
Operating System Support for Application-Specific Speculation

Benjamin Wester Peter M. Chen Jason Flinn

University of Michigan

Ann Arbor, MI, USA

{bwester,pmchen,jflinn}@umich.edu

Abstract

Speculative execution is a technique that allows serial tasks

to execute in parallel. An implementation of speculative

execution can be divided into two parts: (1) a policy that

specifies what operations and values to predict, what actions

to allow during speculation, and how to compare results; and

(2) the mechanisms that support speculative execution, such

as checkpointing, rollback, causality tracking, and output

buffering.

In this paper, we show how to separate policy from mech-

anism. We implement a speculation mechanism in the oper-

ating system, where it can coordinate speculations across all

applications and kernel state. Policy decisions are delegated

to applications, which have the most semantic information

available to direct speculation.

We demonstrate how custom policies can be used in ex-

isting applications to add new features that would otherwise

be difficult to implement. Using custom policies in our sep-

arated speculation system, we can hide 85% of program

load time by predicting the program’s launch, decrease SSL

connection latency by 15% in Firefox, and increase a BFT

client’s request rate by 82%. Despite the complexity of the

applications, small modifications can implement these fea-

tures since they only specify policy choices and rely on the

system to realize those policies. We provide this increased

programmability with a modest performance trade-off, ex-

ecuting only 8% slower than an optimized, application-

implemented speculation system.

Categories and Subject Descriptors D.4.7 [Operating Sys-

tems]: Organization and Design; D.4.8 [Operating Sys-

tems]: Performance

General Terms Design, Performance

Keywords Policy, Mechanism, Speculative execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

EuroSys’11, April 10–13, 2011, Salzburg, Austria.
Copyright c© 2011 ACM 978-1-4503-0634-8/11/04. . . $10.00

1. Introduction

Speculative execution has been widely used as a method

for increasing parallelism by allowing serial tasks to ex-

ecute concurrently. It has been used to improve perfor-

mance in many hardware and software systems, including

processor branch predictors [Smith 1981], distributed file

systems [Nightingale 2005], remote displays [Lange 2008],

fault-tolerant protocols [Wester 2009], virtual-machine repli-

cation [Cully 2008], discrete event simulators [Jefferson

1987], and JavaScript interpreters [Mickens 2010].

To execute speculatively, the system predicts the outcome

of a particular operation and continues its execution based on

that prediction. When the operation completes, the actual re-

sult is compared with the predicted result. If the prediction

was correct, the system commits the speculative state. Oth-

erwise, the system corrects the state produced by the mispre-

diction, usually by rolling back to a prior point in time.

Each implementation of speculative execution can be di-

vided in two parts: (1) a policy that specifies what operations

and values to predict, what actions to allow while speculat-

ing, and how to compare results; and (2) the mechanisms

that support speculative execution, such as checkpointing,

rollback, causality tracking, and output buffering.

Existing systems typically implement mechanism and

policy together within a single layer, such as the processor,

operating system, or application. Unfortunately, no single

layer is well-suited to implement both policy and mecha-

nism. Policy decisions are best done by higher layers in the

system, such as applications, that understand the semantics

of the actions that are being predicted and can more accu-

rately predict a value and compare it with the actual result.

In contrast, mechanisms that support speculation policies

are best implemented at lower layers in the system (e.g., op-

erating systems). Lower layers exercise more control over

the entire system, enabling them to to propagate or coor-

dinate speculations between applications. Implementing the

mechanisms for speculative execution in the lower layer also

frees application writers from re-implementing speculation

for each application.

In this paper, we show how to separate policy from mech-

anism in a speculation system. We implement a mechanism

for speculation in the operating system, where it can easily

propagate speculations between multiple applications, con-

trol the output from speculative applications, and be shared

by multiple applications. We delegate policy decisions to ap-

plications, which have the semantic information needed to

specify which operations to execute speculatively, what val-

ues to predict, what operations to allow during speculation,

and what criteria to use when comparing predicted and ac-

tual values.

Separating mechanism from policy opens up a new de-

sign space regarding what behaviors a policy should specify

and how to best describe them. An application-specific pol-

icy can address a number of issues at each phase of specula-

tive execution:

• Starting the speculation: What actions are predictable?

When should each speculation begin?

• Performing the speculation: How should output be han-

dled? What data can be marked as speculative? How

many resources should be used?

• Ending the speculation: Which results should be consid-

ered correct? How should the system recover from a mis-

prediction?

Allowing applications to specify their own policies about

when and how to speculate enables them to use specula-

tive execution in ways that are difficult to implement using

generic policies provided by lower layers. We demonstrate

this by building a prototype speculation mechanism at the

operating system layer with policies specified in user-space

programs. Within this system, we modify three existing ap-

plications to demonstrate our approach:

• Predictive application launching: The Bash shell predicts

the next command a user will type and executes it spec-

ulatively. An X11 proxy permits graphical applications to

interact with the X server while being launched specula-

tively.

• Firefox performs certificate revocation checks while con-

tinuing to establish an SSL/TLS connection with a server.

• A Byzantine fault-tolerant (BFT) client assumes that the

first reply to a request is correct without waiting on con-

sensus.

An OS-implemented speculation system lacks the abstrac-

tions needed to specify these features, while an application-

implemented speculation system limits the scope of each

speculation and complicates the development effort. To ad-

dress these issues, our separated system allows custom poli-

cies to be specified in these applications by adding localized

changes that reuse a common mechanism. Our changes al-

low predicted applications to hide 85% of their start time,

reduce Firefox’s SSL connection latency by 15%, and in-

crease the BFT client’s request rate by 82%. We do impose

a trade-off on developers: an application using an optimized

speculation implementation can improve on our results by

8%, although it must give up system support to do so.

This paper makes the following specific contributions:

first, we present a discussion of the rationale for separating

speculative policy from the mechanism that implements it.

Second, we use this discussion to design and implement a

speculation system that places mechanism in the operating

system and gives user-space processes control over policy.

Finally, we demonstrate that our approach permits existing

programs to use speculation for increased performance with-

out requiring extensive modifications.

The rest of this paper is laid out as follows. Section 2 de-

scribes how speculative execution works when implemented

below the application. Section 3 explores the different be-

haviors a policy can customize, and Section 4 describes two

issues that arise when applications control their own specu-

lation. Section 5 describes what mechanisms we implement

in the operating system to support custom speculation poli-

cies. Section 6 discusses the process used to locate and im-

plement custom policies. Section 7 describes three case stud-

ies for using customized speculation policies and evaluates

the performance improvements that custom policies enables.

Section 8 describes related work, and Section 9 concludes.

2. Generic Speculation

This section describes how speculative execution works

when it is implemented below the application and thus does

not understand the program’s semantics. We refer to this as

a generic speculation system.

Speculation can be implemented at many layers below

the application, such as in hardware, a virtual-machine mon-

itor, the operating system, or a language runtime. The layer

at which speculation is implemented determines the natu-

ral unit of execution that the speculation system controls.

For example, speculation implemented in a virtual machine

monitor would control the execution of virtual machines,

while speculation implemented inside an operating system

would control the execution of processes. To make the dis-

cussion more concrete, our description assumes speculation

is implemented in the operating system; the same principles

apply to other layers below the application.

Implementing speculation in the operating system pro-

vides a good balance of semantic information and scope. The

operating system understands the semantics of useful objects

like processes, users, and files, yet is low enough in the soft-

ware stack to control the execution of all applications. The

natural unit of computation for OS-level speculation is a pro-

cess, and the natural unit of state is a process’s address space.

