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CHAPTER 1

Introduction

Modern computer systems are under attack, making computer security an important

topic to understand. Malicious people (called hackers or attackers) search for computer

systems (hosts) that are vulnerable to attacks. Vulnerable hosts range from personal com-

puters (PCs) used in a home environment to corporate networks that are professionally

managed and maintained by system administrators. A computer system becomes a vulner-

able host when it contains mistakes or errors that can be exploited by attackers to achieve

unauthorized access. For example, an attacker can gain unauthorized access to a PC if a

user clicks on a malicious email attachment, or an attacker can gain access to a system if an

application running on the host contains a software programming error (vulnerability) that

the hacker can exploit. Once an attacker gains access to a system, they can run arbitrary

computing tasks on the compromised host.

Recent trends suggest that today’s attackers have economic incentives, making attacks

likely to continue. Researchers once believed that most hackers were unskilled adolescents

motivated primarily by bragging rights [63]. However, in 2004 the USA Today reported

[73] that hackers were selling computing time on large networks of compromised ma-

chines, called botnets. Botnets are believed to be used by spammers and organized crime

syndicates for activities such as online extortion, delivering unsolicited email advertise-

ments, and identity theft through fraudulent web sites. Since hackers can make money by

compromising vulnerable host and renting them out, skilled attackers will continue to find

new and innovative ways to break into computer systems.

Computer security compromises continue despite current best efforts, providing addi-
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tional evidence that attacks are likely to continue. In 2005 the F.B.I. conducted a survey of

U.S. businesses to learn more about computer security incidents [35]. In this survey, the

F.B.I. polled 2066 business and found that 87% of the companies surveyed experienced at

least one computer security compromise in 2005. Surprisingly, most of these companies

use security countermeasures to prevent compromises. For example, 98% of the compa-

nies run antivirus software, 91% use network firewalls, and 75% use antispyware software.

This evidence shows that the current state-of-the-art in computer security defenses does

not prevent all security compromises.

Successful attacks on computer systems are costly to businesses and to society. For

example, in the 2005 Computer Crime Survey [35], the F.B.I. estimates that computer

security incidents cost U.S. businesses $67.2 billion a year. Also, recent security incidents

have grounded flights [61], brought networks and email systems to a stand still [39], and

shut down the Russian stock exchange for several hours [53]. In addition, according to

the Los Angeles Times, in the first half of 2006 hackers stole sensitive information (e.g.,

social security numbers, medical records) from at least 845,000 people associated with

universities [28].

Because computer security attacks are costly and likely to continue despite current

best efforts, system administrators must be able to perform post-attack analysis of com-

puter intrusions. System administrators must answer two main questions when analyzing

intrusions: “how did the attacker gain access to my system?”, and “what did the attacker

do after they broke in?”. Determining how an attacker gained access to the systems helps

system administrators prevent future intrusions. For example, if a system administrator

can determine which application contained the vulnerability that the attacker exploited,

they can prevent future intrusions by updating the vulnerable application, or if no update

is available, they can disable the application until an update becomes available. Deter-

mining the attacker’s activities after they broke in is important because it can help the

administrator recover from the intrusion.

Unfortunately, current sources of information used for intrusion analysis suffer from

one or more limitations. Host logs are collections of application-level and system-level

events. Some host logs contain incomplete information making intrusion analysis diffi-
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cult. For example, web servers can log http requests. Although web-server logs are rich

in semantic information, they provide no system-wide data, making it difficult for admin-

istrators to analyze intrusions based solely on web logs. Network-level logs provide a

system-wide view of computing activity by recording all network traffic between a host

and the network. However, obfuscated network data and undocumented network protocols

might complicate intrusion analysis because the system administrator may not be able to

infer host states and events based solely on network-level logs. Disk images of infected

hosts contain all persistent state resulting from an attack. However, disk images are a

snapshot of the persistent state of a system, and may not contain the information needed

to determine the transient sequence of states and events that lead to the final disk image.

A general limitation of most tools and sources of information is that they intermingle the

actions of the intruder (or the state caused by those actions) with the actions/state of le-

gitimate users. Even in cases where the logs and disk state contain enough information

to understand an attack, identifying the sequence of events from the initial compromise to

the point of detection is still largely a manual process.

We propose using operating-system-level (OS-level) information-flow graphs to high-

light the activities of an attacker. OS-level information-flow graphs are a collection of

system-level causal events that connect operating system (OS) objects, like processes and

files. For example, a process that writes to a file forms a causal link from the process that

does the writing to the file that it writes to. These causal events can be linked together to

form an information-flow graph which highlights the events and objects that are likely to

be part of an attack.

Information-flow graphs are effective at highlighting malicious activities because they

hone in on events and objects that are likely to be part of the attack. Intrusion analysis starts

with a suspicious object (e.g., malicious process, trojaned executable file) on a system; this

suspicious object becomes the starting point for an information-flow graph used to analyze

intrusions. Because we start with a malicious object that we know, with a high level of

confidence, is part of an attack, it is likely that the sequence of events and objects that affect

and are affected by this malicious object are also part of the attack. Focusing on objects

and events that are likely to be part of an attack addresses the problem of finding malicious
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objects and events within audit logs that contains mostly legitimate activities. This key

observation is why information-flow graphs are effective at helping system administrators

analyze attacks.

We implemented three systems for analyzing intrusions using information-flow graphs.

We developed BackTracker to determine how an intruder broke into a system. Back-

Tracker starts with a suspicious object (e.g., email virus) and follows the attack back in

time, using causal events, to highlight the sequence of events and objects that lead to the

suspicious state. Showing a graph of these causally-connected events and objects provides

a system-wide view of the attack and significantly reduces the amount of data an adminis-

trator must examine in order to determine which application was originally exploited. We

also developed ForwardTracker to determine the attacker’s actions after the compromise.

ForwardTracker starts from the exploited application and tracks causal events forward in

time to display the information flow graph of events and objects that result from the intru-

sion. Furthermore, we designed and implemented Bi-directional Distributed BackTracker

(BDB) that continues the backward and forward information-flow graphs across the net-

work to highlight the set of computers on a local network that are likely to have been

compromised by the attacker.

1.1 Background: forensic procedure

Before an administrator can start to understand an intrusion, he or she must first detect

that an intrusion has occurred [17]. There are numerous ways to detect a compromise. A

tool such as TripWire [44] can detect a modified system file; a network or host firewall

can notice a process conducting a port scan or launching a denial-of-service attack; a

sandboxing tool can notice a program making disallowed or unusual patterns of system

calls [41] [37] or executing foreign code [48]. We use the term detection point to refer to

the state on the local computer system that alerts the administrator to the intrusion. For

example, a detection point could be a deleted, modified, or additional file, or it could be a

process that is behaving in an unusual or suspicious manner.

Once an administrator is aware that a computer is compromised, the next step is to

analyze the system to recover from the attack [16]. Administrators typically use two main
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sources of information to find clues about an intrusion: system/network logs and disk state

[34]. An administrator might find log entries that show unexpected output from vulnerable

applications, deleted or forgotten attack toolkits on disk, or file modification dates which

hint at the sequence of events during the intrusion. Many tools exist that make this job

easier. For example, Snort can log network traffic; Ethereal can present application-level

views of that network traffic; and The Coroner’s Toolkit can recover deleted files [33] or

summarize the times at which files were last modified, accessed, or created [32] (similar

tools are Guidance Software’s EnCase, Access Data’s Forensic Toolkit, Internal Revenue

Services’ ILook, and ASR Data’s SMART).

Operating-system-level information-flow graphs provide a new source of information

to find clues about an intrusion. For the remainder of this dissertation, we discuss how

operating-system-level information-flow graphs can help to analyze intrusions.

1.2 Scope of the Dissertation

My thesis is:

Operating-system-level information-flow graphs are effective at helping to analyze

intrusions.

We validate this claim by implementing systems that generate information-flow graphs

that we use to analyze intrusions. We evaluate these systems using attack data from bench-

mark workloads where we broke into hosts ourselves, and also from workloads generated

from allowing external hackers to break into systems that run our analysis software. Our

contributions are:

• Introducing the idea of using information-flow graphs for intrusion analysis.

• Building systems to log causal OS-level events in real time.

• Building systems to generate information-flow graphs based on logs of causal

events.

• Developing algorithms for prioritizing portions of information-flow graphs to sim-

plify intrusion analysis.
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1.3 Dissertation overview

In this dissertation, we discuss operating-system-level information-flow graphs and

how they can be used to help analyze intrusions.

In Chapter 2, we introduce information flow and discuss previous work in the area. We

talk about tracking information flow at various levels of granularity, and justify our choice

of tracking information flow at the operating system level.

In Chapter 3, we discuss how to build information-flow graphs. We define the objects

and events we track, and we show how to use these objects and events to build information-

flow graphs.

In Chapter 4, we show how information-flow graphs help to analyze intrusions on

local hosts. We describe honeypot experiments where we allow intruders to break into

instrumented systems, and we show how backward and forward information-flow graphs

help to understand the details of the attacks.

In Chapter 5, we continue the analysis across the network. We discuss network-level

causal events and show how they can help track attacks across multiple hosts.

Although we found it useful to analyze intrusions using OS-level information flow,

there certainly are limitations. Chapter 6 describes what we believe are the fundamental

limitations of our approach.

In Chapter 7, we discuss how to enhance OS-level information flow to reduce the size

of large information-flow graphs.

In Chapter 8, we describe possible future directions. This dissertation focuses on intru-

sion analysis, but information-flow graphs could also be used for intrusion detection and

prevention. This chapter discusses the idea of using information-flow graphs for intrusion

detection and prevention.

Chapter 9 discusses related work and Chapter 10 concludes.



CHAPTER 2

Information Flow

Information flow is defined as transferring data (information) from one object to an-

other. To track information flow, one must define a set of objects, and identify events

where information flows between these objects.

We assume information-flow events are causal events. In other words, actions of an

object are assumed to be affected by, or caused by, all previous events, even if the the object

no longer uses the information gleaned from previous events. This conservative approach

can lead to objects in an information-flow graph that do not impact the attack. We use

the term false positive to describe objects we include in an information-flow graph, but do

not actually affect an attack. To reduce false positives, we use filtering rules to prioritize

portions of information-flow graphs. This filtering can remove objects that affect the attack

and we use the term false negative to describe objects that we omit from an information-

flow graph, but affect the attack.

Information flow has been studied at many different levels of granularity where each

different level of granularity balances performance vs false positives. In general, more

coarse-grained information-flow tracking incurs fewer performance penalties, but leads to

more false positives. More fine-grained information-flow leads to fewer false positives,

but at the cost of performance.

Operating-system-level information flow provides a good balance between perfor-

mance and false positives. In this chapter we justify this claim by discussing previous

projects that track information flow at various levels of granularity. Then, we discuss why

we chose OS-level information flow.

7
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runtime programming supports legacy
overhead no host language applications
(percent) instrumentation independent w/o source

host level 0%
√ √ √

OS level 9%
√ √

PL level 8%
instruction level 2500%

√ √

Table 2.1: Impact of tracking information flow at different levels of granularity.

This table summarizes the performance and deployment tradeoffs of using different levels
of granularity. We show information flow at the host level, at the operating system level,
at the programming language level, and at the instruction level. The factors we show are
runtime overhead, need to instrument the host, programming language independence, and
legacy application support (i.e., source code not needed). Note: the performance numbers
for programming-language level and instruction level information flow only measure the
instrumentation overhead. These numbers do not include the additional overhead for
creating an audit log based on the instrumented events, which is needed for forensic
analysis.

2.1 Background: information flow at different levels of granularity

Past projects track information flow at many different levels of granularity includ-

ing host level, operating-system level, programming-language level, and instruction level.

This section discusses some of these past projects with a focus on issues related to the level

of granularity being tracked. Section 9.2 describes different uses for information flow.

Table 2.1 shows some of the tradeoffs one must consider when choosing at which level

to track information flow. In this table we summarize the tradeoffs of host level, operating-

system level, programming-language level, and instruction level information flow.

Host-level information-flow [51, 9, 12, 49] tracks data sent between distinct hosts on a

network. Tracking information flow at the host level requires logging only network mes-

sages, no instrumentation is needed on the hosts themselves. This can be advantageous

for large enterprise networks with diverse host software and multiple distinct administra-

tive domains. Furthermore, current projects have shown how to make this type of logging

efficient [12, 49] for enterprise networks. However, analyzing intrusions at the host level

of granularity can be challenging because system administrators must infer the actions of

individual hosts based solely on network data. For example, if an attacker exploits a user’s
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instant messaging application and installs a backdoor application, connecting the backdoor

to the instant messaging application, using only network data, can be difficult. Making this

connection is difficult because the administrator must reproduce the semantics of the in-

stant messaging application, including the vulnerability and any non-determinism, using

only network messages. In addition, encryption and undocumented network protocols ob-

fuscate network-message semantics and further complicate the forensic procedure when

using host-level information flow.

