
Respec: Efficient Online Multiprocessor Replay
via Speculation and External Determinism

Dongyoon Lee Benjamin Wester Kaushik Veeraraghavan

Satish Narayanasamy Peter M. Chen Jason Flinn

Dept. of EECS, University of Michigan

{dongyoon,bwester,kaushikv,nsatish,pmchen,jflinn}@umich.edu

Abstract

Deterministic replay systems record and reproduce the execution
of a hardware or software system. While it is well known how to
replay uniprocessor systems, replaying shared memory multipro-
cessor systems at low overhead on commodity hardware is still an
open problem. This paper presents Respec, a new way to support
deterministic replay of shared memory multithreaded programs on
commodity multiprocessor hardware. Respec targets online replay
in which the recorded and replayed processes execute concurrently.

Respec uses two strategies to reduce overhead while still ensur-
ing correctness: speculative logging and externally deterministic re-
play. Speculative logging optimistically logs less information about
shared memory dependencies than is needed to guarantee deter-
ministic replay, then recovers and retries if the replayed process di-
verges from the recorded process. Externally deterministic replay
relaxes the degree to which the two executions must match by re-
quiring only their system output and final program states match.
We show that the combination of these two techniques results in
low recording and replay overhead for the common case of data-
race-free execution intervals and still ensures correct replay for ex-
ecution intervals that have data races.

We modified the Linux kernel to implement our techniques. Our
software system adds on average about 18% overhead to the exe-
cution time for recording and replaying programs with two threads
and 55% overhead for programs with four threads.

Categories and Subject Descriptors D.4.5 [Operating Systems]:
Reliability; D.4.6 [Operating Systems]: Security and Protection;
D.4.7 [Operating Systems]: Organization and Design; D.4.8 [Op-
erating Systems]: Performance

General Terms Design, Performance, Reliability

Keywords Replay, Speculative execution, External determinism

1. Introduction

Deterministic replay systems are used to record and reproduce
the execution of a hardware or software system. This ability can
be used to improve systems along many dimensions, including
reliability, security, and debuggability. For example, deterministic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’10, March 13–17, 2010, Pittsburgh, Pennsylvania, USA.
Copyright c© 2010 ACM 978-1-60558-839-1/10/03. . . $10.00

replay is an efficient way to keep the state of a backup synchronized
with the state of a primary machine [7]; it can be used to parallelize
or offload heavyweight analysis from production machines [9, 28];
it can be combined with minor perturbations to diagnose or avoid
faults [33, 38]; it can enable detailed analysis for forensics [10]
or computer architecture research [24, 42]; and it can provide the
illusion of reverse execution and time-travel debugging [16, 36].

The general idea behind deterministic replay is to log all non-
deterministic events during recording and reproduce these events
during replay. Deterministic replay for uniprocessors can be pro-
vided at low overhead because non-deterministic events occur at
relatively low frequencies (e.g., interrupts or data from input de-
vices and clocks), so logging them adds relatively little overhead.

Unfortunately, it is much harder to provide deterministic replay
of shared memory multithreaded programs on multiprocessors be-
cause shared memory accesses add a high-frequency source of non-
determinism. A variety of approaches have been proposed to re-
produce this non-determinism by logging a precise order of shared
memory accesses, but these approaches either require custom hard-
ware [15, 21, 23, 40], or are prohibitively slow for many parallel
applications [11]. Other software approaches that target efficiency
guarantee determinism only for race-free programs [30,34] or only
reproduce the partial state of the original system [32].

This paper describes Respec, a new way to support deterministic
replay of a shared memory multithreaded program execution on a
commodity multiprocessor. Respec’s goal is to provide fast execu-
tion in the common case of data-race-free execution intervals and
still ensure correct replay for execution intervals with data races (al-
beit with additional performance cost). Respec targets online replay
in which the recorded and replayed processes execute concurrently.

Respec is based on two insights. First, Respec can optimisti-
cally log the order of memory operations less precisely than the
level needed to guarantee deterministic replay, while executing the
recorded execution speculatively to guarantee safety. After a con-
figurable number of misspeculations (that is, when the information
logged is not enough to ensure deterministic replay for an interval),
Respec rolls back execution to the beginning of the current interval
and re-executes with a more precise logger. Second, Respec can de-
tect a misspeculation for an interval by concurrently replaying the
recorded interval on spare cores and checking if its system output
and final program states (architectural registers and memory state)
matches those of the recorded execution. We argue in Section 2.1
that matching the system output and final program states of the two
executions is sufficient for most applications of replay.

Respec works in the following four phases:

First, Respec logs most common, but not all, synchronization oper-
ations (e.g., lock and unlock) executed by a shared memory multi-

threaded program. Logging and replaying the order of all synchro-
nization operations guarantees deterministic replay for the data-
race-free portion of programs [34], which is usually the vast ma-
jority of program execution.

Second, Respec detects when logging synchronization operations is
insufficient to reproduce an interval of the original run. Respec con-
currently replays a recorded interval on spare cores and compares it
with the original execution. Since Respec’s goal is to reproduce the
visible output and final program states of the original execution,
Respec considers any deviation in system call output or program
state at the end of an interval to be a failed replay. Respec permits
the original and replayed execution to diverge during an interval, as
long as their system output and the program memory and register
states converge by the end of that interval.

Third, Respec uses speculative execution to hide the effects of
failed replay intervals and to transparently rollback both recorded
and replayed executions. Respec uses operating system specula-
tion [27] to defer or block all visible effects of both recorded and re-
played executions until it verifies that these two executions match.

Fourth, after rollback, Respec retries the failed interval of execution
by serializing the threads and logging the schedule order, which
guarantees that the replay will succeed for that interval.

Our results show that Respec shared memory multiprocessor
record and replay is efficient. For a combination of PARSEC and
SPLASH-2 benchmarks, as well as the pbzip2, pfscan, aget and
Apache applications, Respec adds only an average 18% overhead
to execution time when two threads are replayed and 55% when
four threads are replayed.

2. Replay guarantees

Replay systems provide varying guarantees. This section discusses
two types of guarantees that are relevant to Respec: fidelity level
and online versus offline replay.

2.1 Fidelity level

Replay systems differ in their fidelity of replay and the resulting
cost of providing this fidelity. One example of differing fidelities
is the abstraction level at which replay is defined. Prior machine-
level replay systems reproduce the sequence of instructions exe-
cuted by the processor and consequently reproduce the program
state (architectural registers and memory state) of executing pro-
grams [7, 10, 41]. Deterministic replay can also be provided at
higher levels of a system, such as a Java virtual machine [8] or a
Unix process [36], or lower levels of a system, such as cycle ac-
curacy for interconnected components of a computer [35]. Since
replay is deterministic only above the replayed abstraction level,
lower-level replay systems have a greater scope of fidelity than
higher-level replay systems.

Multiprocessor replay adds another dimension to fidelity: how
should the replaying execution reproduces the interleaving of in-
structions from different threads. No proposed application of replay
requires the exact time based ordering of all instructions to be re-
produced. Instead, one could reproduce data from shared memory
reads, which, when combined with the information recorded for
uniprocessor deterministic replay, guarantees that each thread ex-
ecutes the same sequence of instructions. Reproducing data read
from shared memory can be implemented in many ways, such as
reproducing the order of reads and writes to the same memory
location, or logging the data returned by shared memory reads.

Replaying the order of dependent shared memory operations is
sufficient to reproduce the execution of each thread. However, for
most applications, this degree of fidelity is exceedingly difficult to

provide with low overhead on commodity hardware. Logging the
order or results of critical shared memory operations is sufficient
but costly [11].

Logging higher-level synchronization operations is sufficient to re-
play applications that are race-free with respect to those synchro-
nization operations [34]. However, this approach does not work for
programs with data races. In addition, for legacy applications, it is
exceedingly difficult to instrument all synchronization operations.
Such applications may contain hundreds or thousands of synchro-
nization points that include not just Posix locks but also spin locks
and lock-free waits that synchronize on shared memory values. Fur-
ther, the libraries with which such applications link contain a multi-
tude of synchronization operations. GNU glibc alone contains over
585 synchronization points, counting just those that use atomic in-
structions. Instrumenting all these synchronization points, includ-
ing those that use no atomic instructions, is difficult.

Further, without a way to correct replay divergence, it is incorrect
to instrument only some of the synchronization points, assuming
that uninstrumented points admit only benign data races. Unrelated
application bugs can combine with seemingly benign races to cause
a replay system to produce an output and execution behavior that
does not match those of the recorded process. For instance, consider
an application with a bug that causes a wild store. A seemingly be-
nign data race in glibc’s memory allocation routine may cause an
important data structure to be allocated at different addresses. Dur-
ing a recording run, the structure is allocated at the same address as
the wild store, leading to a crash. During the replay run, the struc-
ture is allocated at a different address, leading to an error-free exe-
cution. A replay system that allowed this divergent behavior would
clearly be incorrect. To address this problem, one can take either
a pessimistic approach, such as logging all synchronization opera-
tions or shared memory addresses, or an optimistic approach, such
as the rollback-recovery Respec uses to ensure that the bug either
occurs in both the recorded and replayed runs or in neither.