The OS also sees objects such as files and sockets and man-

ages related state (such as the file table) on behalf of pro-

cesses. Processes communicate with the OS mainly through

the system call interface.

Figure 1 illustrates the generic approach to operating sys-

tem speculation. A speculation starts when the operating sys-

tem predicts the results of an action (A). Actions are units of

computation that have definite start and end points. An ac-

S
0

S
α

B

A

S
0

S
0

sy
sc

a
ll S

α

B
A

S
β

S
α

B

B

A

roll backcommit
α α

α

βα

(a) (b) (c)

Sequential Speculative Commit Speculative Abort

Figure 1. Generic OS speculation. Part (a) shows a pro-

cess in state S0 execute syscall A with result α. When the

syscall returns, the process continues to execute program ac-

tion B. In (b) and (c), the system predicts the result of A

and returns to user space speculatively while executing A in

parallel. If the prediction is correct, the system commits the

speculation (b). Otherwise, it aborts (c).

tion causes a process’s state to transition from one state to

another; actions also may produce output. We refer to the

difference in states as the action’s result. An action is con-

sidered predictable if its result can be guessed at some point

in time before the action completes. For OS-level specula-

tion, actions are typically individual system calls.

Speculative execution allows predictable actions to exe-

cute in parallel with the program’s future actions. When the

operating system can guess the results of a process’s action

before it executes, the operating system marks the process as

speculative, returns the predicted result to the process, and

allows it to continue executing speculatively. In parallel, the

operating system carries out the action and determines the

actual result.

When speculating, a generic speculation system must en-

sure that no effects resulting from a missed speculation are

visible outside the system. To hide misspeculations, the sys-

tem must roll back all effects of the speculation. To support

rollback, the system takes a checkpoint of the process (usu-

ally copy-on-write for efficiency) when the speculation be-

gins.

We define the boundary of a speculation to be the col-

lection of all objects whose state depends on a speculation.

Initially, this boundary will include only the state of the pro-

cess that initiated the speculative action. As the process in-

teracts with the system, it may try to modify state outside its

bounds by generating output. A generic speculation system

may handle output in one of three ways, each of which meets

the requirement of completely hiding misspeculations.

• Expand: the boundary of speculation is expanded to in-

clude the receiver of the output, and then the output is

sent. When a new object (e.g., a process or file) becomes

included in a speculation, a checkpoint of its state must

be taken so it can be rolled back if the speculation fails.

• Defer: the write is deferred until the speculation commits.

• Block: the modifier’s execution is halted until the specu-

lation commits.

When the system finishes executing the action, it compares

the predicted result with the actual result. If the actual result

matches the predicted result, the system commits the spec-

ulation and releases any deferred output (Figure 1b). Other-

wise, it aborts the speculation and rolls back all state within

the speculation’s boundary (Figure 1c).

3. Custom Policies

Because an application has more semantic information about

its own behavior, its performance can be improved by using

a speculation policy that is customized for that application.

A custom, application-specific policy can vary from a

generic policy in several ways: creating speculations, man-

aging output, evaluating results, and controlling the commit.

Overall, custom policies benefit an application by letting it

make more predictions, helping those predictions be more

accurate, and allowing it to achieve more work while specu-

lative.

Figure 2 shows an overview of how a sequential execu-

tion is parallelized using speculative execution with custom

policies. An important distinction between OS generic spec-

ulation and custom speculation is which level controls the

speculation. In OS generic speculation, the operating sys-

tem executes the action that is being predicted and evaluates

the result. In custom speculation, the application executes

the action that is being predicted and evaluates the result. To

allow the application to control the speculation, the system

forks the process when the speculation begins. One copy of

the process (left side of Figures 2b and 2c) incorporates the

predicted result of the action and continues executing specu-

latively; we call this copy the speculative process. The other

copy of the process (right side of Figures 2b and 2c) executes

the action and compares the actual result with the predicted

result; we call this copy the control process.

We explore three axes along which an application can

provide a customized policy: creating speculations, handling

output, and handling commits.

3.1 Creating Speculations

The most basic task in speculative execution is determining

where to start and end the speculation, along with what value

to predict for that interval. A generic speculation system

is not suited to identify the best places to start and end a

speculation. First, it sees only a subset of events issued by the

process, e.g., system calls. Second, it has little information

S
0

S
1

S
2

A

B

S
0

S
1

A

S
1
’

S
2

B

S
2

B

S
0

S
1

A

S
1
’

S
2
’

B

fork fork

(a) (b) (c)

Sequential Speculative Commit Speculative Abort

Figure 2. Speculation with custom policies. Part (a) shows

a sequential process in initial state S0 that executes actions

A and B, moving its state to S1 and then to S2. Parts (b) and

(c) show the same process predicting the result of action A

and forking a speculative copy of the process that runs B in

parallel with A. If S1 and S′
1

are equivalent, the speculation

can be committed (b). Otherwise, the speculation is aborted

(c), and the process continues from state S1. We call the left

process in Figures (b) and (c) the speculative process, and

we call the right process in Figures (b) and (c) the control

process.

by which to determine which of these events are predictable:

a certain system call may have a predictable result for one

application but not another (e.g., reading a configuration file

is more predictable than reading a user document). A generic

speculation system may also fail to predict the result of the

action, since the same action will often have different results

for different applications.

An application sees and understands much more about its

own behavior and semantics. For example, a program can

start and end speculations at any line of code, rather than

only at system calls. We define actions at this level to be an

interval of program statements. This definition allows sys-

tem calls to still count as actions, but it also lets the program

speculate over many more regions, including arbitrary func-

tion calls. With so many additional actions visible, there is a

greater opportunity to find predictable actions.

A custom policy on creating speculations lets the program

specify which intervals of code are worthwhile to speculate

on and how to predict the intervals’ results. The program

can pick its actions to be those at an abstraction layer that is

easily predictable.

Selecting the right abstraction layer is crucial to locating

predictable actions. Interfaces often exist to hide implemen-

tation details from the higher layers of a program, and we

can take advantage of them to minimize the amount of state

that must be predicted. Lower-level actions, themselves un-

predictable, may work together to construct a high-level ac-

tion whose effects are well-defined and whose outcome is

predictable. Defining a high-level action can filter out the

unpredictability of lower-level events and intermediate state

changes that are not actually relevant to the overall task.

As an example, consider a program that calls the function

get user option() to display a menu, specify a default

choice, and wait for the user to interactively select an option.

If we implemented our speculation in a slightly-lower layer

of abstraction, the available actions concern the interaction

with the menu itself. The program might find itself predict-

ing which menu item the user would select next. At still a

lower level, the program might try to speculate on the return

value of the read() call that gets the user’s next keystroke.

(Note that this is all the generic system would see.)

By understanding the semantics of the high-level ac-

tion, a custom policy would let the program speculate over

the entire get user option() function to predict that the

user will take the default option. The exact sequence of

keystrokes that a user took to make a selection and the inter-

nal menu state are irrelevant details that get abstracted away

to make the action predictable.

3.2 Output Policy

An application next needs to determine how its output

should be handled while it runs speculatively. Recall that

a generic speculation system must handle output by expand-

ing the boundary of speculation, deferring the output, or

blocking the speculation. Each of these handling strategies

has drawbacks in certain situations:

• Expanding the speculative boundary involves more ob-

jects in the speculation. This increases complexity and

increases the cost of a rollback. For example, if a heavily-

shared object such as the X11 server or /etc/passwd be-

came speculative, the speculation would quickly spread

among other objects, and the entire system could become

speculative (and thus non-responsive).