OS-level information flow [14, 2, 45, 47, 40, 79, 76, 30] divides hosts into execution

subcomponents (e.g., processes) and state subcomponents (e.g., files). Tracking informa-

tion flow at this level of granularity gives a system-wide perspective of attack activity and

follows data as it travels through the host. This level of granularity adds little runtime

overhead (around 9% according to our tests in Section 4.2) and tracks applications inde-

pendent of programming language and source code availability. However, some OS-level

objects tend to accumulate taint which can lead to false positives.

Programming-language-level information flow [26, 27, 55, 77, 75, 74, 8, 69] divides

processes into execution subcomponents (i.e., code paths) and state subcomponents (i.e.,

variables). PL-level information flow tracks efficiently (around 8% according to [75])

data used within a processes. These techniques can determine when to remove taint from

a processes and can help reduce many false positives resulting from tracking OS-level

information flow alone. However, PL-level techniques assume the use of a particular pro-

gramming language and require access to source code, which makes PL-level techniques

unsuitable for many applications.

Instruction-level information flow [57, 21, 22, 54, 56, 48] divides code paths and vari-

ables into execution subcomponents (i.e., instruction streams) and state subcomponents

(i.e., memory and CPU registers). Instruction-level information flow operates at the assem-

bly instruction level and does not make any assumptions about programming languages,

and does not require source code. However, this flexibility comes at the cost of perfor-

mance where tracking instruction-level information flow can increase application runtime

by several orders of magnitude [57].
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2.2 Operating-system-level information flow

When deciding at which level to track information flow, we first examine our require-

ments for a system suitable for analyzing intrusions. Our requirements are:

• Good performance.

• Support a diverse set of host software.

• Track all applications including foreign code and newly installed code.

• Provide a system-wide perspective of activities on the host with enough detail to

understand the attack.

• Provide an information-flow graph that is small enough for visual attack analysis.

OS-level information flow meets all of the above requirements. First, OS-level tracking

requires monitoring a relatively small number of objects and events, so we can track these

objects and events at runtime inexpensively. Our current prototype adds 9% overhead in

our worst-case macro-benchmark experiments (see Section 4.2). Second, the monitored

objects and events are common among many of today’s operating systems, so these tech-

niques apply to a wide range of host software configurations. We implemented event

logging modules for both Linux and Windows operating systems. Third, tracking occurs

from within the OS kernel itself, so OS-level information flow monitors all applications

automatically without requiring recompilation or a priori knowledge of application inter-

nals. As a result, OS-level information flow tracks foreign code and newly installed code,

which is vital because attackers often install their own binaries on a compromised sys-

tem. Fourth, OS-level information flow provides a system-wide perspective of an attack

by following the flow of information from one object to another. The tracked objects (e.g.,

processes and files) are familiar to administrators and provide information about the details

of an attack. Fifth, OS-level information flow highlights a subset of the total system ac-

tivity that is likely to be part of the attack being analyzed. Although this subset represents

a much smaller set of data, in our experience the resulting information-flow graph tends

to be large, making analyzing intrusions difficult. Fortunately, OS-level information-flow

graphs are well suited for a number of heuristics which effectively highlight portions of

an information-flow graph. This smaller information-flow graph, in our experience, was
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small enough to effectively analyze intrusions. Chapters 4 and 5 describes the details of

the techniques we use to prioritize portions of information-flow graphs.

OS-level information flow is the only level of information flow that meets all of the

above requirements. Host-level information flow does not capture enough details about the

attack to connect system-level events and objects together, making analyzing intrusions

difficult. Programming-language-level information flow does not work for foreign code

installed by an attacker because the source code is unavailable generally. Instruction-level

information flow adds too much overhead to be practical for enterprise systems. Overall,

operating-system-level information flow provides the best balance between all factors for

analyzing intrusions.



CHAPTER 3

Information-Flow Graphs

In order to generate information-flow graphs, one must define a set of objects, and track

events where information flows between these objects. For this dissertation, we developed

EventLogger which logs information-flow events in real time, and we built GraphGen that

processes EventLogger logs to generate the information-flow graphs we use to analyze

intrusions.

In this chapter we first discuss the OS-level objects that we track. We then discuss the

dependency causing events that must be recorded. Next, we show how these objects and

events can be used to create information flow graphs. Finally, we discuss the events and

objects tracked by our current prototype and the implementation structure of our system.

3.1 Objects

This section discusses the four types of OS-level objects that we track: processes, files,

filenames, and registry entries.

A process is identified uniquely by a process ID and a version number. EventLogger

keeps track of a process from the time it is created by a fork or clone system call to the

point where it exits. The one process that is not created by fork or clone is the first process

(swapper); EventLogger starts keeping track of swapper when it makes its first system call.

A file object includes any data or metadata that is specific to that file, such as its

contents, owner, or modification time. A file is identified uniquely by a device, an inode

number, and a version number. Because files are identified by inode number rather than

by name, we track a file across rename operations and through symbolic links. We treat

12
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pipes and named pipes as normal files. Objects associated with System V IPC (messages,

shared memory, semaphores) can also be treated as files, though the current EventLogger

implementation does not handle these.

A filename object refers to the directory data that maps a name to a file object. A

filename object is identified uniquely by a canonical name, which is an absolute pathname

with all ./ and ../ links resolved. Note the difference between file and filename objects.

In Unix, a single file can appear in multiple places in the filesystem directory structure,

so writing a file via one name will affect the data returned when reading the file via the

different name. File objects are affected by system calls such as write, whereas filename

objects are affected by system calls such as rename, create, and unlink.

A registry object refers a Windows registry entry. Windows uses the registry as a

central repository for application and system-wide configuration data. Registry entries

include a unique key used to identify the object, and also a value that represents the data.

Unlike filenames and file data, registry key to registry value mappings are unique.

3.2 Potential dependency-causing events

EventLogger logs events at runtime that induce dependency relationships between ob-

jects, i.e. events in which one object affects the state of another object. These events are

the links that allow us to deduce timelines of events connecting various objects together.

A dependency relationship is specified by three parts: a source object, a sink object, and a

time interval. For example, the reading of a file by a process causes that process (the sink

object) to depend on that file (the source object). We denote a dependency from a source

object to a sink object as source⇒sink.

We use time intervals to reduce false dependencies. For example, a process that reads

a file at time 10 does not depend on writes to the file that occur after time 10. Time is

measured in terms of an increasing event counter. Unless otherwise stated, the interval for

an event starts when the system call is invoked and ends when the system call returns. A

few types of events (such as shared memory accesses) are aggregated into a single event

over a longer interval because it is difficult to identify the times of individual events.

There are numerous events which cause objects to affect each other. This section de-
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scribes potential events that we could track. Section 3.3 describes how we use dependency-

causing events. Section 3.4 then describes why some events are more important to track

than others and identifies the subset of these dependencies logged by our current prototype.

Section 3.5 discusses the implementation structure require to track causality and produce

information-flow graphs. We classify dependency-causing events based on the source and

sink objects for the dependency they induce: process/process, process/file, process/file-

name, and process/registry.

3.2.1 Process/process dependencies

The first category of events are those for which one process directly affects the exe-

cution of another process. One process can affect another directly by creating it, sharing

memory with it, or signaling it. For example, an intruder may login to the system through

sshd, then fork a shell process, then fork a process that performs a denial-of-service attack.

Processes can also affect each other indirectly (e.g., by writing and reading files), and we

describe these types of dependencies in the next two sections.

If a process creates another process, there is a parent⇒child dependency because the

parent initiated the existence of the child and because the child’s address space is initialized

with data from the parent’s address space.

Besides the traditional fork system call, Linux supports the clone and vfork system

calls, which create a child process that shares the parent’s address space (these are essen-

tially kernel threads). Children that are created via clone or vfork have an additional bi-

directional parent⇔child dependency with their parent due to their shared address space.

In addition, clone and vfork create a bi-directional dependency between the child and other

processes that are currently sharing the parent’s address space. Because it is difficult to

track individual loads and stores to shared memory locations, we group all loads and stores

to shared memory into a single event that causes the two processes to depend on each other

over a longer time interval. We do this grouping by assuming conservatively that the time

interval of the shared-memory dependency lasts from the time the child is created to the

time either process exits or replaces its address space through the execve system call.
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3.2.2 Process/file dependencies

The second category of events are those for which a process affects or is affected by

data or attributes associated with a file. For example, an intruder can edit the password

file (process⇒file dependency), then log in using the new password file (file⇒process

dependency). Receiving data from a network socket can also be treated as reading a file,

although the sending and receiving computers need to cooperate to link the receive event

with the corresponding send event.

System calls like write and writev cause a process⇒file dependency. System calls like

read, readv, and execve cause a file⇒process dependency.

Files can also be mapped into a process’s address space through mmap, then accessed

via load/store instructions. As with shared memory between processes, we aggregate

mapped-file accesses into a single event, lasting from the time the file is mmap’ed to

the time the process exits. This conservative time interval allows us to avoid tracking in-

dividual memory operations or the un-mapping or re-mapping of files. The direction of

the dependency for mapped files depends on the access permissions used when opening

the file: mapping a file read-only causes a file⇒process dependency; mapping a file write-

only causes a process⇒file dependency; mapping a file read/write causes a bi-directional

process⇔file dependency. When a process is created, it inherits a dependency with each

file mapped into its parent’s address space.

A process can also affect or be affected by a file’s attributes, such as the file’s owner,

permissions, and modification time. System calls that modify a file’s attributes (e.g.,

chown, chmod, utime) cause a process⇒file dependency. System calls that read file at-

tributes (e.g., fstat) cause a file⇒process dependency. In fact, any system call that specifies

a file (e.g., open, chdir, unlink, execve) causes a file⇒process dependency if the filename

specified in the call exists, because the return value of that system call depends on the file’s

owner and permissions.

3.2.3 Process/filename dependencies

The third category of events are those that cause a process to affect or be affected by

a filename object. For example, an intruder can delete a configuration file and cause an
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application to use an insecure default configuration. Or an intruder can swap the names of

current and backup password files to cause the system to use out-of-date passwords.

Any system call that includes a filename argument (e.g., open, creat, link, unlink,

mkdir, rename, rmdir, stat, chmod) causes a filename⇒process dependency, because the

return value of the system call depends on the existence of that filename in the file system

directory tree. In addition, the process is affected by all parent directories of the filename

(e.g., opening the file /a/b/c depends on the existence of /a and /a/b). A system call that

reads a directory causes a filename⇒process dependency for all filenames in that directory.

System calls that modify a filename argument cause a process⇒filename dependency

if they succeed. Examples are creat, link, unlink, rename, mkdir, rmdir, and mount.

3.2.4 Process/registry dependencies

The fourth category of events are those for which a process affects or is affected by

registry entries. For example, an intruder can edit the HKLM\...\Run registry value

(process⇒registry dependency), which causes an attacker-specified process to launch

(registry⇒process) each time Windows starts.

Processes access registry values using query, set, and create system calls. Query causes

a registry⇒process dependency by reading the value of a registry entry. Set and create

cause a process⇒registry dependency by writing the value of a registry entry.

Registry keys are access using create, delete, enum, and open system calls. Create

and delete cause a process⇒registry dependencies by creating and deleting keys respec-

tively. Enum and open system calls cause registry⇒process dependencies by enumerating

subkeys within a key or by opening existing keys.

3.3 Dependency graphs

By logging objects and dependency-causing events during runtime, we save enough

information to build an information-flow graph that depicts the dependency relationships

between all objects seen over that execution. Rather than presenting the complete depen-

dency graph, however, we would like to make understanding or representing an attack as

easy as possible by presenting only the relevant portion of the graph. This section describes
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foreach event E in log {
  foreach object O in graph {
    if(E affects O by the time threshold for object O) {
      if(E’s source object not already in graph) {
        add E’s source object to graph
        set time threshold for E’s source object to time of E
      }
      add edge from E’s source object to E’s sink object
    }
  }
}

/* read events from latest to earliest */
foreach event E in log {
  foreach object O in graph {

      if(E’s sink object not already in graph) {
        add E’s sink object to graph

      }

    }
  }
}

/* read events from earliest to latest */

        set time threshold for E’s sink object to time of E

      add edge from E’s source object to E’s sink object

    if(O is affected by E by the time thresh. for obj. O) {

                              (a) Algorithm for backward dependency graph                               (b) Algorithm for forward dependency graph

Figure 3.1: Constructing a dependency graph

This code shows the basic algorithm used to construct (a) a backward dependency graph
and (b) a forward dependency graph from a log of dependency-causing events with dis-
crete times.

how to select the objects and events in the graph that relate to the attack.

Dependency graphs can represent the flow of information either backward in time or

forward in time. In both cases, the graph starts from a single object, referred to as a

detection point. Starting from a detection point, our goal is to build a dependency graph

of all objects and events that causally affect [51] the state of the detection point (backward

information flow) or are causally affected by the state of the detection point (forward

information flow). The part of the our system that builds this dependency graph is called

GraphGen. GraphGen is typically run off-line, i.e. after the attack.