The difficulty and inefficiency of pessimistic logging methods led
us to explore a new fidelity level for replay, which we call exter-
nally deterministic replay. Externally deterministic replay guaran-
tees that (1) the replayed execution is indistinguishable from the
original execution from the perspective of an outside observer, and
(2) the replayed execution is a natural execution of the target pro-
gram, i.e., the changes to memory and I/O state are produced by
the target program. The first criterion implies that the sequence
of instructions executed during replay cannot be proven to differ
from the sequence of instructions executed during the original run
because all observable output of the two executions are the same.
The second criterion implies that each state seen during the replay
was able to be produced by the target program; i.e. the replayed
execution must match the instruction-for-instruction execution of
one of the possible executions of the unmodified target system that
would have produced the observed states and output. Respec ex-
ploits these relaxed constraints to efficiently support replay that
guarantees identical output and natural execution even in the pres-
ence of data races and unlogged synchronization points.

We assume an outside observer can see the output generated by
the target system, such as output to an I/O device or to a process
outside the control of the replay system. Thus, we require that the
outputs of the original and replayed systems match. Reproducing
this output is sufficient for many uses of replay. For example, when
using replay for fail-stop fault tolerance [7], reproducing the output
guarantees that the backup machine can transparently take over
when the primary machine fails; the failover is transparent because
the state of the backup is consistent with the sequence of output
produced before the failure. For debugging [12,16], this guarantees

that all observable symptoms of the bug are reproduced, such as
incorrect output or program crashes (reproducing the exact timing
of performance bugs is outside our scope of observation).

We also assume that an outside observer can see the final program
state (memory and register contents) of the target system at the end
of a replay interval, and thus we require that the program states of
the original and replayed systems match at the end of each replay
interval.

Reproducing the program state at the end of a replay interval is
mandatory whenever the program states of both the recording and
replaying systems are used. For example, when using replay for
tolerating non-fail-stop faults (e.g., transient hardware faults), the
system must periodically compare the state of the replicas to de-
tect latent faults. With triple modular redundancy, this comparison
allows one to bound the window over which at most one fault can
occur. With dual modular redundancy and retry, this allows one to
verify that a checkpoint has no latent bugs and therefore is a valid
state from which to start the retry.

Another application of replay that requires the program states of
the original and replayed systems to match is parallelizing security
and reliability checks, as in Speck [28]. Speck splits an execution
into multiple epochs and replays the epochs in parallel while sup-
plementing them with additional checks. Since each epoch starts
from the program state of the original run, the replay system must
ensure that the final program states of the original and replayed ex-
ecutions match, otherwise the checked execution as a whole is not
a natural, continuous run.

Note that externally deterministic replay allows a more relaxed im-
plementation than prior definitions of deterministic replay. In par-
ticular, externally deterministic replay does not guarantee that the
replayed sequence of instructions matches the original sequence
of instructions, since this sequence of instructions is, after all, not
directly observable. We leverage this freedom when we evaluate
whether the replayed run matches the original run by comparing
only the output via system calls and the final program state. Reduc-
ing the scope of comparison helps reduce the frequency of failed
replay and subsequent rollback.

2.2 Online versus offline replay

Different uses of deterministic replay place different constraints
on replay speed. For some uses, such as debugging [12, 16] or
forensics [10], replay is performed after the original execution has
completed. For these offline uses of replay, the replay system may
execute much slower than the original execution [32].

For other uses of replay, such as fault tolerance and decoupled [9]
or parallel checks [28], the replayed execution proceeds in paral-
lel with the original execution. For these online uses of replay, the
speed of replayed execution is important because it can limit the
overall performance of the system. For example, to provide syn-
chronous safety guarantees in fault tolerance or program checking,
one cannot release output until the output is verified [19].

In addition to the speed of replay, online and offline scenarios differ
in how often one needs to replay an execution. Repeated replay runs
are common for offline uses like cyclic debugging, so these replay
systems must guarantee that the replayed run can be reproduced at
will. This is accomplished either by logging complete information
during the original run [10], or by supplementing the original log
during the first replayed execution [32]. In contrast, online uses of
replay need only replay the run a fixed number of times (usually
once).

Respec is designed for use in online scenarios. It seeks to minimize
logging and replay overhead so that it can be used in production

Start

Checkpoint A

lock(q)

unlock(q)
lock(q)

unlock(q)

Checkpoint B

A

lock(q)

unlock(q)
lock(q)

unlock(q)
SysRead X

Log X

Multi-threaded

fork

Recorded Process Replayed Process

E
p

o
ch

 1

E
p

o
ch

 1
’

O’ == O

B’ == B ?

Delete Checkpoint A

Checkpoint C

SysWrite O

Log O

C’ == C ?
Commit O, Delete B

Log X

ReadLog XE
p

o
ch

 2

E
p

o
ch

 2
’

Figure 1. An execution in Respec with two epochs.

settings with synchronous guarantees of fault tolerance or program
error checking. Respec guarantees that replay can be done any
number times when a program is executing. If replay needs to be
repeated offline, Respec could store the log in permanent storage.
The recorded log would be sufficient for deterministically replaying
race-free intervals offline. For offline replay of racy intervals, a
replay search tool [1, 18, 32] could be used.

3. Design

This section presents the design of Respec, which supports online,
externally deterministic replay of a multithreaded program execu-
tion on a multiprocessor.

3.1 Overview

Respec provides deterministic replay for one or more processes.
It replays at the process abstraction by logging the results of sys-
tem calls and low-level synchronization operations executed by the
recording process and providing those logged results to the re-
played process in lieu of re-executing the corresponding system
calls and synchronization operations. Thus, kernel activity is not
replayed.

Figure 1 shows how Respec records a process and replays it con-
currently. At the start, the replayed process is forked off from the
recorded process. The fork ensures deterministic reproduction of
the initial state in the replayed process. Respec checkpoints the
recording process at semi-regular intervals, called epochs. The re-
played process starts and ends an epoch at exactly the same point
in the execution as the recording process.

During an epoch, each recorded thread logs the input and output
of its system calls. When a replayed thread encounters a system
call, instead of executing it, it emulates the call by reading the log
to produce return values and address space modifications identi-
cal to those seen by the recorded thread. To deterministically re-
produce the dependencies between threads introduced by system
calls, Respec records the total order of system call execution for
the recorded process and forces the replayed process to execute the
calls in the same order.

To reproduce non-deterministic shared memory dependencies, Re-
spec optimistically logs just the common user-level synchroniza-
tion operations in GNU glibc. Rather than enforcing a total order

over synchronization operations, Respec enforces a partial order
by tracking the causal dependencies introduced by synchroniza-
tion operations. The replayed process is forced to execute synchro-
nization operations in an order that obeys the partial ordering ob-
served for the recording process. Enforcing the recorded partial or-
der for synchronization operations ensures that all shared memory
accesses are ordered, provided the program is race free.

Replay, however, could fail when an epoch executes an unlogged
synchronization or data race. Respec performs a divergence check
to detect such replay failures. A naive divergence check that com-
pares the states of the two executions after every instruction or
detects unlogged races would be inefficient. Thus, Respec uses a
faster check. It compares the arguments passed to system calls in
the two executions and, at the end of each epoch, it verifies that the
memory and resister state of the recording and replayed process
match. If the two states agree, Respec commits the epoch, deletes
the checkpoint for the prior epoch, and starts a new epoch by creat-
ing a new checkpoint. If the two states do not match, Respec rolls
back recording and replayed process execution to the checkpoint at
the beginning of the epoch and retries the execution. If replay again
fails to produce matching states, Respec uses a more conservative
logging scheme that guarantees forward progress for the problem
epoch. Respec also rolls back execution if the synchronization op-
erations executed by the replayed process diverge from those issued
by the recorded process (e.g., if a replay thread executes a different
operation than the one that was recorded) since it is unlikely that
the program states will match at the end of an epoch.

Respec uses speculative execution implemented by Speculator [27]
to support transparent application rollback. During an epoch, the
recording process is prevented from committing any external out-
put (e.g., writing to the console or network). Instead, its outputs are
buffered in the kernel. Outputs buffered during an epoch are only
externalized after the replayed process has finished replaying the
epoch and the divergence check for the epoch succeeds.

3.2 Divergence Checks

Checking intermediate program state at the end of every epoch is
not strictly necessary to guarantee externally deterministic replay.
It would be sufficient to check just the external outputs during
program execution. However, checking intermediate program state
has three important advantages. First, it allows Respec to commit
epochs and release system output. It would be unsafe to release
the system output without matching the program states of the two
processes. Because, it might be prohibitively difficult to reproduce
the earlier output if the recorded and replayed processes diverge at
some later point in time. For example, a program could contain
many unlogged data races, and finding the exact memory order
to reproduce the output could be prohibitively expensive. Second,
intermediate program state checks reduce the amount of execution
that must rolled back when a check fails. Third, they enable other
applications such as fault tolerance, parallelizing reliability checks,
etc., as discussed in Section 2. Though intermediate program state
checks are useful, they incur an additional overhead proportional to
the amount of memory modified by an application. Respec balances
these tradeoffs by adaptively configuring the length of an epoch
interval. It also reduces the cost of checks by parallelizing them
and only comparing pages modified in an epoch.