• Deferring the output prevents the receiver from getting

the output and starting useful work. If the speculative

sender is waiting on a reply from the recipient, it too will

stop making any forward progress.

• Blocking on output is the safest, easiest option, but it per-

forms the worst because it limits how far the application

can speculate.

A generic system lacks information about the purpose of

the output, the sharing patterns of objects that receive the

output, how quickly that output needs to be sent, and how

far the application could proceed speculatively after sending

the output.

By specifying a custom output policy, an application can

choose the best way to handle its output from among these

options. With its knowledge of which actions are safe, what

it is writing to, and whether it needs a reply, the application

is in a better position to make this choice. For instance,

an application can avoid deferring writes when it will spin

waiting for a reply, and it can expand its speculative bounds

only when it would not involve many other objects in the

speculation.

In addition, the application may be able to violate the con-

servative restriction of completely hiding misspeculations,

because the application may not care if the output produced

by a misspeculation is rolled back. Hence, a custom output

policy can specify a fourth strategy in addition to those avail-

able to the generic system: allow the output without expand-

ing the boundary of speculation and without rolling back the

receiver upon misspeculation. An application can safely fol-

low this output strategy in the following scenarios:

• The output does not modify external state: Many net-

working applications use requests that return data with-

out modifying important server state, such as HTTP GET

or SQL SELECT requests. Since no state change needs to

be undone on a rollback, these requests are safe to allow

off the system.

• The application provides its own safety guarantee: Even

if the system cannot roll back the effects of an output,

the application may be able to ensure that on a rollback,

the effects of its output will be undone. To guarantee this

behavior, a networking application might implement a

distributed speculation system by tagging its messages

with its outstanding speculations and informing recipi-

ents when a rollback occurs.

• Inconsistent output can be tolerated on a rollback: A

study by Lange shows that users are able to tolerate a

limited amount of speculative and inconsistent informa-

tion being displayed on their screen in exchange for faster

performance [Lange 2008].

By customizing its output policy, an application can en-

sure that its safe output does not cause it to prematurely halt

forward progress. A customized output policy also directs

the system to handle the unsafe output using the most effi-

cient and appropriate strategy.

3.3 Committing

When the action whose result is being predicted finishes, the

system must decide whether to commit or abort the specu-

lation. If the actual result is identical to the predicted result,

the speculation can be committed. Without knowing what

the application uses the predicted values for, this is the only

condition under which a speculation can commit. If a generic

system detects any differences between the actual and pre-

dicted result, it cannot determine if that difference is signifi-

cant, so it must be conservative and abort the speculation.

However, some applications can tolerate differences be-

tween the predicted and actual states. Custom commit poli-

cies let the application specify what differences can be toler-

ated and how to to deal with those differences. Thus, custom

commit policies can broaden the criterion for correct pre-

dictions from being identical to being equivalent. A custom

commit policy can use this flexibility to commit more spec-

ulations, thus reducing the number of speculations that roll

back and preserving more work. We consider four ways that

differences can be equivalent while not being identical.

First, some differences in process state are not seman-

tically important to a valid execution and may be ignored.

For example, different patterns of malloc() calls may re-

sult in data structures being allocated in different locations.

This is safe to ignore if there are no inconsistent pointers

to these structures. Likewise, the exact contents of unused

stack frames can differ if two executions take different code

paths, but these are not significant.

Second, other differences in results may be unused and

can also be ignored. For example, a reply to an RPC may

convey the complete metadata of a shared object, but the

application may only examine its time stamp. Differences in

other parts of the reply can be ignored. Another example is

when the application uses the time stamp only by comparing

with another value. All results where the time stamp is less

than the other value are in the same equivalence class.

Third, some state differences may affect execution, but

the semantics of the changed state may permit updates to be

lost. For instance, a cache may acquire an entry that is not

predicted, but the cache’s semantics allow it to drop the entry

when needed.

Finally, some differences matter but can be imported into

the speculative state. To do this, the control process can for-

ward the difference to the speculative process to be merged

into its current state. Continuing the previous example, al-

though it may be valid for a cache to lose unpredicted entries,

the program may wish to preserve them for better perfor-

mance. If the speculative process has not read or written the

differing state before it is forwarded by the control process,

the merge can be performed easily without worrying about

read/write conflicts. If the speculative process has read or

written the differing state before it is forwarded by the con-

trol process, the updated state can be passed as a message to

the speculative process.

4. Issues with Separation

Despite the benefits mentioned in the previous section, split-

ting the mechanism and policy into different layers causes

two new issues that must be addressed. Both issues arise

because the application participates in controlling its own

speculation.

4.1 Committing State

Our control processes lacks effective isolation between two

logically distinct portions of application state: the state used

to control the speculation is co-mingled with the state ef-

fected by running the predicted action. The logic carrying

out the predicted action and the logic controlling the spec-

ulation execute within the same address space (the control

process). As a result, there is no easy way for the system to

separate the state used by the logic controlling the specula-

tion (which should not be preserved), the predicted results

(which must be checked for equivalence), and other unpre-

dicted state (which could be discarded, forwarded, or cause

a rollback). That is, if a particular change is detected, it is

not obvious how to handle that change.

This issue does not arise in a single-level system. For in-

stance, when an OS speculates on a system call, the pro-

cess switches to a separate kernel stack, isolating the specu-

lative control logic from the application state. Furthermore,

the effects of the system call on the process’s state are well-

defined. As a result, it is easier to check for equivalent re-

sults, and there should never be any completely unpredicted

state changes.

It is left to the application’s commit policy to decide how

to disentangle these pieces of state. In the applications we

have modified to use custom speculation, this has not been

a significant burden. Still, it is an added complexity that we

would avoid if possible.

4.2 Multi-threaded Speculation

The issue of separating state is compounded by multi-

threaded processes. Our description of custom speculation

so far has assumed that an application has only a single

thread, which both executes the action and uses the result.

With speculation, we fork this thread into a control thread

and a speculative thread. The speculative copy of the thread

continues using the predicted result, while the control copy

of the thread executes the action and commits or aborts the

speculation.

In contrast, with multi-threaded processes, a single ad-

dress space is shared among many different threads. Some

of these threads execute the predicted action and control the

speculation; other threads use the results of the predicted ac-

tion; and some threads may be independent of the predicted

action. Forking a process when a speculation begins causes

all threads within that process to be copied.

We designed a solution to these issues that lets us specu-

late using multi-threaded programs. The key issue is decid-

ing which threads to start in each process.

We first consider the case in which the predicted action

involves only a single thread (A); other threads may use the

predicted result or be independent of the action. Thread A

starts a speculation by predicting a result for the action and

forking a speculative process. Thread A must run in the con-

trol process to execute the predicted action and control the

speculation; thread A may also continue in the speculative

process after skipping over the portion of its execution that

is being predicted.

Threads that use the predicted result must run in the

speculative process to achieve the desired parallelism; they

cannot run in the control process since they would have to

wait for the predicted result.

Threads that are independent of the predicted action may

run in both of the control and speculative processes, but this

duplicates their work and wastes computing resources. To

avoid wasting work, the independent threads are allowed to

run in only one of the processes; they are blocked in the other

process. Most speculations are more likely to commit than

abort, so we run the independent threads in the speculative

process (which is more likely to survive the speculation than

the control process). While we could merge the changes

from the independent threads into the surviving process, this

would require us to modify the independent threads to deal

with the speculation.

In the general case, multiple threads may be involved in

the predicted action. All threads involved in the predicted

action must run in the control process, and they must skip the

predicted action in the speculative process (if they run in the

speculative process). Threads that cooperate on the predicted

action must also cooperate on starting and controlling the

speculation.