3.3.1 Backward dependency graphs

To construct backward dependency graphs, GraphGen reads the logs of events, starting

from the last event and reading toward the beginning of the log (Figure 3.1a). For each

event, GraphGen evaluates whether that event can affect any object that is currently in the

dependency graph. Each object in the evolving graph has a time threshold associated with

it, which is the maximum time that an event can occur and be considered relevant for that

object. GraphGen is initialized with the object associated with the detection point, and the

time threshold associated with this object is the earliest time at which the administrator

knows the object’s state is compromised. Because the log is processed in reverse time

order, all events encountered in the log after the detection point will occur before the time

threshold of all objects currently in the graph.

Consider how this algorithm works for the set of events shown in Figure 3.2a (Figure
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3.2b pictures the log of events as a complete dependency graph):

1. GraphGen is initialized with the detection point, which is file X at time 10. That is,

the administrator knows that file X has the wrong contents by time 10.

2. GraphGen considers the event at time 8. This event does not affect any object in the

current graph (i.e. file X), so we ignore it.

3. GraphGen considers the event at time 7. This event also does not affect any object

in the current graph.

4. GraphGen considers the event at time 6. This event affects file X in time to affect its

contents at the detection point, so GraphGen adds process C to the dependency graph

with an edge from process C to file X. GraphGen sets process C’s time threshold to

be 6, because only events that occur before time 6 can affect C in time to affect the

detection point.

5. GraphGen considers the event at time 5. This event affects an object in the depen-

dency graph (process C) in time, so GraphGen adds file 1 to the graph with an edge

to process C (at time 5).

6. GraphGen considers the event at time 4. This event affects an object in the depen-

dency graph (process C) in time, so GraphGen adds process A to the dependency

graph with an edge to process C (at time 4).

7. GraphGen considers the event at time 3. This event affects process A in time, so we

add file 0 to the graph with an edge to process A (at time 3).

8. GraphGen considers the event at time 2. This event does not affect any object in the

current graph.

9. GraphGen considers the event at time 1. This event affects file 1 in time, so we add

process B to the graph with an edge to file 1 (at time 1).

10. GraphGen considers the event at time 0. This event affects process B in time, so we

add an edge from process A to process B (process A is already in the graph).
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.

(b) dependency graph (c) dependency graph

process A

process B

0

process C

4
process D
8

file 1

1

file 2

2

file X
6

file 0
3

5 7

process A

process B

process C

file 1

file X

file 0

time 0: process A creates process B

(a) event log

time 1: process B writes file 1
time 2: process B writes file 2
time 3: process A reads file 0
time 4: process A creates process C
time 5: process C reads file 1
time 6: process C writes file X
time 7: process C reads file 2
time 8: process A creates process D

 for complete event log  generated by GraphGen

Figure 3.2: Backward dependency graph for an example with discrete times

The label on each edge shows the time of the event. The detection point is file X at time
10. By processing the event log, GraphGen prunes away events and objects that do not
affect file X by time 10.

The resulting backward dependency graph (Figure 3.2c) is a subset of the graph in

Figure 3.2b. We believe this type of graph to be a useful picture of the events that lead to

the detection point.

The full backward graph generation algorithm is a bit more complicated because it

must handle events that span an interval of time, rather than events with discrete times.

Consider a scenario where the dependency graph currently has an object O with time

threshold t. If an event P⇒O occurs during time interval [x-y], then we should add P to

the dependency graph iff x < t, i.e. this event started to affect O by O’s time threshold.

If P is added to the dependency graph, the time threshold associated with P would be

minimum(t,y), because the event would have no relevant effect on O after time t, and the

event itself stopped after time y.

Events with intervals are added to the log in order of the later time in their interval.

This order guarantees that GraphGen sees the event and can add the source object for that

event as soon as possible (so that the added source object can in turn be affected by events

processed subsequently by GraphGen).
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For example, consider how GraphGen would handle an event process B⇒file 1 in

Figure 3.2b with a time interval of 1-7. GraphGen would encounter this event at a log time

7 because events are ordered by the later time in their interval. At this time, file 1 is not

yet in the dependency graph. GraphGen remembers this event and continually re-evaluates

whether it affects new objects as they are added to the dependency graph. When file 1 is

added to the graph (log time 5), GraphGen sees that the event process B⇒file 1 affects file

1 and adds process B to the graph. The time threshold for process B would be time 5 (the

lesser of time 5 and time 7).

GraphGen maintains several data structures to accelerate its processing of events. Its

main data structure is a hash table of all objects currently in the dependency graph, called

GraphObjects. GraphGen uses GraphObjects to determine quickly if the event under con-

sideration affects an object that is already in the graph. GraphGen also remembers those

events with time intervals that include the current time being processed in the log. Graph-

Gen stores these events in an ObjectsIntervals hash table, hashed on the sink object for

that event. When GraphGen adds an object to GraphObjects, it checks if any events in

the ObjectsIntervals hash table affect the new object before the time threshold for the new

object. Finally, GraphGen maintains a priority queue of events with intervals that include

the current time (prioritized by the starting time of the event). The priority queue allows

GraphGen to find and discard events quickly whose intervals no longer include the current

time.

3.3.2 Forward dependency graphs

Backward dependency graphs show which events preceding an intrusion detection

point could have contributed to the modified state or event that was detected. We would

like to generalize this approach to analyze in the forward direction. Analyzing causality

in the backward direction answers the question “How did these events and state get on my

system?” whereas analyzing causality in the forward direction answers the question “What

events and state were affected by the intrusion detection point?”. Consider a scenario in

which an attacker replaces the /bin/ls executable with a program that sends a user’s private

files to a collection site. Once one detects that /bin/ls was modified, forward tracking will
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show which files of which users were leaked as a result; this could help limit the damage

done by the intrusion (e.g., by informing the user which credit cards should be canceled).

Forward causal analysis is a straightforward extension to backward analysis. Backward

information-flow graphs add events to a graph if they affect an object before that object’s

time threshold, forward tracking adds events to a graph if they are affected by an object

after that object’s time threshold (Figure 3.1).

3.4 Dependencies tracked by current prototype

Section 3.2 lists numerous ways in which one object can potentially affect another. It

is important to note, however, that affecting an object is not the same as controlling an

object. Dependency-causing events vary widely in terms of how much the source object

can control the sink object. Our current implementation focuses on tracking the events

we consider easiest for an attacker to use to accomplish a task; we call these events high-

control events.

Some examples of high-control events are changing the contents of a file or creating a

child process. It is relatively easy for an intruder to perform a task by using high-control

events. For example, an intruder can install a backdoor easily by modifying an executable

file, then creating a process that executes it.

Some examples of low-control events are changing a file’s access time, creating a file-

name in a directory, or enumerating a registry key. Although these events can affect the

execution of other processes, they tend to generate a high degree of noise in the depen-

dency graph. For example, if EventLogger tracks the dependency caused by reading a

directory, then a process that lists the files in /tmp would depend on all processes that have

ever created, renamed, or deleted filenames in /tmp. Timing channels [52] are an example

of an extremely low-control event; e.g., an attacker may be able to trigger a race condition

by executing a CPU-intensive program.

Fortunately, we are able to provide useful information without tracking low-control

events, even if low-control events are used in the attack. This is because it is difficult for

an intruder to perform a task solely by using low-control events. Consider an intruder who

wants to use low-control events to accomplish an arbitrary task; for example, he may try
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to cause a program to install a backdoor when it sees a new filename appear in /tmp.

Using an existing program to carry out this task is difficult because existing programs

do not generally perform arbitrary tasks when they see incidental changes such as a new

filename in /tmp. If an attacker can cause an existing program to perform an arbitrary

task by making such an incidental change, it generally means that the program has a bug

(e.g., buffer overflow or race condition). Even if EventLogger does not track this event,

GraphGen will still be able to highlight the buggy existing program by tracking the chain

of events from the detection point back to that program.

Using a new, custom program to carry out an arbitrary task is easy. However, it will

not evade GraphGen’s information flow graph because the events of writing and executing

such a custom program are high-control events and GraphGen will link the backdoor to

the intruder’s earlier actions through those high-control events. To illustrate this, consider

in Figure 3.2b if the event “file 1⇒process C” was a low-control event, and process C was

created by process B (rather than by process A as shown). Even if EventLogger did not

track the event “file 1⇒process C”, it would still link process B to the detection point via

the event “process B⇒process C”.

EventLogger currently logs the following high-control events: process creation

through fork or clone; load and store to shared memory; read and write of files and pipes;

sending and receiving data from a socket; execve of files; load and store to mmap’ed files;

and setting and querying registry values. We have implemented the logging and tracking

of file attributes and filename create, delete, and rename (these events are not reflected in

Section 4.2’s results).

3.5 Implementation structure of EventLogger and GraphGen

There are several ways to implement EventLogger, and the resulting event logs are the

same independent of where EventLogger is implemented.

One strategy for our prototype is to run the target operating system (Linux 2.4.18)

and applications inside a virtual machine and to have the virtual-machine monitor call an

EventLogger procedure at appropriate times (Figure 3.3). The operating system running

inside the virtual machine is called the guest operating system to distinguish it from the
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Figure 3.3: System structures for logging events

We have implemented EventLogger in two ways. In the virtual-machine implementation
(Figure 3.3a), we run the target operating system and applications in a virtual machine
and log events in the virtual-machine monitor running below the target operating system.
In response to causal events, the virtual-machine monitor (VMM) module calls an Event-
Logger kernel procedure, then EventLogger reads information about the event from the
virtual machine’s physical memory. In the standalone implementation (Figure 3.3b), we
run applications directly on the host operating system and log events from within that
operating system.

operating system that the virtual machine is running on, which is called the host operating

system. Guest processes run on the guest operating system inside the virtual machines;

host processes run on the host operating system. The entire virtual machine is encapsulated

in a host process. The log written by EventLogger is stored on the host. The virtual-

machine monitor prevents intruders in the guest from interfering with EventLogger or its

log.

EventLogger gleans information about events and objects inside the target system by

examining the state of the virtual machine. The virtual-machine monitor notifies Event-

Logger whenever a guest application invokes or returns from a system call or when a

guest application process exits. EventLogger learns about the event from data passed by

the virtual-machine monitor and from the virtual machine’s physical memory (which is a

host file). EventLogger is compiled with headers from the guest kernel and reads guest

kernel data structures from the guest’s physical memory to determine event information

(e.g., system call parameters), object identities (e.g., file inode numbers, filenames, process

identifiers) and dependency information (e.g., it reads the address map of a guest process

to learn what mmap’ed files it inherited from its parent). The code for EventLogger is

approximately 1300 lines, and we added 40 lines of code to the virtual-machine monitor
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to support EventLogger. We made no changes to the guest operating system.

One of the standard reasons for using a virtual machine—correctness in the presence

of a compromised target operating system—does not hold for EventLogger. If an attacker

gains control of the guest operating system, she can carry out arbitrary tasks inside the

guest without being tracked by EventLogger.

We use a version of the UMLinux virtual machine [15] that uses a host kernel (based

on Linux 2.4.18) that is optimized to support virtual machines [46]. The virtualization

overhead of the optimized UMLinux is comparable to that of VMWare Workstation 3.1.

CPU-intensive applications experience almost no overhead, and kernel-intensive applica-

tions such as SPECweb99 and compiling the Linux kernel experience 14-35% overhead

[46].

A second strategy we use is to add EventLogger directly to the target operating system

and not use a virtual machine. To protect EventLogger’s log from the intruder, we store

the log on a remote computer or in a protected file on the local computer. We have ported

EventLogger to a standalone operating system (Linux 2.4.20) and to Windows 2000/XP to

have the option of using our system without using a virtual machine. To port EventLogger

to the target operating system, we modified only the code that gleans information about

events and objects.

To track information-flow across multiple hosts, EventLogger includes network sends

and receives. Connecting a send event with its corresponding receive event requires iden-

tifying each packet (or connection). There are several ways to identify packets. The sim-

plest is to use information in existing network headers, such as the source and destination

IP address, port number, and sequence number (for TCP messages)1. Another approach

is to supplement messages with additional information [60], either at network routers or

using our modified kernel. Finally, one could identify packets by storing a hash of their

contents. We currently identify packets by their source and destination addresses and se-

quence number; this simple approach is sufficient for the TCP-based attacks evaluated in

this dissertation.
1The gateway that receives messages from outside the network can use ingress filtering to check that

these messages do not spoof an internal network address [36]
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EventLogger logs can be stored using either the filesystem or a database. Storing logs

in a file is convenient, but using a database allows for quicker graph generation. The key

observation is that only a small subset of the total objects in a log end up in an information

flow graph. Using a file, GraphGen must process all events sequentially, even if the objects

are not present in the graph. Using a database, only events for objects of interest are

queried, so graph generation time scales with the number of object in the graph, not the

total number of objects in the system. This allows for efficient graph generation, even

when large logs must be processed.