Respec’s divergence check is guaranteed to find all instances
when the replay is not externally deterministic with respect to the
recorded execution. But, this does not mean that execution of an
unlogged race will always cause the divergence check to fail. For
several types of unlogged races, Respec divergence check will suc-
ceed. This reduces the number of rollbacks necessary to produce
an externally deterministic replay.

Start

Checkpoint A

x = 1

x != 0?

x != 0?

x != 0?

Checkpoint B

A

B’ == B ?

Delete Checkpoint A

x = 1

x != 0?

Syswrite(x)

Syswrite(x)

Recorded Process Replayed Process

Figure 2. A race that produces the same program state irrespective
of the order between the racing memory operations. Although the
number of reads executed by the replayed process is different from
the recorded process causing a transient divergence, the executions
eventually converge to the same program state.

B’ == B?

Checkpoint A

y = 1
y = 2 A’ == A?

y = 1
y = 2

Rollback to A

Checkpoint B

Syswrite(y)

Recorded Process Replayed Process

Figure 3. An execution with a data race that causes the replayed
process to produce a memory state different from that of the
recorded process. The divergence check fails and the two processes
are rolled back to an earlier checkpoint.

First, the replayed process might produce the same causal relation-
ship between the racing operations as in the recorded execution.
Given that Respec logs a more conservative order between threads
(a total order for system calls and even the partial order recorded for
synchronization operations is stricter than necessary as discussed in
Section 4.3.1), the replayed process is more likely to reproduce the
same memory order.

Second, two racing memory operations might produce the same
program state, either immediately or sometime in future, irrespec-
tive of the order of their execution. This is likely if the unlogged
race is a synchronization race or a benign data race [25]. For ex-
ample, two racing writes could be writing the same value, the write
in a read-write race could be a silent write, etc. Another possibil-
ity is that the program states in the two processes might converge
after a transient divergence without affecting system output. Note
that a longer epoch interval would be beneficial for such cases, as
it increases the probability of checking a converged program state.

Figure 2 shows an epoch with an unlogged synchronization race
that does not cause a divergence check to fail. The second thread
waits by iterating in a spin loop until the first thread sets the variable
x. Because there is no synchronization operation that orders the
write and the reads, the replayed process might execute a different
number of reads than the recorded process. However, the program
states of the replayed and recorded processes eventually converge,
and both processes would produce the same output for any later
system call dependent on x. Thus, no rollback is triggered.

However, for harmful races that should happen rarely, Respec’s
divergence check could trigger a rollback. Figure 3 shows an epoch
with a harmful data race where the writes to a shared variable y are
not ordered by any logged synchronization operation. The replayed
execution produces a memory state different from the recorded
execution. This causes the divergence check to fail and initiate a
recovery process. This example also shows why it is important to
check the intermediate program states before committing an epoch.
If we commit an epoch without matching the program states, the
two executions would always produce different output at the system
call following the epoch. Yet, the replay system could not roll back
past the point where the executions diverged in order to retry and
produce an externally deterministic replay.

4. Implementation

4.1 Checkpoint and multithreaded fork

Rollback and recovery implementations often use the Unix copy-
on-write fork primitive to create checkpoints efficiently [13, 27].
However, Linux’s fork works poorly for checkpointing multi-
threaded processes because it creates a child process with only a
single thread of control (the one that invoked fork). We therefore
created a new Linux primitive, called a multithreaded fork, that cre-
ates a child process with the same number of threads as its parent.

Not all thread states are safe to checkpoint. In particular, a thread
cannot be checkpointed while executing an arbitrary kernel routine
because of the likelihood of violating kernel invariants if the check-
point is restored (this is possible because kernel memory is not part
of the checkpoint). For example, the restarted thread would need
to reacquire any kernel locks held prior to the checkpoint since the
original checkpointed process would release those locks. It would
also need to maintain data invariants; e.g., by not incrementing a
reference count already incremented by the original process, etc.

Consequently, Respec only checkpoints a thread when it is execut-
ing at a known safe point: kernel entry, kernel exit, or certain inter-
ruptible sleeps in the kernel that we have determined to be safe. The
thread that initiates a multithreaded fork creates a barrier on which
it waits until all other threads reach a safe point. Once all threads
reach the barrier, the original thread creates the checkpoint, then
lets the other threads continue execution. For each thread, the mul-
tithreaded fork primitive copies the registers pushed onto the kernel
stack during kernel entry, as well as any thread-level storage point-
ers. The address space is duplicated using fork’s copy-on-write
implementation.

Respec uses the multithreaded fork primitive in two circum-
stances: first, to create a replayed process identical to the one being
recorded, and second, to create checkpoints of the recorded process
that may later be restored on rollback. In the first case, the recorded
process simply calls the multithreaded fork primitive directly. In
the second case, the checkpointing code also saves additional in-
formation that is not copied by fork such as the state of the file
descriptors and pending signals for the child process. The child
process is not put on the scheduler’s run queue unless the check-
point is restored; thus, unless a rollback occurs, the child is merely
a vessel for storing state. Respec deletes checkpoints once a fol-
lowing checkpoint has been verified to match for the recorded and
replayed processes.

Respec checkpoints the recorded process at semi-regular intervals,
called epochs. It takes an initial checkpoint when the replayed
process is first created. Then, it waits for a predetermined amount of
time (the epoch interval) to pass. After the epoch interval elapses,
the next system call by any recorded thread triggers a checkpoint.
After the remaining threads reach the multithreaded fork barrier

and the checkpoint is created, all threads continue execution. The
recorded process may execute several epochs ahead of the replayed
process. It continues until either it is rolled back (due to a failed
divergence check) or its execution ends.

Respec sets the epoch interval adaptively. There are two reasons
to take a checkpoint. First, a new checkpoint bounds the amount
of work that must be redone on rollback. Thus, the frequency
of rollback should influence the epoch interval. Respec initially
sets the epoch interval to a maximum value of one second. If a
rollback occurs, the interval is reduced to 50 ms. Each successful
checkpoint commit increases the epoch interval by 50 ms until the
interval reaches its maximum value. The second reason for taking a
checkpoint is to externalize output buffered during the prior epoch
(once the checkpoint is verified by comparing memory states of
the recorded and replayed process). To provide acceptable latency
for interactive tasks, Respec uses output-triggered commits [29]
to receive a callback when output that depends on a checkpoint
is buffered. Whenever output occurs during an epoch, we reduce
that epoch’s interval to 50 ms. If the epoch has already executed for
longer than 50 ms, a checkpoint is initiated immediately. Note that
the actual execution time of an epoch may be longer than the epoch
interval due to our barrier implementation; a checkpoint cannot be
taken until all threads reach the barrier.

4.2 Speculative execution

The recorded process is not allowed to externalize output (e.g., send
a network packet, write to the console, etc.) until both the recorded
and replayed processes complete the epoch during which the output
was attempted and the states of the two processes match. A con-
servative approach that meets this goal would block the recorded
process when it attempts an external output, end the current epoch,
and wait for the replayed process to finish the epoch. Then, if the
process states matched, the output could be released. This approach
is correct, but can hurt performance by forcing the recorded and re-
played process to execute in lockstep.

A better approach is available given operating system support
for speculative execution. One can instead execute the recorded
thread speculatively and either buffer the external output (if it is
asynchronous) or allow speculative state to propagate beyond the
recorded process as long as the OS guarantees that the speculative
state can be rolled back and that speculative state will not causally
effect any external output. We use Speculator [27] to do just that.

In particular, Speculator allows speculative state to propagate via
fork, file system operations, pipes, Unix sockets, signals, and other
forms of IPC. Thus, additional kernel data structures such as files,
other processes, and signals may themselves become speculative
without blocking the recorded process. External output is buffered
within the kernel when possible and only released when the check-
points on which the output depends are committed. External in-
puts such as network messages are saved as part of the check-
point state so that they can be restored after a rollback. If prop-
agation of speculative state or buffering of output is not possible
(e.g., if the recorded thread makes an RPC to a remote server), the
recorded thread ends the current epoch, blocks until the replayed
thread catches up and compares states, begins a new epoch, and re-
leases the output. We currently use this approach to force an epoch
creation on all network operations, which ensures that an exter-
nal computer never sees speculative state. Respec allows multiple
pairs of processes to be recorded and replayed independently, with
the exception that two processes that write-share memory must be
recorded and replayed together.

4.3 Logging and replay

Once a replayed process is created, it executes concurrently with
its recorded process. Each recorded thread logs the system calls
and user-level synchronization operations that it performs, while
the corresponding replayed thread consumes the records to recreate
the results and partial order of execution for the logged operations.

Conceptually, there is one logical log for each pair of recorded and
replayed threads. Yet, for performance and security reasons, our
implementation uses two physical logs: a log in kernel memory
contains system call information and a user-level log contains user-
level synchronization operations. If we logged both types of op-
erations in the kernel’s address space, then processes would need
to enter kernel mode to record or replay user-level synchroniza-
tion operations. This would introduce unacceptable overhead since
most synchronization operations can be performed without system
calls using a single atomic instruction. On the other hand, logging
all operations in the application’s address space would make it quite
difficult to guarantee externally deterministic replay for a malicious
application’s execution. For instance, a malicious application could
overwrite the results of a write system call in the log, which would
compromise the replayed process’s output check. By placing only
the data necessary for performance at user-level, the verification of
log records described in Section 4.7 is considerably simplified.