When one thread in a multi-threaded process starts a

speculation, our system relies on that thread to determine

which of the other currently-running threads should also be

started in the control process. Unless otherwise specified,

all other threads are assumed to be independent, and remain

running only in the speculative process.

5. Mechanism Design & Implementation

Custom policies were introduced in Section 3 by describ-

ing what behaviors an application should be allowed to cus-

tomize. In this section, we discuss how our mechanism layer

is built and how applications can express those policies.

5.1 Overview

Our mechanism for speculative execution is implemented

at the operating system layer and is based on Speculator,

a modified Linux 2.6.26 kernel that provides process-level

speculative execution [Nightingale 2005]. Speculator allows

processes to continue to interact with the system after be-

coming speculative. In particular, speculative state can be

propagated through several forms of IPC: forking, waiting

on children, signals, and file system operations (through

files, pipes, and sockets). Each of these kernel objects can

be checkpointed and rolled back as needed.

We introduce custom policies to this system by creating

a group of new system calls, which are described in Sec-

tion 5.2. At a high level, policy decisions are executed from

within the process, and the system calls are used to direct the

mechanism appropriately.

When a speculation starts, the system creates two sepa-

rate processes (a control process and a speculative process),

each with their own address space. The isolation provided

by having separate address spaces is crucial: state from the

speculative process should not violate causality by influenc-

ing the execution of the control process. If a conflict is de-

spec fork(out status, out spec id)

Begin a speculation.

commit(in spec id)

Commit a speculation.

abort(in spec id)

Abort a speculation.

set policy(in fd, in new pol, out old pol)

Set the file’s output policy, returning the old one.

get specs(out spec id list)

List the current process’s uncommitted speculations.

spec barrier(in spec id)

Block until the given speculation has committed.

start threads(in thread id list)

Start additional threads in the control process.

Figure 3. System call API used by an application to con-

struct custom policies.

tected, the system may conservatively abort the speculation.

The application should gracefully resume executing as if no

speculation were created.

5.2 Policy API

Applications implement custom policies through a new set

of system calls. An overview of each call is given in Figure 3.

To create a new speculation, the application invokes

spec fork() and splits into control and speculative pro-

cesses. After the control process executes its predicted ac-

tion, it can call commit() or abort() for the speculation.

Custom output policies are specified using the function

set policy(fd, policy). Each write operation can use

a per-file policy or, if that is unspecified, a per-thread de-

fault policy. Policies specify one of the strategies for han-

dling output described in Section 3.2 or DEFAULT. A single

write operation can use its own policy by wrapping it with

set policy().

We permit processes to view the status of ongoing spec-

ulations. A process can get a list of its current speculative

dependencies by calling get specs(). The kernel also pro-

vides a socket that broadcasts spec id-s as they are created,

committed, and aborted. We also found it useful to allow a

speculative process to voluntarily limit its own resource us-

age. By calling spec barrier(), a process can halt its exe-

cution until some or all of its dependencies have committed.

In a multi-threaded application, only the thread that called

spec fork() is initially started in the control process. All

other threads in that process start blocked. If the action

requires that other threads be running in the control process,

they can be explicitly woken by calling start threads().

If the speculation aborts, all threads will automatically be

woken in the control process. (Note that all threads in the

speculative process are active by default.)

6. Design Process

We envision the use of custom speculations as a design

process consisting of three steps. First, a developer must

locate interesting speculation points in a program. Second,

custom speculations must be implemented safely. Finally,

the system as a whole should be examined for additional

optimization.

6.1 Determining Actions

There are three generic guidelines that should be followed

when locating a suitable action to predict. First, executing

the action should take longer than the overhead of creating

a speculation (i.e., the cost of a fork). Blocking I/O opera-

tions (e.g., waiting for user input or network messages) of-

ten greatly exceed the overhead cost—our own case studies

focus on these operations. Lengthy computations may be ap-

propriate, as long as there are available cores to do the work

in parallel. Second, it is important that the speculative pro-

cess be able to make forward progress. Using a custom out-

put policy may remove some blocking points, thus allowing

more progress. Finally, the result of the action must be pre-

dictable. By using a custom commit policy, it is sufficient to

predict an equivalent result rather than an identical one.

Our system imposes additional constraints on the selec-

tion of an appropriate action. We rely on the program to ex-

plicitly verify that all effects of the action were predicted.

To do this correctly, the developer must be able to under-

stand precisely the effects of the action on the local process’s

memory. Clean, narrow interfaces for accessing and modify-

ing local state significantly aid the developer in performing

this task. An ideal interface cleanly separates pure functions

that do not change local state from the mutating functions.

In our experience, suitable interfaces are often found at the

boundary between program modules. If an action seems too

convoluted, it may be more reasonable to look at a different

abstraction layer.

6.2 Implementing Custom Policies

Once a suitable action has been located, it is necessary to

implement the policy in code as API calls and state modifi-

cations. We use the code in Listing 1 as a running example

of how to use our API to predict the results of running the

function foo().

We found it useful to work with actions defined by a

single function. When the code is structured in this way,

we can write a wrapper function (spec foo()) that isolates

our policy implementation from the action and surrounding

code.

The developer is responsible for deciding how to predict

the return value and side effects of executing an action (lines

10–11). Once that prediction is made, spec fork can be

called to split the application into speculative and control

processes. The speculative process should update local state

as if the action had completed with the predicted result

1 int count; /∗ G l o b a l s t a t e ∗ /

2

3 int* foo() {

4 ...

5 count ++;

6 return ptr;

7 }

8

9 int* spec_foo () {

10 int p_cnt = count + 1;

11 int p_ret = 1;

12 (stat , spec_id) = s p e c f o r k ();

13 if (stat == SPEC) {

14 count ++;

15 result = new int(p_ret);

16 } else if (stat == CONTROL) {

17 result = foo ();

18 if (count == p_cnt && *result == p_ret)

19 commit(spec_id);

20 else

21 abor t (spec_id);

22 }

23 return result;

24 }

25

26 void work() {

27 x = spec_foo (); /∗ R e p l a c e s f o o () ∗ /

28 p = s e t p o l i c y (fd , ALLOW);

29 send(*x);

30 s e t p o l i c y (fd , p);

31 }

Listing 1. Basic structure for predicting the result of simple

function call.

(ln. 14–15). The control process should execute the action

(ln. 17) and then, to implement the commit policy, explicitly

verify that the changed state matches the prediction (ln. 18).

It is important for correctness that all relevant side effects

of the action be predicted (in the speculative process) and

verified (in the control process). In the example, if count

were ignored in the prediction (i.e., by omitting ln. 14), it

would lead to odd program semantics where count appears

to increment only when the speculation aborts. Not all differ-

ences are relevant: foo might have different dynamic mem-

ory allocation patterns from the speculative process’s fast

update (ln. 15). This difference does not affect program se-

mantics. Hence in the example, only the value of the returned

object is checked. It is a challenge to decide which state is

relevant. For this reason, it is crucial that the developer be

able to understand the behavior of the action.

To selectively allow speculative output on a per-message

basis, a program may wrap its I/O functions with calls

to set policy (ln. 28–30). The developer should ensure

that the receiver can handle potentially-incorrect data. Also

note that after rolling back, messages sent while speculative

might be retransmitted.