GraphGen uses EventLogger logs to generate information flow graphs. GraphGen pro-

duces a graph in a format suitable for input to the dot program (part of AT&T’s Graph Visu-

alization Project), which generates the human-readable graphs used in this paper. Graph-

Gen runs on any computer used by the administrator and does not require any data from

the computer in question other than the EventLogger log.



CHAPTER 4

Analyzing Intrusions On a Single Host

In this chapter we discuss how information-flow graphs can be used to help analyze

intrusions on a single host. We first talk about how GraphGen prioritizes portions of

information-flow graphs to highlight a subset of objects and events. Next, we describe a

series of attacks that we analyze using BackTracker to determine the application that was

originally exploited. Then, we discuss advantages and disadvantages of ForwardTracker

and present an illustrative example.

4.1 Prioritizing portions of an information-flow graph

Dependency graphs for a busy system may be too large to scrutinize each object and

event. Fortunately, not all objects and events warrant the same amount of scrutiny when

a system administrator analyzes an intrusion. This section describes several ways to pri-

oritize or filter a dependency graph in order to highlight those parts that are mostly likely

to be helpful in understanding an intrusion. Of course, there is a tradeoff inherent to any

filtering. Even objects or events that are unlikely to be important in understanding an

intrusion may nevertheless be relevant, and these false negatives may accidentally hide

important sequences of events.

One way to prioritize important parts of a graph is to ignore certain objects. For exam-

ple, the login program reads and writes the file /var/run/utmp. These events cause a new

login session to depend on all prior login sessions. Another example is the file /etc/mtab.

This file is written by mount and umount and is read by bash at startup, causing all events

to depend on mount and umount. A final example is that the bash shell commonly writes to

26
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a file named .bash_history when it exits. Shell invocations start by reading .bash_history,

so all actions by all shells depend on all prior executions of bash. While these are true

dependencies, it is easier to start analyzing the intrusion without these objects cluttering

the graph, then to add these objects if needed.

A second way to prioritize important parts of a graph is to filter out certain types of

events. For example, one could filter out some low-control events.

These first two types of filtering (objects and events) may filter out a vital link in

the intrusion and thereby disconnect the detection point from the source of the intrusion.

Hence they should be used only for cases where they reduce noise drastically with only

a small risk of filtering out vital links. The remainder of the filtering rules do not run the

risk of breaking a vital link in the middle of an attack sequence.

A third way to simplify the graph is to hide files that have been read but not written

in the time period being analyzed (read-only files). For example, in Figure 3.2c, file 0

is read by process A but is not written during the period being analyzed. These files are

often default configuration or header files. Not showing these files in the graph does not

generally hinder one’s ability to understand an attack because the attacker did not modify

these files in the time period being considered and because the processes that read the files

are still included in the dependency graph. If the initial analysis does not reveal enough

about the attack, an administrator may need to extend the analysis further back in the log

to include events that modified files which were previously considered read-only. Filtering

out read-only files cannot break a link in any attack sequence contained in the log being

analyzed, because there are no events in that log that affect these files.

A fourth way to prioritize important parts of a graph is to filter out helper processes

that take input from one process, perform a simple function on that input, then return data

to the main process. For example, the system-wide bash startup script (/etc/bashrc) causes

bash to invoke the id program to learn the name and group of the user, and the system

startup scripts on Linux invoke the program consoletype to learn the type of the console

that is being used. These usage patterns are recognized easily in a graph: they form a cycle

in the graph (usually connected by a pipe) and take input only from the parent process and

from read-only files. As with the prior filtering rule, this rule cannot disconnect a detection



28

point from an intrusion source that precedes the cycle, because these cycles take input only

from the main process, and the main process is left in the dependency graph.

A fifth way to prioritize important parts of a graph is to choose several detection points,

then take the intersection of the dependency graphs formed from those dependency points.

The intersection of the graphs is likely to highlight the earlier portion of an attack (which

affect all detection points), and these portions are important to understanding how the

attacker initially gained control in the system.

We implement these filtering rules as options in GraphGen. GraphGen includes a set

of default rules which work well for all attacks we have experienced. A user can add to

a configuration file regular expressions that specify additional objects and events to filter.

We considered filtering the graph after GraphGen produced it, but this would leave in

objects that should have been pruned (such as an object that was connected only via an

object that was filtered out).

Other graph visualization techniques can help an administrator understand large de-

pendency graphs. For example, a post-processing tool can aggregate related objects in the

graph, such as all files in a directory, or show how the graph grows as the run progresses.

We expect an administrator to run GraphGen several times with different filtering rules

and log periods. He or she might first analyze a short log that he or she hopes includes the

entire attack. He or she might also filter out many objects and events to try to highlight

the most important parts of an intrusion without much noise from irrelevant events. If this

initial analysis does not reveal enough about the attack, he or she can extend the analysis

period further back in the log and use fewer filtering rules.

4.2 BackTracking attacks

This section evaluates how well BackTracker works on three real attacks and one sim-

ulated attack (Table 4.1).

To experience and analyze real attacks, we set up a honeypot machine [20] [63] and in-

stalled the default configuration of RedHat 7.0. This configuration is vulnerable to several

remote and local attacks, although the virtual machine disrupts some attacks by shrinking

the virtual address space of guest applications. Our honeypot configuration is vulnerable
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Figure 4.1: Mostly-unfiltered dependency graph for bind attack

The only filtering used was to remove files that were read but not written. The circled
areas and labels identify the major portions of the graph. Of particular interest are the
files we filter out in later dependency graphs: /var/run/utmp, /etc/mtab, /var/log/lastlog,
/root/.bash_history. We will also filter out helper processes that take input from one
process (usually via a pipe), perform a simple function on that input, then return data to
the main process. Most objects associated with S85httpd are helper processes spawned
by find when S85httpd starts.
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bind ptrace openssl-too self
(Fig 4.1-4.2) (Fig 4.3) (Fig 4.4) (Fig 4.5)

time period 24 hours 61 hours 24 hours
being analyzed
# of objects and 155,344 objects 77,334 objects 2,187,963 objects

events in log 1,204,166 events 382,955 events 55,894,869 events
# of object and 5,281 objects 552 objects 495 objects 717 objects

events in unfiltered 9,825 events 2,635 events 2,414 events 3,387 events
dependency graph
# of objects and 24 objects 20 objects 28 objects 56 (36) objects
events in filtered 28 events 25 events 41 events 81 (49) events

dependency graph
growth rate of 0.017 GB/day 0.002 GB/day 1.2 GB/day

EventLogger’s log
time overhead of 0% 0% 9%

EventLogger

Table 4.1: Statistics for BackTracker’s analysis of attacks

This table shows results for three real attacks and one simulated attack. Event counts
include only the first event from a source object to a sink object. GraphGen and the
filtering rules drastically reduce the amount of information that an administrator must
peruse to understand an attack. Results related to EventLogger’s log are combined for
the bind and ptrace attacks because these attacks are intermingled in one log. Object and
events counts for the self attack are given for two different levels of filtering.

to (at least) two attacks. A remote user can exploit the OpenSSL library used in the Apache

web server (httpd) to attain a non-root shell [18], and a local user can exploit sendmail to

attain a root shell [24]. After an attacker compromises the system, they have more-or-less

free reign on the honeypot—they can read files, download, compile, and execute programs,

scan other machines, etc.

We ran a variety of tools to detect intruders. We used a home-grown imitation of

TripWire [44] to detect changes to important system files. We used Ethereal and Snort to

detect suspicious amounts of incoming or outgoing network traffic. We also perused the

system manually to look for any unexpected files or processes.

We first evaluate how necessary it is to use the filtering rules described in Section 4.1.

Consider an attack we experienced on March 12, 2003 that we named the bind attack.

The machine on this day was quite busy: we were the target of two separate attacks (the
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bind attack and the ptrace attack), and one of the authors logged in several times to use

the machine (mostly to look for signs of intruders, e.g., by running netstat, ps, ls, pstree).

We detected the attack by noticing a modified system binary (/bin/login). EventLogger’s

log for this analysis period covered 24 hours and contained 155,344 objects and 1,204,166

events (all event counts in this paper count only the first event from a specific source object

to a specific sink object).

Without any filtering, the dependency graph generated by GraphGen for this attack

contains 5,281 objects and 9,825 events. While this is two orders of magnitude smaller

than the complete log, it is still far too many events and objects for an administrator to an-

alyze easily. We therefore consider what filtering rules we can use to reduce the amount of

information presented to the administrator, while minimizing the risk of hiding important

steps in the attack.

Figure 4.1 shows the dependency graph generated by GraphGen for this attack after

filtering out files that were read but not written. The resulting graph contains 575 objects

and 1,014 events. Important parts of the graph are circled or labeled to point out the

filtering rules we discuss next.

Significant noise comes from several root login sessions by one of the authors during

the attack. The author’s actions are linked to the attacker’s actions through /root/.bash_-

history, /var/log/lastlog, and /var/run/utmp. /etc/mtab also generates a lot of noise, as it is

written after most system startup scripts and read by each bash shell. Finally, a lot of noise

is generated by helper processes that take input only from their parent process, perform

a simple function on that input, then return data to the parent (usually through a pipe).

Most processes associated with S85httpd on the graph are helper processes spawned by

find when S85httpd starts.

Figure 4.2 shows the dependency graph for the bind attack after GraphGen applies

the following filtering rules: ignore files that were read but not written; ignore files

/root/.bash_history, /var/run/lastlog, /var/run/utmp, /etc/mtab; ignore helper processes that

take input only from their parent process and return a result through a pipe. We use these

same filtering rules to generate dependency graphs for all attacks.

These filtering rules reduce the size of the graph to 24 objects and 28 events, and



32

swapper

init

rc

S55sshd S85httpd

sh,bash

wget

/tmp/  /bind

bind

bind

socket

sshd

bash

/bin/login

pipe

nice,initlog

sshd

sshd

nice,initlog

socket

httpd

httpd

socket

httpd

Figure 4.2: Filtered dependency graph for bind attack.

Processes are shown as boxes (labeled by program names called by execve during that
process’s lifetime); files are shown as ovals; sockets are shown as diamonds. BackTracker
can also show process IDs, file inode numbers, and socket ports. The detection point is
shaded.

make the bind attack fairly easy to analyze. The attacker gained access through httpd,

downloaded a rootkit using wget, then wrote the rootkit to the file “/tmp/ /bind”. Some-

time later, one of the authors logged in to the machine, noticed the suspicious file, and

decided to execute it out of curiosity (don’t try this at home!). The resulting process in-

stalled a number of modified system binaries, including /bin/login. This graph shows that

BackTracker can track across several login sessions. If the attacker had installed /bin/login

without being noticed, then logged in later, we would be able to backtrack from a detection

point in her second session to the first session by her use of the modified /bin/login.
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Figure 4.3: Filtered dependency graph for ptrace attack

Figure 4.3 shows the filtered dependency graph for a second attack that occurred in the

same March 12, 2003 log, which we named the ptrace attack. The intruder gained access

through httpd, downloaded a tar archive using wget, then unpacked the archive via tar and

gzip. The intruder then executed the ptrace program using a different group identity. We

later detected the intrusion by seeing the ptrace process in the process listing. We believe

the ptrace process was seeking to exploit a race condition in the Linux ptrace code to

gain root access. Figures 4.3 and 4.2 demonstrate BackTracker’s ability to separate two

intermingled attacks from a single log. Changing detection points from /bin/login to ptrace

is sufficient to generate distinct dependency graphs for each attack.

Figure 4.4 shows the filtered dependency graph for an attack on March 2, 2003 which

we named the openssl-too attack. The machine was used lightly by one of the authors
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(to check for intrusions) during the March 1-3 period covered by this log. The attacker

gained access through httpd, downloaded a tar archive using wget, then installed a set of

files using tar and gzip. The attacker then ran the program openssl-too, which read the

configuration files that were unpacked. We detected the intrusion when the openssl-too

process began scanning other machines on our network for vulnerable ports.

Another intrusion occurred on our machine on March 13, 2003. The filtered depen-

dency graph for this attack is almost identical to the ptrace attack.

Figure 4.5a shows the default filtered dependency graph for an attack we conducted

against our own system (self attack). Self attack is more complicated than the real attacks

we have been subjected to. We gain unprivileged access via httpd, then download and

compile a program (sxp) that takes advantage of a local exploit against sendmail. When

sxp runs, it uses objdump to find important addresses in the sendmail binary, then executes

sendmail through execve to overflow an argument buffer and provide a root shell. We use

this root shell to add a privileged user to the password files. Later, we log into the machine

using this new user and modify /etc/xinetd.conf. The detection point for this attack is the

modified /etc/xinetd.conf.

One goal for this attack is to load the machine heavily to see if BackTracker can sepa-

rate the attack events from normal events. Over the duration of the workload, we continu-

ally ran the SPECweb99 benchmark to model the workload of a web server. To stress the

machine further, we downloaded, unpacked, and continually compiled the Linux kernel.

We also logged in several times as root and read /etc/xinetd.conf. The dependency graph

shows that BackTracker separates this legitimate activity from the attack.

