot be
easily applied to large systems like Android.

7.1.2 Effect-Oriented Race Detection

In this paper, we take an effect-oriented approach [25] by focus-
ing on use-after-free violations. ConMem [25] also takes an effect-
oriented approach. Instead of detecting low-level conflicts between
memory accesses, it focuses on those races that could potentially
cause memory errors. For example, it looks for races between
dereference and nullification of a pointer. The main difference be-
tween ConMen and our work is that we target event-based pro-
grams, which have a different causality model than the thread-
based programs they focus on. It turns out that using an effect-
oriented approach for detecting races is more important and nec-
essary for event-based programs because low-level memory con-
flicts can even happens within a thread under our new causality
model. As a result, deciding if two conflicting low level mem-
ory accesses are commutative becomes more challenging. Using an

effect-oriented approach can help us avoid a large volume of false
positives.

7.1.3 Predictive Race Detection

We take a predictive approach [13, 24] to detect races in Android
applications. We relax the happens-before order between events
executed by the same looper thread, as well as the happens-before
order caused by critical sections, because we think there is no
causality between them and they can potentially be executed in
a different order in alternate executions. As a result, like other
predictive race detectors, our tool can find more bugs but at the cost
of producing false positive (unlike a sound dynamic race detector
such as FastTrack [11] which does not produce false positives).
Smaragdakis et al. [21] discussed a sound predictive race detection
technique in the past, but it is for thread-based programs and has a
high computational cost.

7.2 Commutative Analysis

We choose to focus on high-level use-after-free violations because
automatically deciding if two low-level memory accesses are com-
mutative or not is hard. Huang et al. [12] discussed a few heuristics
in the past to check if two critical sections are commutative or not.
However, their approach is for thread-based programs, thus cannot
be directly applied to event-based programs.

7.3 Bug Detection for Mobile Applications

Mobile computing has become increasingly popular recently. Many
tools have been proposed to detect various kinds of bugs in mobile
applications. Performance bugs are a class of bugs that received
wild interests lately as mobile applications are usually user facing
and latency critical. Performance bug detection tools like Appln-
sight [19] and Panappticon [23] analyze critical paths in the system
to identify performance bottlenecks in the applications that could
potentially cause user perceived delays. Energy bugs are another
type of bugs that have been studied recently. Pathak et al. have per-
formed a series of studies [16, 17] on classifying and characterizing
energy bugs in Android applications. As far as we know, no previ-
ous work has looked at detecting races in Android applications.

8. Conclusion

Mobile applications are increasingly popular and are written by
common programmers. These applications are written in an asyn-
chronous event-driven model, which is prone to concurrency errors.
Unfortunately, currently we do not have adequate tools to help pro-
grammers find races in these event-driven mobile systems. This pa-
per presented the first causality model for the Android systems, and
a tool that detects use-after-free races using this causality model.
Our study showed that a significant number of harmful races could
be found with adequate accuracy.

Acknowledgments

We thank the anonymous reviewers for comments that improved
this paper. This work is supported by the National Science Founda-
tion CAREER program and Intel, Inc.

References
[1] Android Open Source Project. http://source.android.com/.

[2] Dalvik Technical Information. http://source.android.com/
devices/tech/dalvik/index.html.

[3] List of free and open-source Android applications. http://en.
wikipedia.org/wiki/List_of_free_and_open-source_
Android_applications.

[4] F-Droid. https://f-droid.org.

[5] Twitter Finagle. https://github.com/twitter/finagle.

[6] Libprocess.
libprocess/.

[71 S. V. Adve and M. D. Hill. Weak ordering—a new definition.
In Proceedings of the 17th Annual International Symposium on Com-
puter Architecture, ISCA ’90, pages 2-14, New York, NY, USA, 1990.
ACM. ISBN 0-89791-366-3. . URL http://doi.acm.org/10.
1145/325164.325100.

[8] J. Armstrong, R. Virding, and M. Williams. Concurrent programming
in ERLANG. Prentice Hall, 1993. ISBN 978-0-13-285792-5.

[9] A. Desai, V. Gupta, E. K. Jackson, S. Qadeer, S. K. Rajamani, and
D. Zufferey. P: safe asynchronous event-driven programming. In
PLDI, pages 321-332, 2013.

[10] D. R. Engler and K. Ashcraft. RacerX: Effective, Static Detection of
Race Conditions and Deadlocks. In SOSP, pages 237-252, 2003.

[11] C. Flanagan and S. N. Freund. FastTrack: Efficient and Precise Dy-
namic Race Detection. In PLDI, pages 121-133, 2009.

[12] R. C. Huang, E. Halberg, and G. E. Suh. Non-race concurrency bug
detection through order-sensitive critical sections. In ISCA, pages
655-666, 2013.

[13] V. Kahlon and C. Wang. Universal Causality Graphs: A Precise
Happens-Before Model for Detecting Bugs in Concurrent Programs.
In CAV, pages 434-449, 2010.

[14] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. Computers, IEEE Transactions on,
C-28(9):690-691, Sept 1979. ISSN 0018-9340. .

[15] R. H. B. Netzer. Optimal Tracing and Replay for Debugging Shared-
Memory Parallel Programs. In Workshop on Parallel and Distributed
Debugging, pages 1-11, 1993.

http://www.eecs.berkeley.edu/~benh/

[16] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping energy debugging
on smartphones: a first look at energy bugs in mobile devices. In
HotNets, page 5, 2011.

[17] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff. What is keeping my
phone awake?: characterizing and detecting no-sleep energy bugs in
smartphone apps. In MobiSys, pages 267-280, 2012.

[18] B. Petrov, M. T. Vechev, M. Sridharan, and J. Dolby. Race detection
for web applications. In PLDI, pages 251-262, 2012.

[19] L. Ravindranath, J. Padhye, S. Agarwal, R. Mahajan, I. Obermiller,
and S. Shayandeh. Appinsight: mobile app performance monitoring
in the wild. In OSDI, pages 107-120, 2012.

[20] V. Raychev, M. T. Vechev, and M. Sridharan. Effective race detection
for event-driven programs. In OOPSLA, pages 151-166, 2013.

[21] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan. Sound
predictive race detection in polynomial time. In POPL, pages 387—
400, 2012.

[22] J. W. Voung, R. Jhala, and S. Lerner. RELAY: Static Race Detection on
Millions of Lines of Code. In ESEC/SIGSOFT FSE, pages 205-214,
2007.

[23] L. Zhang, D. R. Bild, R. P. Dick, Z. M. Mao, and P. A. Dinda.
Panappticon: Event-based tracing to measure mobile application and
platform performance. In CODES+ISSS, pages 1-10, 2013.

[24] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin, S. Lu, and
T. W. Reps. ConSeq: Detecting Concurrency Bugs through Sequential
Errors. In ASPLOS, pages 251-264, 2011.

[25] W. Zhang, C. Sun, J. Lim, S. Lu, and T. W. Reps. Conmem: De-
tecting crash-triggering concurrency bugs through an effect-oriented
approach. ACM Trans. Softw. Eng. Methodol., 22(2):10, 2013.