Although we support executing multiple threads in the

control process, a single thread that makes blocking opera-

tions on local data is preferred. Acquiring a lock to access

shared data may introduce a deadlock if the lock holder is

not running in the control thread. If the system can detect the

deadlock, the speculation can be aborted, freeing all other

threads. We suggest grabbing needed locks or making local

copies of data structures before starting the speculation. If

multiple threads are required to run in the control process,

they should synchronize with each other first before exe-

cuting a spec fork. The prediction must include the state

changes due to all threads’ executions.

6.3 Optimization

By examining the behavior of the system in a few key ar-

eas, it may be possible to further optimize performance.

When a speculation fails, it might be the result of an overly-

precise commit policy. An expanded definition of “equiva-

lence” might allow a greater number of speculations to com-

mit. When a speculative process blocks, it could indicate the

need for a more permissive output policy. If the process is

waiting for output to be released, it could be worthwhile to

consider whether it is safe to allow that output. However, the

system’s performance as a whole may suffer if the bound-

ary of speculation expands too far. If a highly-shared system

object becomes speculative, this may suggest that a more-

restrictive output policy is needed.

7. Case Studies

To evaluate the effectiveness of our split-layer speculation

system, we look at three case studies. We modify each appli-

cation in the study to add a feature that uses custom policies

to achieve greater parallelism. Table 1 shows the applica-

tions and which policies they use. For comparison, we dis-

cuss the difficulties involved when implementing each fea-

ture in single-layer systems at both operating system and ap-

plication layers. To quantify the changes needed to imple-

ment these features, we measure the Lines of Code (LoC)

added and modified in each application (excluding blank

lines, comments, and braces). Finally, we quantify the im-

provement in performance due to each feature. Our test sys-

tem uses dual single-core Xeon 3 GHz processors with 8

GiB of RAM.

Application
Custom Policy

Start/End Output Commit

Predictive launch:

Bash Y Y

X Proxy Y Y

Firefox Y Y Y

BFT Y Y

Table 1. Speculative applications. A “Y” indicates that the

application has a custom policy defined for that category.

7.1 Predictive Application Launching

We make use of custom speculation policies to improve

perceived application startup time by predicting the launch

(b)

(a)
Launch

CommitSpec. Launch

time

time

User runs command

Figure 4. Process Execution Time. In part (a), a process is

launched normally at the time the user invokes it. In part

(b), the program is launched speculatively ahead of time.

We measure the execution time after the user invokes a

command (dark bar).

of an application and speculatively starting it. This will not

decrease the actual time needed to launch the application,

but part of that time may be overlapped with the user’s think

time. As a result, the system will appear more responsive.

We first quantify the potential performance benefit from

this technique. When it is possible to successfully predict

the next program far in advance, how much work of the pro-

gram launch can be hidden? Figure 4 illustrates our method

for examining the capacity of non-interactive programs to

launch speculatively. In a normal launch (Figure 4a), a pro-

gram starts executing when it is invoked by the user’s shell.

We measure the run time of the process from its invocation

to termination. In a speculative launch (Figure 4b), we be-

gin executing the program before it is requested. Once the

speculative program quits making progress, we invoke the

application—committing the speculation—and measure the

program’s run time from that point. We examine two non-

interactive applications: building a LaTeX paper, and build-

ing the Bash shell via make.

Interactive graphical applications do not automatically

terminate, so we examine their load time from invocation

instead of their run time. We end our load time measurement

when the rate of X11 messages sent by the application falls

below 200 messages in a 100 ms period. This threshold

is arbitrary, but it effectively distinguishes drawing splash

screens and main windows from handling smaller incidental

actions, like redrawing buttons as the pointer moves across

a window. We examine two interactive applications: GIMP

2.2 and OpenOffice 3.1.1.

Table 2 shows the run times and load times of our test

applications when launched normally and speculatively. Be-

cause of the high impact on load times, we also varied the

state of the disk cache. When launching speculatively, we

did not find a significant difference in run/load time due to

cache state. Although application load times are significantly

decreased when using a warm cache, they are not eliminated.

When applications are speculatively launched before invo-

cation, almost all execution time spent running/loading the

program can be performed before the program is invoked.

Compared to a normal launch with a cold cache, at least 91%

Application
Normal Launch (s) Speculative

Warm $ Cold $ Launch (s)

LaTeX build† 2.66 ± 0.03 4.72 ± 0.07 0.092 ± 0.001

Bash make† 45.1 ± 0.02 49.0 ± 0.04 0.19 ± 0.001

GIMP⋆ 5.1 ± 0.3 8.4 ± 0.5 0.72 ± 0.03

OpenOffice⋆ 3.33 ± 0.05 11.8 ± 0.08 0.29 ± 0.03

Table 2. Application Run Times† and Load Times⋆ for

non-interactive and interactive programs, respectively. Nor-

mal launches are examined with both warm and cold disk

caches; speculative launches were not affected by cache

state. Each value is given in seconds and is the mean of 10

runs, with 95% confidence intervals.

of the run/load time is capable of being hidden. Even with

warm caches, 85% can be hidden.

Section 7.1.1 describes our modifications to the Bash

shell that lets it take advantage of this potential by predicting

the user’s next command line and executing it speculatively.

By itself, the changes to Bash are sufficient to benefit non-

interactive commands. Section 7.1.2 describes how we im-

plement an X11 proxy that lets graphical programs benefit

from a speculative launch.

7.1.1 Bash

We modified a Bash 3.2.48 shell to predict the next full com-

mand line the user will type and begin running it specula-

tively. Bash predicts one command at a time, starting when

the shell prompt is first displayed.

To perform the prediction, we re-implemented the EMA

online machine learning algorithm [Madani 2009], which

predicts the next line based on the command history. One

could also imagine developing an algorithm that alters its

guess as the user types. Finding the best predictor is an

orthogonal problem; our concern is how to effectively design

a system to make use of the predictions.

Following our design process, we identified the inter-

face between Bash and the Readline library as an ideal

modification point. We used the basic pattern described in

Listing 1 to wrap Bash’s call to readline() (in Bash’s

yy readline get()), which accepts user input and returns

it in a new buffer. Other program state is not modified. Our

wrapper calls into EMA to generate a predicted buffer. The

speculative process returns a copy of this buffer. The con-

trol process makes the call to readline() and compares

the two strings. Note that the two executions return differ-

ent memory allocations. In this program, only the buffer

contents are relevant, so the commit policy makes only that

comparison. Other state is assumed, without verification, to

not have changed.

Later observation led us to implement two additional

changes. First, we found that when a user hits Ctrl-C to

interrupt Bash, the signal handler uses longjmp() to (in-

correctly) bypass our wrapper. We modified the function

throw to top level() on the interrupt control path to

abort outstanding speculations when this happens. Second,

we found that tab completion could add spaces to the end of

command lines. In response, we added a custom equivalence

policy that normalizes commands before comparison.

Overall, only two function in Bash needed modification

to permit speculative launching. Basic command prediction

used 56 LoC inside Bash to invoke our EMA predictor (433

LoC). The equivalence policy added 36 LoC, mostly text

manipulation functions, for a total of 525 LoC. Because

Bash relies on the system’s default output policy to main-

tain safety for arbitrary applications, no code was needed to

implement the output policy. To put these numbers in per-

spective, the full source code for Bash is over 100K LoC.

7.1.2 X Proxy

Graphical applications send and receive messages over a

socket to communicate with the X server. Following the

generic policy used by Bash, a speculative application that

attempts to use this socket will either have all of its mes-

sages buffered, preventing it from loading, or it will force

the X server to become speculative, preventing further user

interaction. Neither result is desirable for speculative launch-

ing.