We anticipate that administrators will run GraphGen multiple times with different fil-

tering rules to analyze an attack. An administrator can filter out new objects and events

easily by editing the configuration file from which GraphGen reads its filter rules. Fig-

ure 4.5b shows the dependency graph generated with an additional rule that filters out all

pipes. While this rule may filter out some portions of the attack, it will not usually dis-

connect the detection point from the from an intrusion source, because pipes are inherited

from a process’s ancestor, and BackTracker will track back to the ancestor through process

creation events. In Figure 4.5, filtering out pipes eliminates objdump, which is related to
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Figure 4.5: Filtered dependency graph for self attack

Figure 4.5a shows the dependency produced by GraphGen with the same filtering rules
used to generate Figures 4.3, 4.2, and 4.4. Figure 4.5b shows the dependency graph
produced by GraphGen after adding a rule that filters out pipes. Figure 4.5b is a subgraph
of Figure 4.5a.
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the attack but not critical to understanding the attack.

Next, we measure the space and time overhead of EventLogger (Table 4.1). For the real

attacks, the system is idle for long periods of time. The average time and space overhead

for EventLogger is very low for these runs because EventLogger only incurs overhead

when applications are actively using the system.

The results for self attack represent what the time and space overheads would be like

for a system that is extremely busy. In particular, serving web pages and compiling the

Linux kernel each invoke a huge number of relevant system calls. For this run, EventLog-

ger slows the system by 9%, and its compressed log grows at a rate of 1.2 GB/day. While

this is a substantial amount of data, a modern hard disk is large enough to store this volume

of log traffic for several months.

GraphGen is run after the attack (off-line), so its performance is not as critical as that

of EventLogger. On a 2.8 GHz Pentium 4 with 1 GB of memory, GraphGen took about

26 seconds to process the largest log: the self attack. For this test, the log was stored in a

MySQL database. Each of the real attacks took less time to generate the graph.

4.3 ForwardTracking attacks

This section discusses ForwardTracker and why tracking attacks forward is funda-

mentally more difficult than tracking them backward. We then describe a Windows XP

experiment we use to evaluate ForwardTracker, as well as the Windows specific filtering

techniques we use. Finally, we show how our example illustrates both what is useful about

the ForwardTracking technique, as well as some of the difficulties.

Tracking attacks forward is a fundamentally more difficult problem then tracking at-

tacks backward. The main difference is the question being asked. When BackTracking

an attack, we try to answer the question “how did the attacker gain access to my sys-

tem?”. BackTracker aims to highlight the single application which lead to the attack in

question. Filtering events and objects is acceptable as long as the application that was

exploited remains in the information flow graph. When ForwardTracking an attack, we

try to answer a different question: “what did the attacker do after they broke in?”. If the

administrator filters anything from the graph, they remove part of the attacker’s actions
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after they broke in. Thus, ForwardTracking forces administrators to tradeoff excessive

tainting vs completeness. In addition to answering a more general question, the Forward-

Tracking problem is further complicated by the process model used by modern operating

systems. Specifically, processes, by definition, have exactly one parent process and can

have an unbounded number of children processes. When BackTracking an attack, Graph-

Gen identifies the one parent process, but going forward, GraphGen identifies all children

processes. This conservative approach to handling causal events can lead to false positives

and innocent objects implicated in an attack.

To illustrate the benefits and shortcomings of ForwardTracker, we analyze a real attack

on a honeypot system running an unpatched version of Windows XP. Two most commonly

exploited vulnerabilities we encountered were the RPC daemon vulnerability [3] and the

local security authentication server service (lsass) vulnerability [5].

Tracking attacks for Windows XP requires additional filtering rules to cope with the

Windows registry. Windows uses the registry as a central repository for application and

system wide configuration data; most of this data is application-specific configuration data

that does not give attackers high levels of control over the system. For example, a word

processor might use the registry to store a list of the last few active documents, or to store

the last size and location of your editor’s window. However, some well-known registry

entries do provide attackers with a high level of control over the system. These registry

entries are called Auto-Start Extensibility Points (ASEPs) and are discussed in detail in

[72]. Hackers leverage these ASEPs to load device drivers into the system, install services

that automatically restart upon reboot, and force malicious dynamically loaded libraries

(dlls) into the address space of innocent applications. As a result, we track all registry

events involving ASEPs.

Figure 4.6 shows the backward dependency graph for an attack observed on April

20, 2005 that we call the mslaugh attack. We detected this attack by manually searching

through our EventLogger log to find anomalous process creation events. We found the

process creation event for a process called mslaugh.exe, which is a known variant of the

blaster worm [4]. Using the mslaugh.exe process as the starting point for our backward

analysis, we determined that the svchost process was compromised since it does not typ-
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Figure 4.6: Backward information-flow graph for mslaugh attack

ically download files using tftp or launch command shells. Thus, the svchost.exe process

became the starting point for our forward analysis.

Figure 4.7 shows the forward dependency graph for the mslaugh attack starting from

svchost.exe process. This graph illustrates both what is good about ForwardTracker, as

well as potential shortcomings. One benefit of forward information-flow graphs is that

we learn more about the attack. From Figure 4.7, we see that the attacker launches two

mslaugh processes, not one, and both processes write ASEP registry values to force the

mslaugh process to restart when the system reboots. This additional information was

unavailable in the backward information-flow graph. However, the remainder of the graph
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shows potential shortcomings of the ForwardTracker technique. First, the wmiprvse.exe is

a false positive. Wmiprvse.exe handles instrumentation management on Windows systems

and is a legitimate service that happened to be started by the same svchost process as

the RPC service. Second, there is also a wuamgrd.exe process, which is a a bot called

agobot [6], that an attacker installed in a separate attack on the same vulnerable svchost

process. The backward information-flow graph focuses in on the attack because, when

going backward, we identify the single parent process. However, going forward we pick

up all children, which is where some of this extra data came from. In addition to extra

children, we also filter registry activity that is, strictly speaking, the result of the attack.



CHAPTER 5

Analyzing Intrusions Across Multiple Hosts

BackTracker and ForwardTracker’s analysis is limited to events that occur on the same

host as the detection point. Because many attacks propagate via the network, we would

like to generalize this approach to track intrusions as they infect multiple hosts. Tracking

intrusions across multiple hosts allow us to find other compromised hosts upstream (using

backward causality) and downstream (using forward causality). As with host-level infor-

mation flow, this type of tracking is limited to machines under our administrative control.

In this chapter, we describe how to follow attacks across the network using Bi-

directional Distributed BackTracker (BDB) to track network send and receive events. We

first introduce new filtering rules to prioritize the network level causal paths most likely to

describe an intrusion as it traverses across multiple hosts. Next, we describe how to track

multi-hop attacks. Finally, we discuss correlating multiple intrusion-detection alerts using

information-flow graphs.

5.1 Prioritizing network connections

Tracking the causal relationships resulting from network communication can lead to

extremely large graphs. Consider the following scenario: an intruder attains a login session

on an internal computer (A). He or she then uses that login session to compromise an

internal SMB server (B). From the SMB server, he or she browses the departmental web

server, then launches a worm. Using one of the outgoing worm messages as the detection

point, an administrator can generate a multi-host, backward causality graph. This graph

will include the key link in the attack, which is the message from the login session (A)

42
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to the SMB server (B). However, the graph will also include the irrelevant messages from

the departmental web server. To make matters worse, the graph may also include other

clients that happened to affect the execution of the departmental web server before that

server sent pages to the SMB server.

Another example scenario is if a network service handles a series of requests in a single

process. If this network service is compromised, it depends on all prior incoming requests.

Fortunately, network services are often built to create a new process to handle each (or a

few) incoming requests. Creating a new process helps to limit the set of incoming packets

that causally precede an intrusion.

In order to counteract the tendency of graphs to explode in size, we must prioritize

which packets to include in multi-host causality graphs. Prioritizing packets leads to the

same tradeoffs inherent to any kind of filtering. Even objects or events that are unlikely

to be important in understanding an intrusion may nevertheless be relevant, and filtering

these out may accidentally hide important sequences of events.

There are numerous methods one could use to prioritize which packets to follow in

backward or forward causal analysis. The first method is a simple heuristic that works

well for today’s simple worms. A common pattern of today’s worms is to connect to a

network service, compromise it (e.g., with a buffer overflow), then immediately start a root

shell or a backdoor process. For this pattern, the best process to follow when performing

backward causality process is the highest (i.e., earliest) process in the backward graph that

received a network packet. The best packet to follow for this pattern is the most recent

packet received by the highest process. We call this heuristic highest process, most recent

packet.

A more general and robust method for prioritizing packets is to choose packets that are

related causally to another IDS alert. Some network messages are likely to be innocent or

ineffective, while others may be malicious and effective. Messages that are malicious and

effective are more likely to lead to other IDS alerts, thus any network packets connected to

IDS alerts should be prioritized. Suspicious network packets may be connected directly to

an alert from a network anomaly detector that highlights suspicious network messages, or

they may be connected indirectly to an alert from a host IDS that detects suspicious host
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activity that is caused by network messages.

Another method of prioritizing packets leverages the fact that most worms repeat their

actions as they traverse hosts. Worms usually propagate from host to host using the same

exploit, or perhaps using one of a few exploits. They may also perform the same activities

on each host they compromise, such as installing backdoors, patching vulnerabilities, or

scanning for private information. These repeated actions form a pattern that characterizes

the worm. As we follow an intrusion from host to host (forward or backward), we can

learn this pattern and use it to prioritize packets that cause similar patterns on other hosts.

A pattern for a worm may be characterized in many ways. It could be the set of

files or processes that causally follow from a received packet. More generally, one could

characterize a worm by the topology of the causal graph resulting from the received packet.

In fact, one can view the topology or membership of a packet’s forward causality graph as

a signature of a worm and raise an IDS alert whenever one sees this signature. Similarly,

one can view the topology or membership of a network service’s information-flow graph

as a profile of that network service and raise an alarm whenever one sees an anomalous

causality graph.

Finally, in some cases one can take advantage of application-specific knowledge to

identify more precisely which incoming packet causes a given action. For example, an

email client may be able to inform the information-flow tracking system of which email

message contains the attachment that is being viewed. If the attachment compromises the

viewer, the information-flow tracking system can focus on the appropriate message.

5.2 Tracking multi-hop attacks

Many organizations place most of their computers and services on an intranet behind

a firewall, with only a few computers and services exposed to the public Internet. Relying

too heavily on this type of perimeter defense has well-known flaws: if an attacker breaches

the firewall (such as through an infected laptop, email virus, or bug in one of the public

network services), he or she gains access to the computers on the local network, which are

often less secured. To clean up after such a breach, the administrator must first find all the

computers that have been compromised. It can be quite difficult to find which computers
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have been compromised during an attack, because the attacker may break into a system,

steal or corrupt data, then clean up by removing telltale signs of their attack.

In this section, we show how BDB tracks attacks that traverse multiple hosts, even

when the intrusion is detected initially on only a single host. After an intrusion is de-

tected on a single host, BDB tracks backward to determine what led to the intrusion on

that host. Tracking back continues across nodes until it reaches the point at which the

attack entered the intranet. Finding the point the attack entered the intranet is useful in se-

curing the network against future attacks. If the attack entered via an infected laptop, the

administrator can chastise and educate the user; if the attack entered via a buggy network

service, the administrator can disable that service or apply a patch [70]. After backward

tracking is complete, BDB performs forward tracking to find other compromised hosts.

As BDB finds compromised hosts during backward and forward tracking, it provides the

opportunity to learn about the attack. The information it learns can be used to develop

network and host signatures of the attack that can be used to avoid future compromises or

scan other networks for compromised hosts.

As discussed in Section 5.1, prioritizing which packets to follow can be done in a va-

riety of ways. In Section 5.2.1, we track the Slapper worm backward using the highest

process, most recent packet heuristic. During the forward tracking phase, we prioritize

which packets to follow by leveraging the signatures learned about the worm while track-

ing it backward. In Section 5.2.2, we prioritize the packets by following those flagged as

suspicious by the Snort network IDS. In Section 5.2.3, we use application-specific instru-

mentation to identify which e-mail message led to later events on the host.

5.2.1 Slapper worm

We first demonstrate the ability of BDB to track attacks across multiple hosts by re-

leasing a modified version of the Slapper worm on a local worm testbed (Figure 5.1). We

modified the spreading pattern of Slapper to look for new victims on the local network

before using its default method of searching for vulnerable machines among randomly

generated IP addresses.

Our testbed contains four vulnerable web servers: one accessible from both the public
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Figure 5.1: Inter-host propagation of the Slapper worm

The worm first infects Host A, then launches attacks against Hosts B, C, and D. After an
IDS detects the attack on Host D, BDB tracks the attack backward to Host A, then tracks
it forward to Hosts B and C. The solid lines depict the attacks, and the dotted lines depict
the order of BDB’s analysis.