4.3.1 User-level logging

At user-level, we log the order of the most common low-level
synchronization operations in glibc, such as locks, unlocks, futex
waits, and futex wakes. The Posix thread implementation in glibc
consists of higher-level synchronization primitives built on top of
these lower-level operations. By logging only low-level operations,
we reduce the number of modifications to glibc and limit the num-
ber of operation types that we log. Our implementation currently
logs synchronization primitives in the Posix threads, memory allo-
cation, and I/O components of glibc. An unlogged synchroniza-
tion primitive in the rest of glibc, other libraries, or application
code could cause the recorded and replayed processes to diverge.
For such cases, we rely on rollback to re-synchronize the process
states. As our results show, logging these most common low-level
synchronization points is sufficient to make rollbacks rare in the
applications we have tested.

However, for an application that heavily uses handcrafted synchro-
nizations our approach might lead to frequent rollbacks. A simple
solution would be to require programmers to annotate synchroniza-
tion accesses so that we could instrument and log them. In fact,
recently proposed Java [20] and C++0x [5] memory models al-
ready require programmers to explicitly annotate synchronization
accesses using volatile and atomic keywords.

Respec logs the entry and exit of each synchronization operation.
Each log record contains the type of operation, its result, and its
partial order with respect to other logged operations. The partial
order captures the total order of all the synchronization operations
accessing the same synchronization variable and the program order
of the synchronization operations executed in the same thread.

To record the partial order, we hash the address of the lock, futex, or
other data structure being operated upon to one of a fixed number
of global record clocks (currently 512). Each recorded operation
atomically increments a clock and records the clock’s value in
a producer-consumer circular buffer shared between the recorded
thread and its corresponding replayed thread. Thus, recording a log
record requires at most two atomic operations (one to increment a
clock and the other to coordinate access to the shared buffer). This
allows us to achieve reasonable overhead even for synchronization
operations that do not require a system call.

Using fewer clocks than the number of synchronization variables
reduces the memory cost, and also produces a correct but stricter
partial order than is necessary to faithfully replay a process. A
stricter order is more likely to replay the correct order of racing op-
erations and thereby reduce the number of rollbacks, as discussed
in Section 3.2.

When a replayed thread reaches a logged synchronization opera-
tion, it reads the next log record from the buffer it shares with its
recorded thread, blocking if necessary until the record is written. It
hashes the logged address of the lock, futex, etc. to obtain a global
replay clock and waits until the clock reaches the logged value be-
fore proceeding. It then increments the clock value by one and emu-
lates the logged operation instead of replaying the synchronization
function. It emulates the operation by modifying memory addresses
with recorded result values as necessary and returning the value
specified in the log. Each synchronization operation consumes two
log records, one on entry and one on exit, which recreates the par-
tial order of execution for synchronization operations.

Respec originally used only a single global clock to enforce a
total order over all synchronization operations, but we found that
this approach reduced replay performance by allowing insufficient
parallelism among replayed threads. We found that the approach
of hashing to a fixed number of clocks greatly increased replay
performance (by up to a factor of 2–3), while having only a small
memory footprint. Potentially, we could use a clock for each lock
or futex, but our results to date have shown that increasing beyond
512 clocks offers only marginal benefits.

4.3.2 Kernel logging

Respec uses a similar strategy to log system calls in the kernel.
On system call entry, a recorded thread logs the type of call and
its arguments. For arguments that point to the application’s address
space, e.g., the buffer passed to write, Respec logs the values
copied into the kernel during system call execution. On system call
exit, Respec logs the call type, return value, and any values copied
into the application address space. When a replayed thread makes
a system call, it checks that the call type matches the next record in
the log. It also verifies that the arguments to the system call match.
It then reads the corresponding call exit record from its log, copies
any logged values into the address space of the replayed process
and returns the logged return value.

Respec currently uses a single clock to ensure that the recorded
and replayed process follow the same total order for system call
entrance and exit. This is conservative but correct. Enforcing a
partial order is possible, but requires us to reason about the causal
interactions between pairs of system calls; e.g., a file write should
not be reordered before a read of the same data.

Using the above mechanism, the replayed process does not usually
perform the recorded system call; it merely reproduces the call’s
results. However, certain system calls that affect the address space
of the application must be re-executed by the calling process. When
Respec sees log records for system calls such as clone and exit, it
performs these system calls to create or delete threads on behalf
of the replayed process. Similarly, when it sees system calls that
modify the application address space such as mmap2 and mprotect,
it executes these on behalf of the replayed process to keep its
address space identical with that of the recorded process. This
replay strategy does not recreate most kernel state associated with
a replaying process (e.g., the file descriptor table), so a process
cannot transition from replaying to live execution. To support such
a transition, the kernel could deterministically re-execute native
system calls [10] or virtualized system calls [31].

When the replayed process does not re-execute system calls, we
do not need to worry about races that occur in the kernel code;
the effect on the user-level address space of any data race that
occurred in the recorded process will be recreated. For those system
calls such as mmap2 that are partially re-created, a kernel data race
between system calls executed by different threads may lead to a
divergence (e.g., different return values from the mmap2 system
call or a memory difference in the process address space). The
divergence would trigger a rollback in the same manner as a user-
level data race.

Because signal delivery is a source of non-determinism, Respec
does not interrupt the application to deliver signals. Instead, signals
are deferred until the next system call, so that they can be deliv-
ered at the same point of execution for the recorded and replayed
threads. A data races between a signal handler and another thread is
possible; such races are handled by Respec’s rollback mechanism.

4.4 Detecting divergent replay

When Respec determines that the recorded and replayed process
have diverged, it rolls back execution to the last checkpoint in
which the recorded and replayed process states matched. A roll-
back must be performed when the replayed process tries to per-
form an external output that differs from the output produced by
the recorded process; e.g., if the arguments to a write system call
differ. Until such a mismatch occurs, we need not perform a roll-
back. However, for performance reasons, Respec also eagerly rolls
back the processes when it detects a mismatch in state that makes
it unlikely that two processes will produce equivalent external out-
put. In particular, Respec verifies that the replayed thread makes
system calls and synchronization operations with the same argu-
ments as the recorded thread. If either the call type or arguments do
not match, the processes are rolled back. In addition, at the end of
each epoch, Respec compares the address space and registers of the
recorded and replayed processes. Respec rolls the processes back if
they differ in any value.

Checking memory values at each epoch has an additional benefit:
it allows Respec to release external output for the prior epoch. By
checking that the state of the recorded and the replayed process
are identical, Respec ensures that it is possible for them to produce
identical output in the future. Thus, Respec can commit any prior
checkpoints, retaining only the one for which it just compared
process state. All external output buffered prior to the retained
checkpoint is released at this time. In contrast, if Respec did not
compare process state before discarding prior checkpoints, it would
be possible for the recorded and replayed process to have diverged
in such a way that they could no longer produce the same external
output. For example, they might contain different strings in an
I/O buffer. The next system call, which outputs that buffer, would
always externalize different strings for the two processes.

Respec leverages kernel copy-on-write mechanisms to reduce the
amount of work needed to compare memory states. Since the
checkpoint is an (as-yet-unexecuted) copy of the recorded pro-
cess, any modifications made to pages captured by the checkpoint
induce a copy-on-write page fault, during which Respec records
the address of the faulted page. Similarly, if a page fault is made to
a newly mapped page not captured by the checkpoint, Respec also
records the faulting page. At the end of each epoch, Respec has a
list of all pages modified by the recorded process. It uses an iden-
tical method to capture the pages modified by a replayed process;
instead of creating a full checkpoint, however, it simply makes a
copy of its address space structures to induce copy-on-write faults.
Additionally, Respec parallelizes the memory comparison to re-
duce its latency.

In comparing address spaces, Respec must exclude the memory
modified by the replay mechanism itself. It does this by placing
all replay data structures in a special region of memory that is ig-
nored during comparisons. In addition, it allocates execution stacks
for user-level replay code within this region. Before entering a
record/replay routine, Respec switches stacks so that stack modifi-
cations are within the ignored region. Finally, the shared user-level
log, which resides in a memory region shared between the recorded
and replayed process, is also ignored during comparisons.

4.5 Rollback

Rollback is triggered when memory states differ at the end of an
epoch or when a mismatch in the order or arguments of system
calls or synchronization operations occurs. Such mismatches are al-
ways detected by the replayed process, since it executes behind the
recorded process. Respec uses Speculator to roll back the recorded
process to the last checkpoint at which program states matched.
Speculator switches the process, thread, and other identifiers of the
process being rolled back with that of the checkpoint, allowing the
checkpoint to assume the identity of the process being rolled back.
It then induces the threads of the recorded process to exit. After the
rollback completes, the replayed process also exits.

Immediately after a checkpoint is restored, the recorded thread cre-
ates a new replayed process. It also creates a new checkpoint using
Speculator (since the old one was consumed during the rollback).
Both the recorded and replayed threads then resume execution.

Given an application that contains many data races, one can imag-
ine a scenario in which it is extremely unlikely for two executions
to produce the same output. In such a scenario, Respec might enter
a pathological state in which the recorded and replayed processes
are continuously rolled back to the same checkpoint. We avoid this
behavior by implementing a mechanism that guarantees forward
progress even in the presence of unbounded data races. This mech-
anism is triggered when we roll back to the same checkpoint twice.