The generic policy is unnecessarily restrictive. While

loading, an X application issues many requests that read

global state or modify application state without resulting

in any user-visible output. These messages can be safely

exposed to the X server. In particular, applications can cre-

ate windows and set their properties without exposing those

windows to the user (mapping the window, in X terminol-

ogy). The X protocol is designed to operate asynchronously,

so those few messages that do result in a visible change can

be buffered and released only when the speculation commits.

We design and implement an X proxy that sits between

the application and the X server to selectively permit mes-

sages through the boundary of speculation. By placing this

functionality in a proxy, we can support arbitrary unmodified

applications and avoid modifying the core X server.

For ease of development, we modify an existing proxy:

xtrace 1.0.2 [Link 2010]. When a new application connects

to it, the proxy forks a new server, which becomes specula-

tive immediately after accepting the connection. The proxy

takes advantage of system support for buffering output to

avoid complicating its own message-handling code. Using

custom output policies, requests to map, unmap, or delete

widows are deferred. All other requests are allowed. The

proxy rewrites sequence numbers in each message to correct

for the buffered messages.

When the speculation commits, the system releases the

buffered messages, and the application begins to draw its

main window. The proxy is notified of the commit and per-

forms a custom commit action: it adjusts its sequence num-

ber rewriting algorithm for the newly-released messages. If

the speculation aborts, the proxy will exit, breaking its con-

nection with the X server. The X server can recover by re-

leasing application-held resources without rolling back.

Implementing these changes added 280 LoC to xproxy

(itself 7K LoC). Most code additions are used for sequence

number rewriting.

7.2 Firefox Certificate Checks

Verification can be a slow process whose outcome is often

predictable. We use the Firefox 3.5.4 web browser as an ex-

ample of how to execute verification tasks in parallel with

the rest of an application. The task we speculate on is Fire-

fox’s verification of a server’s public certificate.

Many Internet protocols use the SSL/TLS protocol to

establish a secure link between client and server. To establish

a session, a Firefox sends a handshake and receives the

server’s public certificate. It then validates this certificate by

contacting the certificate’s issuer. Finally, if the certificate

is valid, Firefox exchanges random data with the server

to derive a session key. Encrypted data can then be sent.

We modify Firefox to predict that certificates are valid and

speculatively agree on a session key. The data stream should

be delayed until the validation is committed.

It would be difficult for a generic speculation system to

provide this feature. First, the generic speculation system

would need to distinguish the requests used to verify the

certificate from other network messages. Second, it would

need to predict the entire reply to the client’s verification

request, which is especially difficult if this certificate has not

been previously verified. Furthermore, once the speculation

has started, the generic system must treat further output

conservatively and prevent it from leaving the system.

Speculation could also be implemented entirely within

Firefox. However, this would require the programmer to im-

plement a custom checkpoint mechanism, and such a mecha-

nism would require extensive code modifications throughout

the program because Firefox is not written to isolate its state.

Furthermore, the programmer would need to manually block

most output while speculative.

To express this feature using custom speculations, we cre-

ate a variant of the ocsp GetOCSPStatusFromNetwork()

function in the NSS component, which requests the status

of a certificate from a remote server and caches the result.

Our speculative process assumes the verification succeeds,

so it places a fake success record in the cache before re-

turning. We also use a custom output policy that allows SSL

handshake data to be sent: socket output is allowed around

some calls to ssl3 GatherData(). Certificate prediction

and cache modification used 122 LoC, and the output pol-

icy was specified in 27 LoC. For comparison, the certificate

validation code alone takes 8.5K LoC.

We encountered two difficulties during development.

First, by default the validation request is handed off to a

dedicated thread that performs simple requests. We did not

expect multiple threads to be involved, and the dependency

prevented our speculation from succeeding. The easiest fix

Site Spec. (ms) Normal (ms) Speedup

Google Accounts 297.6 ± 31.9 330.3 ± 32.7 9.9%

Windows Live ID 416 ± 46 501 ± 43 17%

Chase home page 310 ± 51 382 ± 46 19%

Table 3. SSL Connection Establishment Time. Time

taken to establish the first SSL connection to various sites,

for speculative vs. unmodified Firefox. Error values show

95% confidence intervals. Despite the high variance, a T-Test

confirms with 94% confidence that there is latency reduction

when using speculation.

was to eliminate the dependency by sending the request in

the validating thread. Second, sometimes a chain of certifi-

cates must be validated. Since the speculative process only

inserted a fake cache record for the first certificate, subse-

quent cache modifications by the control process were being

lost. To preserve the data, we implemented a custom com-

mit policy that forwards (via a message buffer in shared

memory) the verification response for all certificates from

the control process to the speculative process. Forwarding

added 90 LoC, for a total of 239 LoC changed in Firefox.

To evaluate the impact of this feature on performance, we

used a packet analyzer to measure the amount of time taken

to establish an SSL connection with and without speculation.

Note that certificate verification is only one step in session

establishment. Our results are presented in Table 3. Overall,

our improvement decreases the time it takes to establish an

initial SSL connection by an average of 15% when certifi-

cates have not been revoked.

7.3 BFT Client

We next examine a client in the PBFT-CS protocol [Wester

2009], a program already implemented to use an application-

level speculation system. This allows us to compare our

generic mechanism against one that has been designed for

a single application.

The PBFT-CS protocol was designed to decrease the per-

ceived latency of executing requests on a Byzantine fault-

tolerant (BFT) cluster. A complete characterization of this

problem is present in the cited work. Here, we summarize

the system and discuss how applications used PBFT-CS.

BFT services are accessed through a shared library using

an RPC interface: clients submit requests and wait for the

service to return a reply. Because each reply may come from

a faulty server, it is necessary to wait until a quorum of au-

thenticated matching replies is received before the client can

determine the correct reply. Servers must coordinate their

execution of requests; consequently each operation typically

has high latency. PBFT-CS observes that the first reply is

usually correct and allows a client capable of speculation to

continue executing before the reply is known to be correct.

Further requests encode speculative dependencies so that the

service can squash aborted requests. As a result, the client

sees lower latencies for its requests and it can pipeline re-

quests to increase its own local throughput.

To evaluate PBFT-CS, a client was constructed that im-

plements its own lightweight checkpoint system. This is

a single-purpose application-implemented speculation sys-

tem. In this work, we compare that client against our own

client designed to use custom policies.

We can see several examples of custom policies in this

client description. The BFT code decides when to make a

prediction (after receiving one reply), what to predict (that

the first reply will be validated), which output to allow (ad-

ditional BFT requests, with modification), and when to com-

mit (after receiving enough replies).

Our policy-based client implements its speculation logic

entirely within the BFT shared library. We modified the in-

ner message-handling routine to expose intermediate results.

Then, from a layer between the internal functions and the

client, we use spec fork() to implement our own custom

start policy. As results are returned, our layer associates the

reply with the current dependency set (from get specs())

to be encoded on future requests. We set the output policy on

BFT sockets to allow all messages to be sent. We implement

a default commit policy by requiring the actual reply to be

identical to the predicted reply. These internal changes and

policies were implemented in 221 LoC, out of 17K LoC for

the full library.

By using custom policies, our modified BFT library can

be used by any existing BFT application without further

modification. Those applications can also specify their own

policies for other uses without conflicting with those set by

the BFT library.

In contrast, the application-implemented client is tied to

the service that is using it. Instead of being written as a se-

quential process that uses blocking operations (the normal

RPC interface), this client uses a main event loop. Making

the logic event-based forces state to be isolated and saved

outside of the stack, so checkpoints can be safely taken be-

tween events using memcpy(). Other applications have far

more state (that may extend into the OS, if open files are

considered), which will require more complex checkpoint-

ing logic.