Internet and the local network, and three accessible only from the local network. To make

it harder to track the worm, we add background noise by running the SPECweb99 bench-

mark between the web servers. Two machines acted as SPECweb99 servers, and the other

two machines acted as SPECweb99 clients. This workload generated 95,943 operating

system objects and 1,628,937 events spread out over the four machines. The test was run

for 20 minutes, with the worm being released 10 minutes after the test began.

The initial detection point occurred on Host D when an IDS detected a suspicious

process named update; Figure 5.2 shows the information-flow graph on Host D that led to

this process. The update process is used by Slapper to spread the worm to other machines.

This process on Host D is the starting point of our backward traversal. The information-

flow graph shows that the worm compiled update from source code, which it downloaded

by a shell over a socket. The worm spawned the shell from a compromised web server.

Using the highest process, most recent packet heuristic, BDB identifies a packet re-

ceived by the web server process as likely to be part of the attack. That packet originated

from Host A and is the starting point for backward tracking on that host. Tracking the

packet on Host A results in sequence of events similar to those found on Host D. However,

the highest process, most recent packet heuristic identifies a packet that originated from an

external source, so BDB’s traversal backward stops.
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Figure 5.2: Backward information-flow graph for Slapper worm for Host D.
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Figure 5.3: Forward causality graph for the Slapper attack

Forward causality graph of Host A for the Slapper attack. The subgraph formed by
executing uudecode, tar, and gcc is represented by the box with double lines.

While tracking the worm backward from Host D to Host A, BDB collects information

about the worm in the form of a backward information-flow graph. These graphs are

signatures that describe how the worm behaves on a computer. BDB uses this information

to go forward and detect other instances of the worm.

The forward traversal begins with the httpd process on Host A since that is the starting

point of the worm (Figure 5.3). BDB initially considers all activity resulting from this

point. In addition to communicating with Host D, the worm also contacts Hosts B and C.

BDB uses forward tracking to examine the effects of each outgoing packet on the receiving

hosts. To determine if the worm had infected these machines, BDB searches the forward

graphs for the information-flow signatures found while traversing backward. In both cases,

BDB finds the signature, and the hosts are deemed exploited.

BDB tracks the Slapper worm effectively using the highest process, most recent packet

heuristic and matching host worm signatures found during the backward traversal phase.

Despite the heavy load on the network service that was exploited, BDB filtered out irrel-

evant events and highlighted only the actions of the worm. The backward and forward

graphs of all of the infected nodes contain a total of 171 objects and 251 events, which is

2-3 orders of magnitude less than the total activity on the system.
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Figure 5.4: Inter-host propagation of the multi-vector attack

We carried out an attack on five of the 16 testbed hosts (A, E, I, G, K) using multiple
attack vectors (solid lines). After an IDS detects the attack on Host I, BDB tracks the
attack backward to Host E and A, then tracks it forward to Hosts E, I, G, and K.

5.2.2 Multi-vector manual attack

Although the highest process, most recent packet heuristic is effective for the Slapper

worm and many other existing exploits we examined, an attacker that knows about this

heuristic could evade detection. For example, an attacker could implicate an innocent

request by receiving it between the initial exploit and the next phase of the attack. Another

difficult scenario occurs when there are multiple network services at different roots of the

backward graph; in this case, there is no unique highest process.

One way to address these shortcomings is to use a network IDS to prioritize which

packets to follow. While a network IDS may not be accurate enough to track attacks by

itself, it may be accurate enough to prioritize which packets BDB should follow. In this

paper, we use the network IDS Snort [1] to prioritize packets for BDB. Snort matches mes-

sages against a number of known signatures; for this test, we use rules that find commonly

used shellcode instructions. For example, Snort detects consecutive no-op instructions,

which are used often in buffer overflow attacks to compensate for variations in process ad-

dress spaces. Although this type of network anomaly detector is prone to false positives,

it is effective enough to prioritize which causally-related network packets to examine first.

To evaluate whether a network IDS can prioritize packets effectively, we carried out

an attack on our local network that exploits several network services on various nodes
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within our system (Figure 5.4). We simulate a stealthy attacker by compromising one host

at a time, rather than scanning the network and attacking all vulnerable hosts. We start

by breaking into a publicly accessible web server. From there, we compromise succeed-

ing hosts through vulnerabilities in the ftp and samba servers. Each attack results in an

interactive shell, and we use that shell to download tools and break into the next host.

Our testbed includes 12 hosts: four web servers, four ftp servers, and four samba

servers. Each of the nodes also doubles as a client. To make it harder to track the at-

tack, we add background noise through artificial users who are logged into each computer.

Each user mounts all four samba servers in their file space. The users download source

code from a randomly selected web or ftp server, then unpack this source code to a ran-

domly selected samba mounted directory and compile it. The entire process is repeated

for the duration of the test. These activities result in large amounts of noise; across all

twelve nodes there are over 2 GB of network traffic, 6,589,526 operating system events

and 814,262 operating system objects. We ran the test for 20 minutes, and the intrusions

occurred 10 minutes after the test started.

The attack is detected initially on Host I, when the attacker launches a backdoor pro-

cess that opens a raw socket. BDB generates a backward graph using the backdoor pro-

cess as the detection point, then sees which of the causally related incoming packets were

flagged as suspicious by Snort. In this case, one of the incoming packets in the backward

graph had been flagged as suspicious by Snort. The suspicious packet came from the ftp

server on Host E. Using the suspicious packet as the starting point for another BackTracker

iteration, BDB again found that one of the causally related packets on Host E’s backward

graph had been flagged as suspicious by Snort. This packet led us back to the public

web server on Host A. All causally related incoming packets on Host A are from external

connections, so the backward traversal ends here.

Starting from the external web server, BDB uses Snort to prioritize among the causally

related outgoing packets, with the goal of finding other compromised hosts. The forward

analysis led us back to Host E and then again to Host I. From Host I, BDB found that the

attacker broke into Host G and then Host K.

In the end, BDB found all of the infected hosts and highlighted 420 operating system
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objects and 19 network packets of the 814,262 objects and 2 GB of network data on the

entire system. BDB’s resulting information-flow graph is small enough that an administra-

tor who wants to understand the attack in more detail can examine each object and packet

by hand.

Although BDB found all compromised hosts, there were some false positives in our

analysis. In particular, Snort flagged as high priority seven packets that unsuccessfully

attempted to use the samba exploit. These did not affect our analysis because none of

the unsuccessful break-in attempts generated any extraneous network activity, and all of

the attacked hosts were eventually broken into. To reduce these false positives, BDB could

prioritize network packets further by using additional IDSs; for instance, it could see which

suspicious network packets led to other host IDS alerts on the receiving host.

5.2.3 E-mail virus

Attacks often propagate through a network via e-mail viruses. E-mail viruses typically

spread by fooling a user into running a suspicious application or by exploiting a helper

process used to handle an attachment. Unfortunately, the structure of e-mail handling

programs makes it difficult for BDB to track the causal relationship between incoming

messages and subsequent actions. E-mail servers that receive messages and e-mail clients

that display them for users tend to be long-lived and to read multiple messages at a time.

Because BDB tracks information flow at the granularity of a process, it assumes conserva-

tively that all messages that have been read affect all subsequent actions. Tracking infor-

mation flow at a more precise granularity requires program-specific instrumentation, and

this section demonstrates how one can enhance BDB in this way to track e-mail viruses.

We made two application-specific changes to support e-mail tracking across multiple

hosts. First, we modified the exim e-mail server to link the network messages it receives

with e-mail messages IDs. Second, we modified the pine e-mail client to inform BDB of

the “current” e-mail message ID being read at a given time. We assume that the saving

of an attachment or launching of a helper process is caused by the current e-mail message

being read by the user. These changes allow us to track (backward or forward) the effects

of an e-mail message as it is received by the server, transferred to the client, and viewed
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Figure 5.5: Tracking an e-mail virus

In (a), BDB uses its normal tracking plus an instrumented e-mail client to track back from
an outgoing network connection to the causally related incoming e-mail message. In (b),
BDB uses the instrumented e-mail server to link the suspicious e-mail message with the
incoming network message that delivered that e-mail message. This procedure identifies
the host that sent the e-mail virus, where the backward tracking can be repeated.

by a user. Resulting actions on a host, such as writing files, starting new processes, and

sending messages, are tracked via BDB’s normal mechanisms.

We tested the ability of BDB to track an e-mail virus by installing our instrumented e-

mail server and client on our testbed, then releasing a virus. Figure 5.5 shows how BDB’s

resulting information-flow graph tracks the virus backward from the initial detection on

Host A (Figure 5.5a), back to when the virus was received by the exim server (Figure

5.5b), back to the upstream Host B (Figure 5.5c).

5.3 Correlating IDS alerts

In this section we discuss the benefits of correlating multiple IDS alerts using

information-flow graphs, and we show how correlating alerts with causality can reduce

false positives on a testbed system. In this section when we discuss false positives, we are

referring to the more traditional use of the term that describes IDS alerts that trigger when

no attack is present.

A major problem with many IDSs is false positives. One approach to reduce these

false positives is to combine multiple host or networks IDS alerts into a single, higher-

confidence alert. Prior approaches connect distinct alerts through statistical correlation on
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various features of the alert, such as the destination IP address or time of the alert. BDB

makes it possible to correlate alerts in a new way by revealing which alerts are related

causally.

The main benefit of relating alerts causally is its potential for increased accuracy—

statistical correlation may suffer from coincidental events, whereas causal relationships

are determined by chains of specific OS and network events.

In addition, using information flow to correlate alerts can reduce dramatically the

amount of data each IDS needs to process. For example, in Section 5.2.2, we showed

how BDB revealed which outgoing network packets were causally related to a host IDS

alert. BDB can thus narrow the search for suspicious network activity to a handful of pack-

ets, even in the midst of a busy network. In the same way, BDB can reduce the amount

of data that a host IDS must examine. For example, a host IDS need examine only those

processes and files that are related causally to packets that are flagged as suspicious by a

network IDS. This allows one to use intensive host IDSs that would otherwise be too slow

[68].

Two IDS alerts may be related causally in a variety of ways. One alert may causally

precede or follow the other. Or, two alerts may share a common ancestor, such as when a

single shell process executes two child processes that each perform a suspicious action. It

is up to higher-level policies to determine how to score these different causal relationships,

and we leave this to future work. We speculate that alerts are more likely to be correlated

if one is the direct descendant of the other than if they simply share a common ancestor.

To test how effectively causality can be used to correlate alerts, we ran BDB on two

test systems that were exposed to the Internet. One system was running the default RedHat

6.2 installation; the other was running the default RedHat 7.0 installation. Both systems

had several vulnerable servers that were accessible from the Internet, including the bind,

ftp, and web servers. We configured the system to use a network IDS and a host IDS. We

used Snort with its default rules as a network IDS, and we used a host IDS that flagged as

suspicious any process that runs as root. While both IDSs are expected to generate many

false positives, correlating alerts from these two IDSs using causality can increase our

confidence that alerts result from actual compromises. To correlate alerts, we started with
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Figure 5.6: Correlating alerts

This figure shows how an information-flow graph can connect two distinct IDS alerts.
The two alerts are shown as shaded boxes. One alert is generated by Snort, and the other
is generated by a host IDS that detects root processes. The bold lines highlight the events
that most directly relate the flagged IDS alerts.

Snort alerts and generated causal graphs on the host for each suspicious network message.

We then reported any processes in the resulting information-flow graphs that ran as root.

We ran the system for two days. 1 During this period, Snort generated 39 alerts, and the

host IDS detected numerous root processes. Of these alerts, BDB detected two that were

connected causally: an outgoing message flagged by Snort and two root processes. Figure

5.6 shows that the alerts were connected causally through a common ancestor (the httpd

process), we confirmed by hand that these two alerts were indeed the result of a successful

attack. Snort’s alert resulted from a suspicious outgoing packet (triggering the “uid=” rule

that indicates the output of the id command) that was sent by a shell process executed by

a compromised web server. The shell process also downloaded various tools and gained

root access through a local modutils exploit, which triggered the host IDS alert.

We examined the other Snort alerts by hand to see if there were any other true positives.
1We also used BDB on one of our desktop computers to correlate Snort and host IDS alerts. Although

we were not attacked successfully over this period, BDB was effective at filtering out the numerous false
positives generated by Snort.
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We found one other true positive, in which the attacker compromised the web server but

did not gain root privilege. This illustrates the tradeoffs involved in correlating IDS alerts.

Reporting only correlating alerts reduces the number of false positives, but it may mask

some true positives as well. Correlating Snort alerts with a more sophisticated host IDS

may have reported both true positives.

Overall, BDB effectively reduced the number of false positives on our testbed. It also

reduced administrative overhead by allowing us to use Snort’s default rules, rather than

customizing the set of rules by hand to reduce false positives.



CHAPTER 6

Limitations

In the prior section, we showed that BackTracker, ForwardTracker, and BDB helped

analyze several real attacks. In this section, we consider what an intruder can do to hide

their actions from our system. An intruder may attack the layers upon which our Event-

Logger module is built, use events that EventLogger does not monitor, or hide his actions

within large dependency graphs.