During retry, one could use a logger that instruments all memory
accesses and records a precise memory order. Instead we imple-
mented a simpler scheme. We observe that the recorded and re-
played process will produce identical results for even a racy appli-
cation as long as a single thread is executed at a time and thread
preemptions occur at the same points in thread execution. There-
fore, Respec picks only one recorded thread to execute; this thread
runs until either it performs an operation that would block (e.g.,
a futex wait system call) or it executes for the epoch interval.
Then, Respec takes a new checkpoint (the other recorded threads
are guaranteed to be in a safe place in their execution since they
have not executed since the restoration of the prior checkpoint).
After the checkpoint is taken, all recorded threads continue execu-
tion. If Respec later rolls back to this new checkpoint, it selects a
new thread to execute, and so on. Respec could also set a timer to
interrupt user-level processes stuck in a spin loop and use a branch
or instruction counter to interrupt the replayed process at an identi-
cal point in its execution; such mechanisms are commonly used in
uniprocessor replay systems [10]. Thus, Respec can guarantee for-
ward progress, but in the worst case, it can perform no better than
a uniprocessor replay system. Fortunately, we have not yet seen a
pathological application that triggers this mechanism frequently.

4.6 Offline replay support

When requested, Respec can optionally save information to enable
an offline replay of the recorded process. This information includes
the kernel’s log of system calls, the user-level log of synchroniza-
tion operations, and an MD5 checksum of address space and regis-
ter state at the end of each committed rollback. Since not all races
are logged, offline replay of the recorded process is not guaranteed

to succeed in the first attempt. However, since the recorded process
has been replayed successfully at least once, it is likely that offline
replay will eventually succeed, although it may require a number of
rollbacks and retries. Combining Respec output with an offline re-
play search tool, such as is done in ODR [1] and PRES [32], would
be a promising approach to reduce search time.

4.7 Security considerations

One use of deterministic replay is to parallelize security checks by
running them on one or more replayed processes [28]. This section
describes the security issues that must be considered when using
replay in this type of adversarial context, in which the software
being replayed may actively try to disrupt the replay system. For
example, an attacker who compromises the replay system could try
to force the replayed process to skip over the execution interval that
a security check would have detected as suspicious.

Recall that the goals of our externally deterministic replay system
are to ensure that: (1) the replayed execution matches the output
of the original execution (including the state at the end of a re-
play epoch), and (2) the replayed execution is a natural execution
of the target program. By a “natural execution”, we mean that the
replayed execution must match the instruction-for-instruction ex-
ecution of one of the possible executions of the original system
(i.e., the system without the kernel and library support for replay).
While the replayed execution may diverge from the original execu-
tion within an epoch, it must still converge back with the state of
the original execution by the end of the epoch.

Meeting these goals ensures that if the replayed process passes all
security checks, a natural run exists that passes all security checks,
so the output and state produced by the original and replayed pro-
cesses is safe with respect to those checks. The most an attacker can
do is to choose which natural run the replayed process executes, but
that natural run must still match the output and state of the original
process. For example, an attacker could try to avoid detection by
a buffer overflow security check by (1) overflowing a buffer in the
original process and (2) causing the replayed process to execute a
different natural path that did not overflow the buffer (and hence
did not trigger the security check). However, the same output and
state could have been produced by the program without the buffer
overflow, since that is exactly what the replayed process has done.

We next argue that Respec meets these goals, even when replaying
malicious software. We assume that the software being recorded
and replayed cannot corrupt kernel data. Therefore, we place as
much of Respec as possible within the kernel. Speculator, the
kernel log, and memory checkpoints are all placed in the kernel.

The only replay data that the malicious software can corrupt is the
user-level log shared between the recorded and replayed processes;
this log contains the order of user-level synchronization operations.
Respec must therefore treat the user-level log as suspect. If, for
example, Respec trusted the header length fields in each user-level
log record, the malicious software might be able to cause a buffer
overflow in the replay system and cause the replayed process to
deviate from the set of natural runs. More subtly, the malicious
software could record an order of synchronization operations that
could not be generated by a natural run. For example, the malicious
software could write a log record that caused a lock operation to
succeed even when the lock was already held by another thread.

To protect against these attacks, Respec has an optional verifica-
tion mode that can be used during replay. When verification mode
is enabled, the replayed process copies each record from the shared
user-level log to a non-shared memory region, then verifies that
the log record represents a possible execution path. For instance,
it rejects a log record that shows a lock operation completing suc-

cessfully when the lock is already held by another thread. To verify
records, the replayed process shadows the state of locks, futexes,
and other logged data structures (the original memory reserved for
these structures is used for this purpose since the replayed process
does not execute the actual synchronization operations). If a logged
action would be invalid given the shadowed state, the action is re-
jected and a mismatch reported. Since Respec only logs a few types
of low-level operations, such verification is not difficult. However,
since verification adds overhead, it can be disabled to improve per-
formance when replay is not being used for security checks.

5. Evaluation

Our evaluation answers the following questions:

• What is the overhead of Respec record and replay for common
applications and benchmarks?

• How often does imprecise logging lead to rollbacks for those
application and benchmarks?

• What is the cost of rollback and retry when it occurs?

5.1 Methodology

We ran all experiments on a 2 GHz 8-core Xeon processor with
3 GB of RAM running CentOS Linux version 5.3. The Linux ker-
nel is a stock Linux 2.6.27 kernel, which we modified to support
Respec deterministic replay. In addition, the kernel has the Specu-
lator support for speculative execution. We also modified the GNU
glibc library version 2.5.1 to support Respec.

We used three sets of benchmarks. The first set is five benchmarks
from the PARSEC suite [4]: blackscholes, bodytrack, fluidanimate,
swaptions, and streamcluster. The second set is six benchmarks
from the SPLASH-2 suite [39]: ocean, raytrace, volrend, water-nsq,
fft, and radix. The final set is four parallel applications: pbzip2,
which we use to compress a 17 MB log file in parallel; pfscan,
which we use to search in parallel for a string in a directory with
952 MB of log files; aget, which we use to retrieve a 21 MB file
over a local network; and Apache, which we test using ab (Apache
Bench) to simultaneously send 100 requests each from four con-
current clients over a local network.

For all benchmarks, we ensure that all files are in the file cache
in kernel memory before execution begins. Thus, our experimental
results do not include any disk I/O time, which would mask the
relative overhead of deterministic replay. We report three values
for each experiment: the original execution time of the application
running on a stock system, a “redundant” execution time in which
two copies of the application are run concurrently on a stock system
by forking an execution at the start, and the execution time using
Respec to provide deterministic replay. The redundant execution
is a lower bound on execution time for online replay; of course,
the execution outputs could diverge. The Respec execution time
measures the time for both the recorded and replayed processes to
finish.

For each benchmark, we vary the number of worker threads from
one to four. Many benchmarks have additional control threads
which do little work during the execution; we do not count these
in the number of threads. Pbzip2 uses two additional threads: one
to read file data and one to write the output; these threads are
also not counted in the number of threads shown. Unless otherwise
mentioned, all results are the mean of ten trials.

5.2 Record and replay performance

Table 1 shows the overall performance results for Respec. The first
two columns show the application or benchmark executed and the

application threads synch. system epochs pages original redundant Respec slowdown slowdown
ops. calls compared time (s) time (s) time (s) wrt wrt

& stdev. & stdev. & stdev. redundant original
blackscholes 1 524330 30 4 2973 7.04 (0.00) 7.04 (0.00) 7.34 (0.02) 4% 4%

2 524345 36 4 2974 3.54 (0.00) 3.54 (0.00) 3.79 (0.04) 7% 7%
3 524361 41 4 2976 2.37 (0.00) 2.37 (0.00) 2.77 (0.05) 17% 17%
4 524376 47 4 2977 1.79 (0.00) 1.94 (0.08) 2.24 (0.08) 15% 25%

bodytrack 1 387794 6180 11 4091 8.60 (0.01) 8.58 (0.03) 8.74 (0.02) 2% 2%
2 389907 7539 11 4235 4.89 (0.01) 4.83 (0.08) 5.13 (0.06) 6% 5%
3 393314 9982 7 3469 3.55 (0.02) 3.53 (0.05) 3.82 (0.13) 8% 8%
4 395835 11060 10 5733 2.86 (0.02) 3.08 (0.09) 4.82 (0.21) 56% 68%

fluidanimate 1 541964 2749 5 26475 6.69 (0.00) 6.72 (0.04) 6.74 (0.01) 0% 1%
2 4773663 3017 5 28309 4.04 (0.00) 4.13 (0.02) 4.60 (0.03) 11% 14%
4 7545571 3136 5 28895 2.52 (0.01) 2.61 (0.01) 4.35 (0.19) 67% 73%

swaptions 1 1922355 102 7 413 6.77 (0.00) 6.78 (0.00) 7.87 (0.04) 16% 16%
2 1905088 214 6 447 3.39 (0.00) 3.40 (0.01) 3.89 (0.06) 15% 15%
3 1905178 286 4 464 2.34 (0.00) 2.34 (0.01) 2.56 (0.03) 10% 10%
4 1800897 818 4 471 1.76 (0.18) 1.78 (0.02) 2.06 (0.16) 16% 17%