To interpose on output, the client logic is written not to

perform output directly. BFT requests are queued and han-

dled by the mechanism so that checkpoints can be created

correctly. Other application output must be queued so it can

be released only when its dependencies have committed.

We see the policy-based library as an improvement in

programmability. It is also necessary to consider the perfor-

mance trade-offs involved when selecting between using a

policy-based system or an application-implemented system.

From PBFT-CS, we evaluate a simple shared counter ser-

vice with a single operation that increments the counter and

returns its value. The client simply executes a fixed number

of requests in a tight loop.

 0

 200

 400

 600

 800

 1000

 0 0.5 1 1.5 2

C
li

en
t

O
p
er

at
io

n
s

p
er

 S
ec

o
n
d

Latency Between Servers (ms)

App-implemented spec.
Policy-based spec.

Non-speculative

Figure 5. Comparison of BFT clients.

We examine this application from two perspectives. First,

we consider the improvement of our client’s performance

due to speculative execution. Second, we compare two dif-

ferent implementations of speculation: our policy-based sys-

tem and an application-implemented system tuned for the

application. This comparison lets us quantify the perfor-

mance cost we incur by relying on heavier, generic check-

points.

The benefit of an application-implemented speculation

system is a small performance advantage over our spec-

ulation system. Figure 5 compares a non-speculative client

against speculative clients implemented in both policy-based

and application-implemented systems. We vary the amount

of network latency between each server and see how it

affects each client’s throughput when accessing a lightly-

loaded server.

Both speculative clients perform much faster than the

non-speculative one. The policy-based client allows the

client to issue 82% more requests per second than the non-

speculative client with latencies above 0.5 ms. The client us-

ing application-implemented speculation employs a check-

point and restore mechanism that is tuned to the application.

Hence, it has less overhead and is able to issue 90% more

requests per second than the non-speculative client (an 8%

improvement over our generic mechanism). In exchange, the

development effort for the client is greatly increased, and it

cannot expand its speculative boundary beyond the process

itself. A developer must balance these trade-offs when de-

ciding how to implement a feature speculatively.

8. Related Work

Fast Track [Kelsey 2009] is a speculative runtime environ-

ment that allows applications to direct speculations over

their own execution in a similar style to our custom poli-

cies. A programmer invokes FastTrack() to fork and and

let one branch become speculative, like spec fork(). Each

side executes different version of the same action that are

predicted to be identical: a fast but unsafe version and a slow,

correct one. We go beyond the Fast Track model by giving

the programmers greater control over when to commit and

abort speculations in the presence of state differences that

may be irrelevant. Our system also allows applications to

specify a custom output policy and to speculate based on the

actions of multiple coordinating threads. Fast Track, being

implemented in the language compiler and runtime, cannot

expand its boundary of speculation beyond its own process.

Prospect [Süßkraut 2010] is a compiler-based platform to

generate programs that execute a fast program variant spec-

ulatively along with a slow variant that can include addi-

tional safety checks. Speculative system calls are allowed,

although their effects are only made visible to other pro-

cesses after a commit. Prospect also commits on equivalent,

rather than identical, states. However, this is not verified in

current implementations. In the context of our work, appli-

cations modified by Prospect could have benefited from the

existence of a shared kernel mechanism to handle specula-

tive system calls that would have allowed it to specify a de-

fault defer output policy. One could also view this project as

an implementation of speculative mechanisms and policy at

a low layer (the language and runtime) without considering

the application semantics.

Crom is another framework that allows applications to

control their own speculations [Mickens 2010]. This mech-

anism is implemented as a JavaScript library that lets web

application developers predict upcoming UI events. Devel-

opers flag individual events and provide lists of likely val-

ues for input controls. Equivalence functions are specified to

let the system determine which speculative executions could

match the user’s actual event. The programming model for

JavaScript is simpler than that for arbitrary binaries. Hence,

custom policies must deal with a wider range of actions.

Crom does not provide an analogue to custom output poli-

cies for its two I/O actions: network requests generated by

the speculative code are sent and writes to the screen are kept

hidden until a commit. Speculations capture the full state of

the DOM tree and are isolated from each other, so causality

tracking is not needed in this system.

We broadly categorize other work by considering what it

is predicting, how much control it gives to applications, and

what layer in the software stack implements the mechanism.

Speculative parallelism. Our work is closest to other

systems that are designed to execute sequential code seg-

ments concurrently. Thread-level speculation (TLS) systems

execute blocks of sequential code in parallel on separate

threads, predicting that there are are no memory conflicts be-

tween the blocks [Steffan 1998]. TLS systems provide fine-

grained parallelism, and the selection of the blocks is of-

ten driven by automated program analysis. The mechanism

needed to support speculations at this granularity often has

problems rolling back in the presence of system calls or I/O

operations, so these are disallowed while speculative. Our

system is built to support speculations at a much coarser

granularity, and we consider system calls and I/O to be good

sources for predictable actions. Because our system predicts

state instead of read/write sets, the programmer can specify

what value should be read by future reads.

Transactions. Speculative execution is similar in many

ways to atomic transactions, and thus our system is similar

to systems that provide operating system support for applica-

tion transactions, such as QuickSilver [Schmuck 1991] and

TxOS [Porter 2009]. Both transactions and speculation exe-

cute actions in parallel with other code, and both can commit

or abort the action. The difference between transactions and

speculation is the relationship between the action and other

code. With transactions, other code executes in parallel with

the action (with varying degrees of isolation [Gray 1993]).

In speculation, the outcome of an action is being predicted,

and other threads are continuing based on that prediction.

Transactional memory and optimistic concurrency con-

trol are uses of transactions that also leverage a predic-

tion [Herlihy 1993]. As with TLS, these uses of transactions

predict that there are no read/write conflicts between concur-

rently executing threads.

Generic speculation. There are many examples of generic

low-level systems that do not take advantage of application

semantics. Speculator originally predicted only system-level

events such as NFS calls and disk syncing [Nightingale

2005, 2006]. Pulse speculatively resumes threads that are

waiting for a resource to see if they will deadlock [Li 2005].

The Time Warp system lets processes in a distributed sys-

tem run speculatively under the assumption that all their

messages arrived in the correct program order [Jefferson

1987]. Ţăpuş et al. also performed similar speculations for a

distributed shared memory system [Ţăpuş 2003]. These sys-

tems begin speculations only on system-visible events, and

either disallow other output or handle it conservatively.

Systems offering customization. The Atomos program-

ming language offers open transactions, which allow a

thread to commit its writes back to memory while inside an

uncommitted transaction [Carlstrom 2006]. Our custom out-

put policies also allow for the same behavior, though we also

consider blocking and expanding speculative boundary. The

Mojave compiler also exposes an interface to start, commit,

and abort speculations [Smith 2007]. During a speculation,

isolation is preserved, and since this is a runtime-based sys-

tem, most system calls are not allowed. In Fast Track, the

application customizes the actions being predicted and the

predicted result, but not other policies.

Custom speculation implementations. The work by

Lange et al. on speculative remote displays is an example of

a program that uses an application-implemented speculation

system [Lange 2008]. They built a remote VNC viewer that

predicts screen updates and displays the speculative view to

the user. The authors also found that RDP events are also

predictable, but they did not attempt to build a viewer, citing

RDP’s reliance on client state.