An intruder can try to foil GraphGen or EventLogger by attacking the layers upon

which analysis or logging depend. One such layer is the operating system. GraphGen’s

analysis is accurate only if the events and data it sees have their conventional meaning. If

an intruder can change the kernel (e.g., to cause a random system call to create processes

or change files), then he can accomplish arbitrary tasks inside the machine without being

tracked by EventLogger. Many operating systems provide interfaces that make it easy to

compromise the kernel or to work around its abstractions. Loadable kernel modules and

direct access to kernel memory (/dev/kmem) make it trivial to change the kernel. Direct

access to physical memory (/dev/mem) and I/O devices make it easy to control applications

and files without using the higher-level abstractions that EventLogger tracks. Operating

systems can disables these interfaces [42]. Operating systems may also contain bugs that

allow an intruder to compromise it without using standard interfaces [13]. Researchers

are investigating ways to use virtual machines to make it more difficult for intruders to

compromise the guest operating system [38].

Another layer upon which one current implementation of EventLogger depends is the

virtual-machine monitor and host operating system. Attacking these layers is considerably

56
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more difficult than attacking the guest kernel, since the virtual-machine monitor makes the

trusted computing base for the host operating system much smaller than the guest kernel.

If an intruder cannot compromise a layer below EventLogger, he can still seek to stop

GraphGen from analyzing the complete chain of events from the detection point to the

source of the attack. The intruder can break the chain of events tracked if he can carry out

one step in his sequence using only low-control events that EventLogger does not track.

Section 3.4 explains why this is relatively difficult.

An intruder can also use a hidden channel [52] to break the chain of events that Event-

Logger tracks. For example, an intruder can use the initial part of his attack to steal a

password, send it to himself over the network, then log in later via that password. Graph-

Gen can track from a detection point during the second login session up to the point where

the intruder logged in, but it cannot link the use of the password automatically to the initial

theft of the password. GraphGen depends on knowing and tracking the sequence of state

changes on the system, and the intruder’s memory of the stolen password is not subject to

this tracking. However, GraphGen will track the attack back to the beginning of the second

login session, and this will alert the administrator to a stolen password. If the administrator

can identify a detection point in the first part of the attack, he can track from there to the

source of the intrusion.

An intruder can also try to hide his actions by hiding them in a huge dependency graph.

This is futile if the events in the dependency graph are the intruder’s actions because the

initial break-in phase of the attack is not obfuscated by a huge graph after the initial phase.

In addition, an intruder who executes a large number of events is more likely to be caught.

An intruder can also hide his actions by intermingling them with innocent events.

GraphGen includes only those events that potentially affect the detection point, so an in-

truder would have to make it look as though innocent events have affected the detection

point. For example, an intruder can implicate an innocent process by reading a file the

innocent process has written. In the worst case, the attacker would read all recently writ-

ten files before changing the detection point and thereby implicate all processes that wrote

those files. As usual, security is a race between attackers and defenders. GraphGen could

address this attack by filtering out file reads if they are too numerous and following the
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chain of events up from the process that read the files. The attacker could then implicate

innocent processes in more subtle ways, etc.

Finally, an attacker can make the analysis of an intrusion more difficult by carrying

out the desired sequence of steps over a long period of time. The longer the period of

attack, the more log records that EventLogger and GraphGen have to store and analyze.

In conclusion, there are several ways that an intruder can seek to hide his actions from

BackTracker. Our goal is to analyze a substantial fraction of current attacks and to make

it more difficult to launch attacks that cannot be tracked.



CHAPTER 7

Enhancing Operating-System-Level Information Flow

It may be difficult for system administrators to analyze intrusions using large

information-flow graphs. Information-flow graphs can become large by including objects

that interact with many distinct OS-level objects, or by including OS-level objects that

accumulate taint conservatively, causing false positives. In this chapter we discuss tech-

niques that can be used to reduce the size of large OS-level information-flow graphs. Two

key principles guide our discussion: (1) separate the level of granularity used to display an

information-flow graph from the level of granularity used to determine causally connected

events and objects, and (2) identify stateless objects and enforce the stateless property to

reduce false positives.

Separating the level of granularity used to display an information-flow graph from the

level of granularity used to determine casually connected events and objects might help re-

duce the size of large information-flow graphs. The key to this principle is the observation

that both course-grained information flow and fine-grained information flow help reduce

the size of information-flow graphs, but in different ways. Course-grained information

flow consolidates objects, which helps with the visualization aspect of an information-flow

graph. But, course-grained information flow can cause false positives in an information-

flow graph, which adds more objects and contradicts our goal of making the graph smaller.

Fine-grained information flow reduces false positives by tracking information flow through

subcomponents of course-grained objects. But, fine-grained information flow adds more

objects and events to the system, which the information-flow graph displays. To resolve

these conflicting attributes, we recommend using more course-grained information flow

59
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for displaying information-flow graphs, but more fine-grained information flow to track

dependencies.

Identifying stateless objects and enforcing the stateless property can reduce the size of

information-flow graphs by eliminating false positives. Stateless objects are objects that

service incoming events deterministically, independent of any previous events. Our current

system taints objects for the entire duration of the object. We do not have a mechanism for

determining when an event no longer affects an object, so long-lived objects accumulate

taint without the ability to clear dependencies, even for stateless objects. To eliminate

these false dependencies, we can identify stateless objects and prune unrelated events.

In this chapter, with these two principles in mind, we discuss how one can reduce

the size of OS-level information-flow graphs using course-grained information flow, us-

ing advanced OS-level techniques, and using fine-grained information flow. This chapter

only discusses techniques for reducing the size of information-flow graphs, we did not

implement any of these techniques.

7.1 Course-grained information flow

Course-grained information flow may help reduce the size of OS-level information-

flow graphs by grouping similar OS-level objects into a single composite object. Group-

ing objects into a composite object hides any events between OS-level objects within the

composite object, giving the system administrator less data to analyze and reducing the

size of the information-flow graph. Reducing the size of the information-flow graph elim-

inates some information that is normally available to the system administrator; composite

objects must have semantic meaning so the system administrator still has enough informa-

tion to analyze the intrusion. For example, a system administrator can consolidate all web

server objects into a single composite object that encapsulates web server processes, cgi

scripts, content files, and log files. This consolidation hides the internal operations of the

web server, but the administrator can still attribute actions on the system to the web server.

Composite objects should be used for visualization only, system administrators should still

track OS-level events and objects within the composite object itself. By tracking OS-level

objects within composite objects, administrators can reduce many of the false positives
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that arise by tracking at the more coarse level of granularity.

To reduce the size of an OS-level information-flow graph further, a system administra-

tor can identify stateless composite objects to reduce false positives. Stateless composite

objects are groups of processes and files that deterministically process events independent

of any previous events. Enforcing the stateless property for composite objects by simply

disallowing internal state changes is impractical since processes naturally evolve as they

run, and temporary files are used often. Fortunately, system administrators can use check-

point and rollback techniques [31] to enforce the stateless property for composite objects.

Rolling back composite objects removes all taint accumulated over the checkpoint inter-

val. Removing taint disconnects distinct events associated with a composite object, unless

the events occur over the same checkpoint interval. If events occur over the same check-

point interval, we correlate them only when they connect via OS-level events and objects

within the composite object.

When using checkpoint and rollback to enforce the stateless property for composite

objects, the main difficulty is finding the appropriate time to take the checkpoint without

affecting computations. Rolling back a composite object restores the internal state of the

object, which clears the taint. However, if an ongoing computation uses that internal state,

rolling back the state might corrupt the computation. For example, a web server can be

divided into a front-end composite object and a file server composite object. The front

end is stateless and handles user requests, and the file server component maintains state

and stores persistent web-server objects. The system administrator can rollback the front-

end composite object periodically to disconnect unrelated requests, but if they perform

the rollback in the middle of handling a request, the request might become corrupted or

get dropped because it relies on state held within the front-end object. Addressing this

difficulty requires domain specific techniques that take into account the semantics of the

computations carried out by the composite object.

7.2 Advanced OS-level techniques

Programmers can use fork system calls to handle concurrent requests and to reduce

false positives. Servers typically handle concurrent requests using multiple entities that
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can be scheduled, the two most common used in today’s operating system are processes

(created using fork) and kernel threads. Using fork, servers are essentially stateless with a

single parent process that waits for new connections and creates child processes to handle

the new connections. The forked child begins by copying the parent’s address space, so

the parent’s state is effectively the checkpoint and forking a new process rolls back to

that checkpoint. A forked child depends on the parent, but the parent does not depend

on the child because the child has a private copy of the parent’s address space. As a

result, requests are causally disconnected, except through the single parent process. Using

threads, the flow of the application is the same, except new requests are handled by a child

thread. The child thread shares the parent’s address space for increased performance, but

this sharing causes all address-space changes made by the child to be visible to the parent

and all other children. As a result, the parent and all children are causally connected

through the shared address space, which causally links all requests, including requests

without true dependencies. Fortunately, we configured all servers used in our experiments

(i.e., http, ftp, smb) to use fork.

System administrators may be able to configure threaded servers to be stateless using

checkpoint and rollback techniques. However, they encounter the same problems as they

do with composite objects where finding a place to take a checkpoint is challenging and

all requests handled within a checkpoint interval are connected. Furthermore, checkpoint

and rollback implementations use the same mechanisms as fork (e.g., page protections)

typically, so administrators lose any performance gains from using threads when enforcing

the stateless property on a threaded server.

7.3 Fine-grained information flow

A system administrator can supplement OS-level information flow with fine-grained

information flow to reduce excessive tainting. For performance reasons, it is infeasible to

use fine-grained information flow for the entire system. However, an administrator can

identify key OS-level objects that are stateless and tend to accumulate excessive taint, and

use fine-grained techniques to eliminate false dependencies for these objects. Fine-grained

information flow techniques (i.e., PL-level or instruction level) divide OS-level objects
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into subcomponents. By tracking subcomponents individually we hope to eliminate false

dependencies that arise from tainting entire OS-level objects. Furthermore, we can track

the effects of these fine-grained objects and try to determine when they no longer affect

tainted objects.

A programmer can add annotations to a program to certify certain data as low-control.

This technique of certifying data is similar to classifying OS-level events as high-control

and low-control, but it is done by the programmer using program specific constructs in-

stead of being done by the administrator using OS-level constructs. Certifying data works

by specifying invariants within a program and registering this specification with the OS.

The OS can verify the invariants to classify the data as low-control. This technique may

reduce the size of information flow graphs, and it leverages knowledge of the program-

mer, who has intimate domain specific knowledge of the program and how it handles data.

However, these annotations introduce a new place for programmers to make mistakes, and

a mistake certifying data may remove key information from an information-flow graph,

making it difficult to analyze the intrusion.



CHAPTER 8

Future Work

This dissertation focuses on using information-flow graphs to analyze intrusions, but

it might also be possible to use information-flow graphs to detect or prevent intrusions.

Information-flow graphs can be used to describe behavior on a computer system. A graph

of known-good behavior defines how a service interacts with the system and how informa-

tion flows between components, any deviations from this graph of known-good behavior

may indicate potentially suspicious activity. In addition, a graph of known-bad behavior

defines known malicious activities, acting as a signature for an intrusion detection system.

This chapter discusses these additional uses for information-flow graphs.

Host-based intrusion detection systems (IDS) view events and objects in isolation. A

localized view of events and objects can be problematic because it does not take into

account how one object affects another. As a result, IDSs may be too imprecise to de-

tect intrusions. For example, consider the Windows local security authentication server

(lsass.exe) and the Windows services daemon (services.exe). These two processes com-

municate using a named pipe. Services.exe can install new system daemons, but when

services.exe installs a new daemon in response to a command sent by lsass.exe, it is prob-

ably the sign of an intrusion. The problem is not that services.exe installs a new daemon

or that lsass.exe sends commands to services.exe through a named pipe; those are both

typical actions performed independently by both processes. The problem is that lsass.exe

initiates the action when functionally, it has no reason to install a new system service. In

general, many IDSs [41, 59, 50, 19, 7] take into account only objects directly associated

with specified processes or files without considering the global flow of information. OS-
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level information flow graphs show the system-wide effects of causal events and objects,

and can be used to specify known-good behavior on a host. By defining known-good

behavior, it may be possible to detect and prevent intrusions by stopping anomalous devi-

ations from this known-good behavior. We anticipate that this approach can be effective

for a wide range of Windows and Linux services and the implementation will be suitable

for real-time detection and prevention.