streamcluster 1 59681 7239 14 3121 10.97 (0.08) 11.09 (1.41) 11.01 (0.66) -1% 0%
2 108360 31159 8 2769 5.62 (0.66) 5.66 (0.47) 5.62 (0.56) -1% 0%
3 157874 56674 8 2798 3.35 (0.53) 4.64 (0.54) 5.68 (0.56) 22% 69%
4 208367 83029 8 2834 2.51 (0.32) 4.63 (0.37) 5.88 (0.52) 27% 134%

ocean 1 2648 61 5 202790 4.93 (0.00) 5.00 (0.00) 7.06 (0.05) 41% 43%
2 5203 855 4 154503 2.50 (0.00) 3.03 (0.01) 4.29 (0.03) 42% 72%
4 10366 2642 3 106102 1.49 (0.03) 2.28 (0.02) 3.25 (0.08) 43% 119%

raytrace 1 1115639 1143 2 8352 0.79 (0.01) 0.80 (0.01) 1.34 (0.01) 68% 70%
2 1123858 5632 2 8352 0.64 (0.01) 0.65 (0.01) 1.29 (0.03) 99% 101%
3 1117220 7046 2 8362 0.59 (0.00) 0.59 (0.00) 1.47 (0.12) 148% 150%
4 1118038 6102 2 8352 0.57 (0.00) 0.57 (0.00) 1.55 (0.10) 171% 173%

volrend 1 632 448 2 7372 1.83 (0.01) 1.83 (0.01) 1.88 (0.01) 3% 3%
2 141678 619 2 7377 1.33 (0.01) 1.34 (0.00) 1.39 (0.01) 3% 4%
3 143319 2784 2 7381 1.19 (0.00) 1.19 (0.00) 1.27 (0.00) 7% 7%
4 142177 4084 2 7385 1.10 (0.00) 1.13 (0.06) 1.21 (0.05) 7% 9%

water-nsq 1 67055 535 3 4760 3.05 (0.11) 3.09 (0.10) 3.16 (0.13) 2% 4%
2 122848 908 2 4203 1.68 (0.03) 1.68 (0.03) 1.74 (0.02) 4% 4%
3 156131 1281 2 6254 1.14 (0.01) 1.23 (0.03) 1.34 (0.03) 9% 18%
4 181343 1840 2 8305 0.90 (0.02) 0.91 (0.01) 1.38 (0.01) 52% 54%

fft 1 110 22 1 0 0.82 (0.00) 0.84 (0.09) 0.84 (0.00) 1% 2%
2 166 41 1 0 0.53 (0.00) 0.56 (0.04) 0.57 (0.00) 1% 8%
4 275 77 1 0 0.40 (0.01) 0.44 (0.01) 0.45 (0.00) 3% 12%

radix 1 109 18 2 16408 4.50 (0.01) 4.51 (0.65) 4.61 (0.02) 2% 3%
2 193 35 2 16416 2.29 (0.01) 2.35 (0.01) 2.41 (0.03) 3% 5%
4 392 81 2 31206 1.16 (0.00) 1.28 (0.00) 1.44 (0.04) 12% 24%

pfscan 1 267 75 3 19 1.94 (0.01) 1.94 (0.01) 1.99 (0.05) 3% 2%
2 301 83 2 15 1.15 (0.01) 1.16 (0.03) 1.19 (0.03) 3% 4%
3 340 91 2 16 0.92 (0.00) 0.94 (0.01) 0.97 (0.02) 3% 5%
4 376 99 2 16 0.77 (0.00) 0.83 (0.02) 0.98 (0.04) 19% 28%

pbzip2 1 993 297 20 33654 4.59 (0.00) 4.81 (0.16) 4.83 (0.10) 0% 5%
2 958 359 11 33699 2.35 (0.00) 2.42 (0.09) 2.73 (0.13) 13% 16%
3 954 386 8 33794 1.64 (0.05) 1.70 (0.03) 2.03 (0.15) 19% 24%
4 1005 409 6 33050 1.33 (0.00) 1.44 (0.04) 1.93 (0.23) 34% 45%

aget 1 8618 14681 4147 29039 2.05 (0.16) N/A 2.19 (0.14) N/A 7%
2 8739 13905 3921 27985 1.93 (0.00) N/A 2.17 (0.08) N/A 13%
3 8770 13096 3689 26348 1.94 (0.00) N/A 2.08 (0.04) N/A 7%
4 8432 12944 3642 26269 1.96 (0.04) N/A 2.08 (0.06) N/A 6%

apache 1 3808 11114 18065 5654 8.08 (0.06) N/A 8.13 (0.02) N/A 1%
2 3557 10919 17898 5851 7.89 (0.03) N/A 8.56 (0.12) N/A 9%
3 3417 10902 17922 5899 7.40 (0.04) N/A 9.42 (0.16) N/A 27%
4 3571 10945 17937 5824 6.98 (0.04) N/A 10.04 (0.12) N/A 44%

Table 1. Respec performance. Results are the mean of ten trials with the exception of pbzip2 and aget, which show the mean of 100 and 50
trials respectively. Values in parentheses show standard deviations.

Blacksch. Bodytrack Fluidan. Swaptions Streamcl. Ocean Raytrace Volrend Water FFT Radix Pfscan Pbzip2

0.0

0.5

1.0

1.5

R
e

la
ti
v
e

 o
v
e

rh
e

a
d Logging and other overhead

Memory comparison

Epoch overhead

Redundant execution

Figure 4. Breakdown of overhead per benchmark. For most benchmarks, results are presented for 1, 2, 3, and 4 threads (left to right). For
Fluidanimate, Ocean, FFT, and Radix, results are presented for 1, 2, and 4 threads.

threads rollback original type Respec slowdown
freq time (s) time (s) wrt

& stdev. & stdev. original
1 0% 4.59 (0.00) overall 4.83 (0.10) 5%

w/o rollback 2.70 (0.09) 15%
2 13% once 2.35 (0.00) w/ rollback 2.97 (0.12) 26%

overall 2.73 (0.13) 16%
9% once w/o rollback 2.00 (0.10) 22%

3 2% twice 1.64 (0.05) w/ rollback 2.29 (0.17) 40%
overall 2.03 (0.15) 24%

15% once w/o rollback 1.88 (0.16) 41%
4 1% twice 1.33 (0.00) w/ rollback 2.24 (0.29) 68%

overall 1.93 (0.23) 45%

Table 2. Rollback frequency in pbzip2

number of worker threads used. The next four columns give statis-
tics about Respec execution: the number of user-level synchroniza-
tion operations logged, system calls logged, epochs executed, and
memory pages compared. The next three columns show the origi-
nal, redundant, and Respec execution times. The last two columns
show Respec’s overhead with respect to the lower bound of the re-
dundant execution time and with respect to the original execution
time. For the two networked applications (aget and apache), mea-
suring redundant execution time is difficult because the two sepa-
rate processes contend for network resources, whereas with Respec
only the recorded process sends and receives network packets.

Figure 4 provides a breakdown of the overhead normalized to the
original execution time for all non-networked benchmarks. Each
data set shows results for 1, 2, 3 (if feasible), and 4 worker threads.
The dark shaded area in each bar show relative overheads for re-
dundant execution. The lighter shaded areas show relative overhead
associated with use of multiple epochs, excluding memory compar-
ison cost. We believe that this overhead is mainly due to page fault
overhead. The diagonally hashed areas show relative overhead due
to memory comparison. The remaining region shows all other over-
head, the majority of which is likely due to logging synchronization
operation and system calls. Respec’s implementation makes it dif-
ficult for us to provide similar breakdowns for networked applica-
tions (Apache and aget) because use of multiple epochs is required

threads rollback original type Respec slowdown
freq time (s) time (s) wrt

& stdev. & stdev. original
10% once w/o rollback 2.19 (0.14) 7%

1 2% twice 2.05 (0.16) w/ rollback 2.21 (0.13) 8%
overall 2.19 (0.14) 7%

20% once w/o rollback 2.17 (0.08) 13%
2 2% twice 1.93 (0.00) w/ rollback 2.17 (0.05) 13%

overall 2.17 (0.08) 13%
w/o rollback 2.08 (0.05) 7%

3 24% once 1.94 (0.00) w/ rollback 2.09 (0.02) 8%
overall 2.08 (0.04) 7%

18% once w/o rollback 2.07 (0.05) 6%
4 2% twice 1.96 (0.04) w/ rollback 2.08 (0.02) 6%

overall 2.08 (0.06) 6%

Table 3. Rollback frequency in aget

to correctly interact with clients on different computers, due to the
output commit problem (as discussed in Section 4.2).

Examining the results, we see that Respec overhead is gener-
ally quite low. For 2 worker threads, Respec has average over-
head with respect to the original execution of only 18% across
all benchmarks. This overhead gradually increases with the num-
ber of threads; with 4 threads, Respec’s average overhead is 55%.
Compared to the lower bound of redundant execution, Respec’s
average overhead is 16% with 2 threads and 40% with 4 threads.
We conjecture that this increase derives mostly from the increased
synchronization between replay threads.