9. Conclusions

In this paper, we explored the advantages of separating the

mechanism to support speculative execution from the policy

that describes what needs to be done. Applications that wish

to use speculative execution are freed from the burden of

implementing their own mechanisms such as checkpointing,

rollback, causality tracking, and output buffering. Instead,

they can focus on defining when to begin speculating, what

results to predict, how output should be handled when spec-

ulative, and when to commit the speculation.

We demonstrate the effectiveness of our mechanism/pol-

icy split by examining three different applications that can

be easily modified using our shared mechanism. First, our

system reduces the startup time of programs by at least 85%

when the program’s launch can be predicted. Secondly, the

latencies of establishing secure connections on Firefox are

reduced by 15%, as our new mechanism/policy split allows

it to perform certificate verification in parallel, partially re-

moving it from a critical path.

Finally, the BFT client shows the low trade-off between

performance and convenience in our system. While using an

optimized application-level speculation mechanism gives an

8% performance improvement over our separated specula-

tion system, its use prevents the application from interacting

with the rest of the system while speculative.

Acknowledgments

We would like to thank our shepherd Frans Kaashoek and

the many anonymous reviewers who provided valuable feed-

back to improve this paper. This work is supported by Intel

and the National Science Foundation under awards CNS-

0905149 and CNS-0614985. The views and conclusions

contained in this document are those of the authors and

should not be interpreted as representing the official poli-

cies, either expressed or implied, of NSF, the University of

Michigan, or the U.S. government.

References

[Carlstrom 2006] Brian D. Carlstrom, Austen McDonald, Hassan

Chafi, JaeWoong Chung, Chi Cao Minh, Christos Kozyrakis,

and Kunle Olukotun. The Atomos transactional programming

language. In Proc. 2006 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation, pages 1–13,

Ottawa, Ontario, Canada, June 2006.

[Cully 2008] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer,

Mike Feeley, Norm Hutchinson, and Andrew Warfield. Remus:

High availability via asynchronous virtual machine replication.

In Proc. 5th USENIX Symposium on Networked Systems Design

and Implementation, pages 161–174, San Francisco, CA, April

2008.

[Gray 1993] Jim Gray and Andreas Reuter. Transaction Process-

ing: Concepts and Techniques. Morgan Kaufmann Publishers,

Inc., 1993.

[Herlihy 1993] Maurice Herlihy and J. Eliot B. Moss. Transactional

memory: Architectural support for lock-free data structures. In

Proc. 20th Annual International Symposium on Computer Ar-

chitecture, pages 289–300, San Diego, CA, May 1993.

[Jefferson 1987] D. Jefferson, B. Beckman, F. Wieland, L. Blume,

M. DiLoreto, P.Hontalas, P. Laroche, K. Sturdevant, J. Tupman,

Van Warren, J. Weidel, H. Younger, and S. Bellenot. Time Warp

operating system. In Proc. 11th ACM Symposium on Operating

Systems Principles, pages 77–93, Austin, TX, November 1987.

[Kelsey 2009] Kirk Kelsey, Tongxin Bai, Chen Ding, and

Chengliang Zhang. Fast Track: A software system for specu-

lative program optimization. In Proc. 7th Annual IEEE/ACM In-

ternational Symposium on Code Generation and Optimization,

pages 157–168, Seattle, WA, March 2009.

[Lange 2008] John R. Lange, Peter A. Dinda, and Samuel Rossoff.

Experiences with client-based speculative remote display. In

Proc. 2008 USENIX Annual Technical Conference, pages 419–

432, Boston, MA, June 2008.

[Li 2005] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J.

Sorin. Pulse: A dynamic deadlock detection mechanism using

speculative execution. In Proc. 2005 USENIX Annual Technical

Conference, pages 31–44, Anaheim, CA, April 2005.

[Link 2010] Bernhard R. Link. XTrace - trace X protocol con-

nections. http://xtrace.alioth.debian.org/, September

2010.

[Madani 2009] Omid Madani, Hung Bui, and Eric Yeh. Efficient

online learning and prediction of users’ desktop actions. In Proc.

21st International Joint Conference on Artificial Intelligence,

pages 1457–1462, Pasadena, CA, July 2009.

[Mickens 2010] James Mickens, Jeremy Elson, Jon Howell, and

Jay Lorch. Crom: Faster web browsing using speculative exe-

cution. In Proc. 7th USENIX Symposium on Networked Systems

Design and Implementation, San Jose, CA, April 2010.

[Nightingale 2005] Edmund B. Nightingale, Peter M. Chen, and

Jason Flinn. Speculative execution in a distributed file system.

In Proc. 20th ACM Symposium on Operating Systems Principles,

pages 191–205, Brighton, United Kingdom, October 2005.

[Nightingale 2006] Edmund B. Nightingale, Kaushik Veeraragha-

van, Peter M. Chen, and Jason Flinn. Rethink the sync. In Proc.

7th Symposium on Operating Systems Design and Implementa-

tion, pages 1–14, Seattle, WA, October 2006.

[Porter 2009] Donald E. Porter, Owen S. Hofmann, Christopher J.

Rossbach, Alexander Benn, and Emmett Witchel. Operating

system transactions. In Proc. 22nd ACM Symposium on Op-

erating Systems Principles, pages 161–176, October 2009.

[Schmuck 1991] Frank Schmuck and Jim Wylie. Experience with

transactions in QuickSilver. In Proc. 13th ACM Symposium on

Operating Systems Principles, pages 239–253, Pacific Grove,

CA, October 1991.

[Smith 1981] James E. Smith. A study of branch prediction strate-

gies. In Proc. 8th Annual International Symposium on Computer

Architecture, pages 135–148, May 1981.

[Smith 2007] Justin D. Smith, Cristian Ţăpuş, and Jason Hickey.

The Mojave compiler: Providing language primatives for whole-

process migration and speculation for distributed applications.

In Proc. International Parallel and Distributed Processing Sym-

posium, pages 1–8, March 2007.

[Steffan 1998] J. Gregory Steffan and Todd C. Mowry. The poten-

tial for using thread-level data speculation to facilitate automatic

parallelization. In Proc. 1998 Symposium on High Performance

Computer Architecture, pages 2–13, Las Vegas, NV, February

1998.

[Süßkraut 2010] Martin Süßkraut, Thomas Knauth, Stefan Weigert,

Ute Schiffel, Martin Meinhold, and Christof Fetzer. Prospect:

A compiler framework for speculative parallelization. In Proc.

8th Annual IEEE/ACM International Symposium on Code Gen-

eration and Optimization, pages 131–140, Toronto, Ontario,

Canada, April 2010.

[Ţăpuş 2003] Cristian Ţăpuş, Justin D. Smith, and Jason Hickey.

Kernel level speculative DSM. In Proc. 3rd IEEE/ACM Inter-

national Symposium on Cluster Computing and the Grid, pages

487–494, May 2003.

[Wester 2009] Benjamin Wester, James Cowling, Edmund B.

Nightingale, Peter M. Chen, Jason Flinn, and Barbara Liskov.

Tolerating lagency in replicated state machines through client

speculation. In Proc. 6th USENIX Symposium on Networked

Systems Design and Implementation, pages 245–260, Boston,

MA, April 2009.

http://xtrace.alioth.debian.org/

	Introduction
	Generic Speculation
	Custom Policies
	Creating Speculations
	Output Policy
	Committing

	Issues with Separation
	Committing State
	Multi-threaded Speculation

	Mechanism Design & Implementation
	Overview
	Policy API

	Design Process
	Determining Actions
	Implementing Custom Policies
	Optimization

	Case Studies
	Predictive Application Launching
	Bash
	X Proxy

	Firefox Certificate Checks
	BFT Client

	Related Work
	Conclusions