It might be possible to use information-flow graphs as a way of defining known-bad

behavior and using them as a signature for malicious activity. One difficulty in using

information-flow graphs as signatures is that most of the actions captured in a malicious

information-flow graph result from an attack. Thus, attackers can evade this type of sig-

nature easily by changing their actions on a compromised host. However, under certain

assumptions, information-flow graphs can be useful for creating signatures of known-bad

behavior. Specifically, if you assume that the attacker breaks into a network service, then

uses the compromised host to propagate the attack to an additional host, information flow

graphs can capture this behavior. Semantically, the top of an information flow graph rep-

resents system processes, like network services. The bottom of an information flow graph

shows the actions of an attacker, including attack propagation. Since there are a limited

number of network services that can be broken into on a host, and a limited number of

network services that can be used to propagate the attack, the top and the bottom of an

information flow graph can act as a signature for malicious behavior. This relationship

associates various distinct activities on a host. For example, information-flow graphs can

show that a web server process causes another process to start making web requests (i.e.,

propagating the attack), which is probably indicative of malicious activities.



CHAPTER 9

Related Work

9.1 Intrusion analysis

BackTracker tracks the flow of information [26] across operating system objects and

events. The most closely related work is the Repairable File Service [79], which also

tracks the flow of information through processes and files by logging similar events. The

Repairable File Service assumes an administrator has already identified the process that

started the intrusion; it then uses the log to identify files that potentially have been con-

taminated by that process. In contrast, BackTracker begins with a process, file, or filename

that has been affected by the intrusion, then uses the log to track back to the source of the

intrusion. The two techniques are complementary: one could use backtracking to iden-

tify the source of the intrusion, then use the Repairable File Service’s forward tracking to

identify the files that potentially have been contaminated by the intrusion. However, we

believe that the forward tracking technique has fundamental limitations, as we discussed

in Section 4.3.

In addition to the direction of tracking, EventLogger and GraphGen differ from

the Repairable File Service in the following ways: (1) EventLogger tracks additional

dependency-causing events (e.g., shared memory, mmap’ed files, pipes and named pipes;

(2) GraphGen labels and analyzes time intervals for events, which are needed to handle

aggregated events such as loads/store to mmap’ed files; and (3) GraphGen uses filtering

rules to highlight the most important dependencies. Perhaps most importantly, we use

EventLogger and GraphGen to analyze real intrusions and evaluate the quality of the de-
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pendency graphs it produces for those attacks. The evaluation for the Repairable File

Service has so far focused on time and space overhead—to our knowledge, the spread of

contamination has been evaluated only in terms of number of processes, files, and blocks

contaminated and has been performed only on a single benchmark (SPEC SDET) with a

randomly chosen initial process.

Work by Goel et al. uses techniques outlined in this dissertation to automate intrusion

recovery with a system called Taser [40]. Taser tracks OS-level information flow to iden-

tify objects that have been affected by an attack, and automatically removes tainted data

while leaving untainted data in place. In our work, to recover from intrusions, we pro-

vide information-flow graphs to administrators and rely on the administrators to manually

recover from the intrusion based on the data within the information-flow graph. Another

difference between this work and Taser is that Taser recovers from intrusions only on sin-

gle hosts, whereas BDB tracks attacks across multiple hosts.

Work by Ammann, Jajodia, and Liu tracks the flow of contaminated transactions

through a database and rolls back data if it has been affected directly or indirectly by

contaminated transactions [10].

Several other projects assist administrators in understanding intrusions. CERT’s In-

cident Detection, Analysis, and Response Project (IDAR) seeks to develop a structured

knowledge base of expert knowledge about attacks and to look through the post-intrusion

system for signs that match an entry in the existing knowledge base [23]. Similarly, SRI’s

DERBI project looks through system logs and file system state after the intrusion for clues

about the intrusion [65]. These tools automate common investigations after an attack, such

as looking for suspicious filenames, comparing file access times with login session times,

and looking for suspicious entries in the password files. However, like investigations that

are carried out manually, these tools are limited by the information logged by current sys-

tems. Without detailed event logs, they are unable to describe the sequence of an attack

from the initial compromise to the detection point.

Security audit logs [11] have been studied since the 1980’s, but recent projects im-

proved the state-of-the-art in security audit logs. The “perfect” security audit log is com-

plete (i.e., capture all information), can guarantee integrity, and add little overhead. ReVirt
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[29] and Flight Data Recorder [67] implements come closer to meeting these goals. Re-

Virt creates security audit logs for entire machines by logging non-deterministic events

beneath the operating system, at the virtual-machine-monitor level. ReVirt uses these logs

to deterministically replay the execution of the entire virtual machine, including the op-

erating system and all applications. During replay, system administrators can monitor the

state of the system as Joshi et al. [43] do with the IntroVirt project. Flight Data Recorder

implements OS-level logging in Windows Vista systems, and does so efficiently enough

to handle server production servers at Microsoft’s MSN division. Both ReVirt and Flight

Data Recorder are complete and provide strong integrity (assuming the virtual-machine

monitor is trusted for ReVirt and OS is trusted for Flight Data Recorder), and add little

overhead to the system. Early prototypes of EventLogger were tested using ReVirt, and

Flight Data Recorder logs may be suitable replacements for EventLogger logs.

9.2 Information flow

We use information flow to help system administrators analyze intrusions, but infor-

mation flow has been used since the 1970’s with many different applications.

Traditional information-flow systems aim to prevent the flow of sensitive information

to untrusted sources [52]. The Bell LaPadula model [14] implements multilevel security

[2] using mandatory access controls to prevent secrets from being leaked in a military set-

ting. They introduce two key axioms that prevent principles from “reading up” from higher

security classes, or from “writing down” to lower security classes, and thus preventing the

leakage of sensitive information from higher security classes to lower security classes.

Denning extends this work by providing a lattice model of information flow [26] to pre-

vent information leakage. Denning’s model focuses on the flow of information rather than

access control decisions made at individual objects, and her model provides an elegant the-

oretical framework that many subsequent projects use. More recently, Myers and Liskov

[55], and Zdancewic et al. [77] track information flow at the programming language level

to prevent leakage of sensitive information. They allow users to declassify their own data,

thus providing a decentralized model for information flow control. Efstathopoulos et al.

[30] extend this idea of users declassifying data and apply it to OS-level objects in the
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Asbestos operating system. Yumerefendi, Mickle, and Cox [76] use a form of process-

level replay to automatically detect when sensitive information leaks across the network.

They detect leaked information by modifying sensitive data, sending the modified data to

a cloned process, then they replay the clone to determine if the replaying clone’s network

output changes. If the output changes, then sensitive information is leaked.

Recent projects use fine-grained information flow through a program to determine if

data is being used improperly. Newsome and Song [57], and Kiriansky et al. [48] use

fine-grained information flow techniques on assembly instructions to determine if user-

supplied data flows to sensitive areas, like function pointers or return addresses located on

stacks. Suh et al. [62] also use similar techniques, but introduce hardware modifications

needed to make this type of fine-grained information flow tracking efficient. Xu et al. [75]

track fine-grained information flow by transforming C source code, rather than working

at the assembly level. Chow et al. track instruction-level information flow, but do so to

determine where sensitive data flows throughout a system [21] and propose solutions to

preventing this type of flow [22].

The Perl programming language tracks the flow of tainted information across perl pro-

gram statements [69]. Like the Repairable File Service, Perl tracks the forward flow of

contaminated information rather than backtracking from a detection point to the source of

the intrusion.

Causality can help debug programs and distributed applications. One technique is pro-

gram slicing [64] which determines which execution paths and variables of a program

affect a certain portion of an application, presumably where the effects of a bug were de-

tected. Program slicing can be performed statically [74] to determine all variables and

paths that could have affected the current state, or dynamically [8] to determine which

variables and paths affected the current state for the most recent execution. Our tech-

niques could be viewed as OS-level dynamic program slicing where OS-level objects are

our variables and the entire machine is our program. A second technique also used for

debugging is proposed by Aguilera, et al. [9]. In this work they infer causal relation-

ships based on timing of messages passed between distributed nodes, and use these causal

relationships to debug performance issues.
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Lamport uses causal messages to synchronize local clocks on distributed nodes [51].

These messages establish a “happens before” relationship between the nodes that sets a

partial ordering of events on the nodes.

9.3 Multi-hop attacks and correlating IDS alerts

In addition to our approach of using information flow, other techniques have been used

to track multi-hop attacks. Work by Zhang and Paxson detects “stepping stones” used

to carry interactive communication across multiple hops by seeing which packets have

correlated size and timing characteristics [78]. Wang and Reeves extend this approach by

manipulating the timing of packets to more easily correlated packets across multiple hops

[71]. Our approach has advantages and disadvantages compared to prior approaches. The

main disadvantage is that our approach requires one to monitor each host in the chain.

Hence our approach is suitable mainly for communication within a single administrative

domain. The main advantage of our approach is that it is independent of timing because it

can track actual cause-and-effect chains, rather than relying on less robust characteristics

such as timing. Hence our approach can track non-interactive multi-hop attacks, such as

worms (even stealthy ones).

Many prior researchers have sought to correlate IDS alerts to reduce false positives [66]

[25] [58]. Most prior projects correlate IDS alerts based on shared features, such as source

or destination IP addresses of packets or the time at which the IDS alert occurred. Other

projects use prior knowledge about sequences of actions to connect IDS alerts together

into an attack scenario. Our work adds a new way to connect IDS alerts, by tracking actual

cause-and-effect chains to connect prior alerts with later ones.

9.4 Sandboxing IDSs

Sandboxing IDSs are closely related to the idea of using information-flow graphs for

intrusion detection because they both monitor similar events (i.e., system calls). Janus

[41], to our knowledge, was the first to propose using these techniques. Systrace [59]

expands on Janus by proposing novel techniques for profiling services and handling false
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positives. Recursive Systrace [50], BlueBoX [19], and MAPbox [7] extend sandboxing

rules to child and helper processes. Using information-flow graphs for intrusion detection

improves upon these projects by taking into account the global flow of information, and

utilizing additional information not monitored by Sandboxing IDSs. These improvements

may result in more precise specifications of services.



CHAPTER 10

Conclusions

In this dissertation we showed that operating-system-level information-flow graphs

were effective at helping to analyze intrusions. We developed techniques for tracking OS-

level information flow on local hosts and tracking OS-level information flow across multi-

ple hosts. EventLogger used this information-flow tracking to generate logs that were used

by GraphGen to reconstruct past states and events, and to help analyze intrusions. Starting

from a detection point, such as a suspicious file or process, BackTracker identified the

events and objects that could have affected that detection point. The dependency graphs

generated by BackTracker helped administrators find and focus on a few important objects

and events to understand the intrusion. Using these dependency graphs, the administrator

can identify the process that was most likely to be the source of the intrusion; this pro-

cess became the starting point for the forward analysis. ForwardTracker started from the

original source of the intrusion and followed the attack forward identifying a set of objects

and events that were likely to have resulted from the attack. BDB continued the analysis

across the network by following attacks across multiple hosts.

We used our techniques to analyze several real attacks against computers we set up as

honeypots, and also to analyze several artificial workloads designed to test the limits of

our techniques. In each case, BackTracker was able to highlight effectively the entry point

used to gain access to the system and the sequence of steps from the entry point to the

point at which we noticed the intrusion. ForwardTracker was able to show the attacker’s

activities after the break in, and BDB highlighted the set of computers that were also part

of the attack.
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Our techniques were effective at highlighting the activities of an attacker because we

started the analysis with single object that we believed, with a high level of confidence, was

part of an attack. Because we began with a malicious object, it was likely that the objects

that affected this malicious object, and the objects that were affected by this malicious

object, were also malicious. As a result, we were able to process audit logs that contained

mostly benign events and objects, and we highlighted a subset of the events and objects

that were likely to be part of the attack.
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Analyzing Intrusions Using Operating System Level Information Flow

by
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Computers continue to get broken into, so intrusion analysis is a part of most system

administrators’ job description. System administrators must answer two main questions

when analyzing intrusions: “how did the attacker gain access to my system?”, and “what

did the attacker do after they broke in?”. Current tools for analyzing intrusions fall short

because they have insufficient information to fully track the intrusion and because they

cannot separate the actions of attackers from the actions of legitimate users.

We designed and implemented a system for analyzing intrusions by using OS-level

information flow to highlight the activities of an attacker. OS-level information flow is a

collection of causal events which connect operating system objects. These causal events

can be linked to form an information-flow graph which highlights the events and objects

that are part of an attack.

Information flow graphs can be used to help system administrators determine how

an intruder broke into a system and what they did after the compromise. We developed



BackTracker to determine how an intruder broke into a system. BackTracker starts with a

suspicious object (e.g., malicious process, trojaned executable file) and follows the attack

back in time, using causal events, to highlight the sequence of events and objects that lead

to the suspicious state. Showing a graph of these causally-connected events and objects

provides a system-wide view of the attack and significantly reduces the amount of data

an administrator must examine in order to determine which application was originally

exploited. We also developed ForwardTracker to determine the attacker’s actions after the

compromise. ForwardTracker starts from the application which was exploited and tracks

causal events forward in time to display the information flow graph of events and objects

that result from the intrusion. Furthermore, we designed and implemented Bi-directional

Distributed BackTracker (BDB) which continues the backward and forward information

flow graphs across the network to highlight the set of computers on a local network which

are likely to have been compromised by the attacker.