It is informative to examine some of the benchmarks with extreme
characteristics. Fluidanimate from the PARSEC suite and raytrace
from the SPLASH-2 suite execute over two million logged syn-
chronizations per second with four threads. Most of these opera-
tions are uncontended lock and unlock operations, which do not
require a system call. In these cases, Respec overhead derives from
the cost of logging these user-level operations. Ocean and stream-
cluster show larger overheads with respect to the original execution
for 4 threads, but show significantly less overhead for 2 threads.
In fact, for 4 threads, simply executing two copies of these bench-
marks concurrently shows similar large increases in execution time,
indicating that most of the overhead derives simply from sharing

0 200 400 600 800 1000

Epoch length (ms)

0

500

1000

A
d

d
it

io
n

a
l

ex
ec

u
ti

o
n

 t
im

e
(m

s) swaptions - 2 threads

bodytrack - 2 threads

fluidanimate - 2 threads

fluidanimate - 4 threads

Figure 5. Impact of epoch interval on rollback overhead

the limited memory bandwidth and processor caches for redundant
execution rather than from Respec itself. Many benchmarks show
a spike in overhead when the number of worker threads increases
from 3 to 4; part of the reason for this spike may be that our 8 core
machine has no CPU capacity to spare for auxiliary threads if 4
cores each are used to record and replay worker threads.

Respec overhead for the four applications at the bottom of Table 1
is relatively low, averaging 11% with 2 worker threads and 31%
with 4 worker threads. This lower overhead is to be expected since
these applications issue fewer system calls and synchronization
operations than the PARSEC and SPLASH-2 benchmarks.

5.3 Rollback frequency

Rollbacks were infrequent events for our benchmarks. In fact, only
pbzip2 and aget were rolled back during our experiments. Pbzip2
has one benign application-level data race in which an output thread
repeatedly spins on two variables (once for each chunk of data be-
ing compressed) waiting for a worker thread to modify them from
zero to one. While the race is benign, it affects the number of sys-
tem calls issued in some executions. It would also be difficult to
identify and log this race other than through manual code inspec-
tion since the spin loop does not use atomic instructions. Addition-
ally, pbzip2 uses the stdlibc++ library, which we have not modified
to log synchronization operations.

To better understand the frequency of rollbacks, we ran pbzip2 100
times. Table 2 shows that 13–16% of the executions with more than
one worker thread contained one rollback. In general, the cost of
rollback was reasonable. Rollbacks contribute 8% of Respec’s total
overhead when pbzip2 uses multiple worker threads.

For aget, one thread reads and displays download progress without
obtaining a lock. This data race is benign since display of slightly
stale status information is acceptable. Table 3 shows that the di-
vergent output and memory state leads to rollbacks. However, the
performance impact of these rollbacks is negligible because Respec
checkpoints aget very frequently (on every network receive).

5.4 The cost of rollback

To better understand the cost of rollbacks, we artificially inserted
rollbacks into some of our benchmarks by emulating the failure
of a divergence check during benchmark execution. We disabled
Respec’s adaptive epoch algorithm and manually set the epoch
interval to a configured value.

Figure 5 shows the additional time needed to complete four bench-
marks when a single rollback is artificially introduced for different

0 1 2 3 4 5

Number of rollbacks

0

500

1000

A
d

d
it

io
n

a
l

ex
ec

u
ti

o
n

 t
im

e
(m

s)

swaptions - 2 threads

bodytrack - 2 threads

fluidanimate - 2 threads

fluidanimate - 4 threads

Figure 6. Impact of number of rollbacks on rollback overhead

epoch intervals. The results show that rollback overhead is roughly
proportional to the length of the epoch interval. Intuitively, the ex-
ecution time increases by the amount of work that must be redone
after a rollback. Any fixed cost introduced by the rollback mecha-
nism itself appears to be minimal.

For a final experiment, we varied the number of rollbacks dur-
ing benchmark execution while keeping the epoch interval fixed at
100 ms. Figure 6 shows that the cost of rollbacks is proportional to
the number of rollbacks. Interestingly, fluidanimate and bodytrack
show a cost of approximately 160–180 ms per rollback (60–80 ms
greater than the epoch interval length). Upon further investigation,
we found the reason to be our barrier implementation for check-
pointing; it can take several tens of milliseconds for all threads to
reach the barrier for these two benchmarks.

6. Related work

To the best of our knowledge, Respec is the first system to sup-
port low-overhead, online deterministic replay of multithreaded
programs on commodity shared memory multiprocessors without
hardware support.

There have been several systems developed over the last two
decades to record and replay a program’s execution, primarily for
debugging. IGOR [12], one of the earliest recorders, uses copy-on-
write checkpointing support in the operating system to record and
reproduce an intermediate state of a process. In addition to check-
pointing support, to ensure deterministic replay of a program from
a particular state, it is also necessary to record non-deterministic
system events such as interrupts, DMA, and also the values of
any non-deterministic instructions such as the x86 RDTSC (ReaD
TimeStamp Counter) instruction. These events can be recorded
in any of the layers in the software system stack. Systems like
Hyperviser [7], Boothe [6], and Flashback [36] instrument the op-
erating system to record and replay the non-deterministic events.
DejaVu [8] and jRapture [37] record most (but not all) of the non-
deterministic system events by instrumenting the Java Virtual Ma-
chine (JVM). ReVirt [10] and ReTrace [42] use support in the
virtual machine monitor that interfaces between the guest and host
operating systems. Unlike Respec, none of these systems support
multiprocessor replay, because they cannot record and replay the
non-deterministic order between shared memory accesses executed
by concurrent threads.

Systems like ReVirt [10] and DejaVu [8] support replay of multi-
threaded programs on a uniprocessor system by deterministically
replaying the thread schedules. But, replay of a multithreaded pro-

gram on a multiprocessor has remained a difficult problem. One of
the first systems to address this problem is InstantReplay [17]. It
instruments every memory access to a shared object to record the
order in which different threads accessed it. Recent systems such as
PinSel [24] and Microsoft’s iDNA [3] also instrument every mem-
ory access to enable multiprocessor replay. But, monitoring every
memory access is expensive (iDNA [3], for instance, is about 5–
15x slower than the native execution). Instead of monitoring every
memory access, SMP-ReVirt [11] uses memory protection bits to
detect all the shared memory dependencies and recorded the mem-
ory order. But, handling a memory protection fault for every shared
memory dependency is also inefficient (up to 9x slower).

Instead of recording the order of all shared memory accesses,
RecPlay [34] and JaRec [14] instrument just the synchronization
operations and recorded their order of execution. This approach
only ensures deterministic replay of a program up until the first data
race, which limits the use of a replayer in many ways. For example,
while debugging using a replayer, a programmer might want to
understand the after effects of a data race bug in order to triage it,
which is not possible with RecPlay. After finding a data race bug, a
tester might not want to wait for the developer to fix it before he/she
could carry on with further tests. Also, for continuously checking
the correctness of production runs it is necessary to replay past the
first data race. In fact, most real world applications contain benign
data races [25]. For such applications, a replay tool is most useful
only if it can replay past the benign data races.

Any software-only solution for recording a precise order of all
shared memory accesses is likely to be expensive. To reduce the
performance cost, processor support could be used. Bacon and
Goldstein [2] observed that the memory order can be determined
from the coherence messages, and so they proposed a hardware de-
sign to log all the coherence messages. Netzer proposed a transitive
reduction algorithm [26] to reduce the number of memory order
logs that need to be recorded. Recently, there has been significant
advancements in processor-based deterministic replay support [15,
21–23, 40, 41]. They are all based on Bacon and Goldstein’s ap-
proach [2], requiring invasive changes to the coherence mechanism.
Unfortunately, the parts that ensure coherence are some of the hard-
to-verify components in a multicore processor [35]. Lee et al. [18]
recently proposed a multiprocessor replay solution based on offline
symbolic analysis that does not require a precise shared memory
dependency recorder, but it still requires hardware support. While
a hardware solution could be very efficient, it would require in-
tense lobbying from the software developers and several years be-
fore hardware vendors decide to include such a specialized feature.

ODR [1] and PRES [32] are most similar to Respec in that they
also log less information than is necessary to guarantee determinis-
tic replay of a multithreaded program. Because these systems focus
on offline replay, they are able to conduct an expensive search (dur-
ing replay) through the possible interleavings of shared memory
accesses to find an order that produces the recorded output. On-
line replay requires a faster replay mechanism, which we achieve
through speculative execution of the recorded process. In addition,
the external deterministic replay provided by Respec ensures that
the complete program state is identical, whereas ODR ensures only
that the output is identical. Respec’s more stringent definition of
equivalence is needed to commit checkpoints and release output,
since otherwise an undetected memory difference could later lead
deterministically to divergent output. Finally, ODR’s or PRES’s
search algorithm could use data logged by Respec, such as system
calls, synchronization operations, and a hash of the address space
and registers at each epoch. The address space hashes in particular
would provide fixed states that could help guide offline search.

Speck [28] and Respec both use speculative execution during re-
play, but for different purposes. Respec uses speculation to sup-
port multiprocessor replay, a feature not supported at all by Speck.
Speck uses speculation to parallelize robustness checks. There is
potential synergy between the two approaches, and, in fact, Speck
is one of the potential use cases we posit for online replay.

7. Conclusion

With the advent of multicore processors, introspective tools that
help us understand and verify parallel programs are needed. A
deterministic record and replay system could serve as a foundation
for building many such tools by overcoming the inherent non-
determinism in a multiprocessor system. Unfortunately, an efficient
software solution for multiprocessor replay has proven elusive.

Respec addresses this need by providing a solution for fast, online
shared memory multiprocessor replay. Respec uses two novel tech-
niques to achieve efficiency: external determinism, a new fidelity
level for replay, and speculative execution. External determinism
provides adequate guarantees for most applications of replay, but
its relaxed constraints yield sufficient freedom to support efficient
multiprocessor replay. Respec uses speculative execution to opti-
mistically log only the most common synchronization operations,
relying on rollback and retry to guarantee correctness in the rare
cases where the recorded and replayed processes diverged due to
unlogged races. These two techniques allow Respec to concurrently
record and replay multithreaded programs with an average over-
head of 18% for two threads and 55% for four threads.

Acknowledgments

We thank the anonymous reviewers for comments that improved this paper.
The work is supported by the National Science Foundation under award
CNS-0905149. Peter Chen is supported by NSF award CNS-0614985 and
Intel Corporation. Jason Flinn is supported by NSF CAREER award CNS-
0346686. Satish Narayanasamy is supported by NSF award CCF-0916770
and Microsoft. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of NSF, the University of Michigan,
the U.S. government, or industrial sponsors.

References

[1] G. Altekar and I. Stoica. ODR: Output-deterministic replay for mul-
ticore debugging. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles, October 2009.

[2] D. F. Bacon and S. C. Goldstein. Hardware assisted replay of multi-
processor programs. In Proceedings of the 1991 ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 194–206. ACM Press,
1991.

[3] S. Bhansali, W. Chen, S. de Jong, A. Edwards, and M. Drinic. Frame-
work for instruction-level tracing and analysis of programs. In Second
International Conference on Virtual Execution Environments, June
2006.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In Proceedings

of the 17th International Conference on Parallel Architectures and
Compilation Techniques, October 2008.

[5] H. J. Boehm and S. Adve. Foundations of the c++ concurrency
memory model. In Proceedings of PLDI, pages 68–78. ACM, 2008.

[6] B. Boothe. Efficient algorithms for bidirectional debugging. In Pro-

ceedings of the ACM SIGPLAN conference on programming language
design and implementation, pages 299–310, 2000.

[7] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault toler-
ance. ACM Transactions on Computer Systems, 14(1):80–107, Febru-
ary 1996.

[8] J. D. Choi, B. Alpern, T. Ngo, and M. Sridharan. A perturbation
free replay platform for cross-optimized multithreaded applications.
In Proceedings of the 15th International Parallel and Distributed

Processing Symposium, April 2001.

[9] J. Chow, T. Garfinkel, and P. M. Chen. Decoupling dynamic program
analysis from execution in virtual environments. In Proceedings of the

2008 USENIX Technical Conference, pages 1–14, June 2008.

[10] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen. Re-
Virt: Enabling intrusion analysis through virtual-machine logging and
replay. In Proceedings of the 5th Symposium on Operating Systems

Design and Implementation, pages 211–224, Boston, MA, December
2002.

[11] G. W. Dunlap, D. G. Lucchetti, M. Fetterman, and P. M. Chen. Exe-
cution replay on multiprocessor virtual machines. In Proceedings of

the 2008 ACM SIGPLAN/SIGOPS International Conference on Vir-

tual Execution Environments (VEE), pages 121–130, March 2008.

[12] S. I. Feldman and C. B. Brown. Igor: a system for program debugging
via reversible execution. In PADD ’88: Proceedings of the 1988

ACM SIGPLAN and SIGOPS workshop on Parallel and distributed

debugging, pages 112–123, 1988.

[13] K. Fraser and F. Chang. Operating system I/O speculation: How two
invocations are faster than one. In Proceedings of the 2003 USENIX
Technical Conference, pages 325–338, San Antonio, TX, June 2003.

[14] A. Georges, M. Christiaens, M. Ronsse, and K. D. Bosschere. Jarec:
A portable record/replay environment for multi-threaded java applica-
tions. In Software: Practice and Experience, 2004.

[15] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for
Lightweight memory Race Recording. In Proceedings of the 2008

International Symposium on Computer Architecture, pages 265–276,
June 2008.

[16] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging operating
systems with time-traveling virtual machines. In Proceedings of the

2005 USENIX Technical Conference, pages 1–15, April 2005.

[17] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Transaction on Computers,
36(4):471–482, 1987.

[18] D. Lee, M. Said, S. Narayanasamy, Z. J. Yang, and C. Pereira. Offline
Symbolic Analysis for Multi-Processor Execution Replay. In Interna-

tional Symposium on Microarchitecture (MICRO), 2009.

[19] D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure trans-
parency and the limits of generic recovery. In Proceedings of the 4th
Symposium on Operating Systems Design and Implementation, San
Diego, CA, October 2000.

[20] J. Manson, W. Pugh, and S. Adve. The java memory model. In
Proceedings of POPL, pages 378–391. ACM, 2005.

[21] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording and
Deterministically Replaying Shared-Memory Multiprocessor Execu-
tion Efficiently . In Proceedings of the 2008 International Symposium

on Computer Architecture, pages 289–300, June 2008.

[22] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: a
software-hardware interface for practical deterministic multiproces-
sor replay. In Proceedings of the 14th International conference on

Architectural support for programming languages and operating sys-
tems (ASPLOS), pages 73–84, 2009.

[23] S. Narayanasamy, C. Pereira, and B. Calder. Recording shared mem-
ory dependencies using strata. In ASPLOS-XII: Proceedings of the

12th international conference on Architectural support for program-

ming languages and operating systems, pages 229–240, 2006.

[24] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B. Calder. Au-
tomatic logging of operating system effects to guide application-level
architecture simulation. In International Conference on Measurements

and Modeling of Computer Systems (SIGMETRICS), June 2006.

[25] S. Narayanasamy, Z. Wang, J. Tigani, A. Edwards, and B. Calder.
Automatically classifying benign and harmful data races using replay
analysis. In PLDI, June 2007.

[26] R. H. B. Netzer. Optimal tracing and replay for debugging shared-
memory parallel programs. In Proceedings of the ACM/ONR Work-

shop on Parallel and Distributed Debugging, pages 1–11, 1993.

[27] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative execution in
a distributed file system. In Proceedings of the 20th ACM Symposium
on Operating Systems Principles, pages 191–205, Brighton, United
Kingdom, October 2005.

[28] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn. Paralleliz-
ing security checks on commodity hardware. In Proceedings of the
13th International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 308–318, Seattle, WA,
March 2008.

[29] E. B. Nightingale, K. Veeraraghavan, P. M. Chen, and J. Flinn. Rethink
the sync. In Proceedings of the 7th Symposium on Operating Systems

Design and Implementation, pages 1–14, Seattle, WA, October 2006.

[30] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient de-
terministic multithreading in software. In Proceedings of the 2009
International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), March 2009.

[31] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The design and imple-
mentation of Zap: A system for migrating computing environments. In
Proceedings of the 5th Symposium on Operating Systems Design and
Implementation, pages 361–376, Boston, MA, December 2002.

[32] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, S. Lu, and Y. Zhou.
Do you have to reproduce the bug at the first replay attempt? – PRES:
Probabilistic replay with execution sketching on multiprocessors. In
Proceedings of the 22nd ACM Symposium on Operating Systems Prin-

ciples, October 2009.

[33] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating bugs as
allergies—a safe method to survive software failures. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles, pages
235–248, Brighton, United Kingdom, October 2005.

[34] M. Ronsse and K. D. Bosschere. RecPlay: A Full Integrated Practical
Record/Replay System. ACM Transactions on Computer Systems,
17(2):133–152, May 1999.

[35] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and
J. Torrellas. Patching processor design errors with programmable
hardware. IEEE Micro Top Picks, 27(1):12–25, 2007.

[36] S. Srinivasan, C. Andrews, S. Kandula, and Y. Zhou. Flashback:
A light-weight extension for rollback and deterministic replay for
software debugging. In Proceedings of the 2004 USENIX Technical

Conference, Boston, MA, June 2004.

[37] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jrapture: A cap-
ture replay tool for observation-based testing. In Proceedings of the
International Symposium on Software Testing and Analysis, 2000.

[38] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou. Triage: Diagnos-
ing Production Run Failures at the User’s Site. In Proceedings of the

2007 Symposium on Operating Systems Principles, pages 131–144,
October 2007.

[39] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 programs: Characterization and methodological consider-
ations. In Proceedings of the 22nd International Symposium on Com-

puter Architecture, pages 24–36, June 1995.

[40] M. Xu, R. Bodik, and M. D. Hill. A Flight Data Recorder for Enabling
Full-system Multiprocessor Deterministic Replay. In Proceedings of

the 2003 International Symposium on Computer Architecture, June
2003.

[41] M. Xu, M. D. Hill, and R. Bodik. A regulated transitive reduction
(RTR) for longer memory race recording. In ASPLOS-XII: Proceed-

ings of the 12th international conference on Architectural support for

programming languages and operating systems, pages 49–60, 2006.

[42] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B. Weiss-
man. ReTrace: Collecting Execution Trace with Virtual Machine De-
terministic Replay. In Proceedings of the 2007 Workshop on Modeling,

Benchmarking and Simulation (MoBS), June 2007.

