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Abstract

This paper presents Contextual Intensional Logic, a type-theoretic logic intended
as a general foundation for reasoning about context. I motivate and illustrate the
logical framework, and discuss a dynamic version that provides for context-changing
operators.

1. Introduction

In several previous works, [Thomason, 1997, Thomason, 1998], I proposed and explored (very
briefly) the idea of formulating contextual logic as a version of type theory. This paper will
improve, refine and extend these type-theoretic ideas.

There are a number of logical advantages to type theory.

(1) The underlying logical architecture, which goes back to [Church, 1940], is
beautifully simple and has been thoroughly investigated by logicians.

(2) The framework of types provides a rich, highly structured ontology that is
potentially useful in formalization.

(3) The theory is a straightforward extension of Richard Montague’s Intensional
Logic (IL), [Montague, 1970, Gallin, 1975, Anderson, 1984], which has been
the dominant formalism for the logical interpretation of natural language.
Using it provides direct connections to an extensive body of work in natural
language semantics. So the type theoretic approach can facilitate linguistic
applications of the theory of context.

(4) The use of types provides conceptual clarity.



In this paper, I will introduce and explain the basic ideas of the formalism, using these to
illustrate and support point (4), above. I will also discuss some ways in which the formalism
can (and should) be extended, with more detailed remarks concerning dynamic extensions
of the logic than those that appeared in [Thomason, 1999], the conference publication of this

paper.

2. Brief Introduction to IL

Any version of type theory will involve—in addition to a domain of individuals, with variables
ranging over this domain—domains that correspond to higher-order types: sets of individu-
als, sets of sets of individuals, etc. The formalizations of type theory based on [Church, 1940]
use functional (i.e., lambda) abstraction to organize the higher-order domains. In general,
where D; and D, are domains, the set DY of functions from D; to D, is also a domain.

This leads to the following recursive definition of types, in which the types for individuals
and truth values are primitive, and all other types are functional.

(2.1) eis a type.
(2.2) tis a type.
(2.3) If o and T are types, so is (o, 7).

Here, e is the type of individuals (entities), ¢ is the type of truth-values, and (o, 7) stands
for the type of functions from objects of type o to objects of type 7.

The language of type theory has an infinite set of variables of each type.! The language
has only three primitive syntactic constructions.

Identity: If ¢ and & are expressions of type 7, so is
¢=¢.

Functional application: If ( is an expression of type (o, 7) and £ is an
expression of type o, then () is an expres-
sion of type .

Lambda abstraction: If ¢ is an expression of type 7, then Az,( is
an expression of type (o, 7).

With these resources, the full set of boolean operations can be defined, as well as universal
and existential quantification over domains of any type. The model theory of the logic is
straightforward; arbitrary domains are assigned to primitive types, the domain of (o, 7) is
the set of functions from the domain of type o to the domain of type 7, = is interpreted as
identity, () is interpreted as functional application, ) is interpreted as functional abstraction.
See [Gallin, 1975] for details on these matters.

A number of ontological policies come along with this approach to types: sets are repre-
sented by the corresponding characteristic functions. That is, a set of objects of type 7 is
represented as a function of type (7,t), and n-place functions from types (o1, 09,...,0,) to

In writing formulas of intensional logic, I will label the first occurrence of a variable with its type unless
the type is e, in which case the label may be omitted. Later occurrences will not be marked for type; no
confusion can arise, as long as all independent uses of bound variables involve distinct variables.



type 7 are represented as a nested type (o, (09,...{0,, T)...)) consisting of iterations of 1-
place functions. According to these policies, for instance, a 2-place function from individuals
to individuals would have type (e, (e, e)); a function of this type inputs an individual and
outputs a function from individuals to individuals. A 2-place relation between individuals
and sets of individuals would have type (e, ({e,?),t)). An object of this type would be a
function that inputs a first-order object and outputs a function that inputs a set of first-
order objects (which itself is a function from first-order objects to truth-values) and outputs
a truth-value.

Church’s formalism uses the domain of truth values to interpret sentences. Obviously, a
domain containing only two values will be unable to represent sentence meanings adequately,
an inadequacy that is reflected in the inability of the logic to deal with propositional atti-
tudes such as belief. Montague’s 1L seeks to remedy this problem by introducing a third
primitive type w, the type of possible worlds. This makes available a type 7-Prop = (w, t) of
propositions.?

In natural language, we apparently do not refer explicitly to possible worlds; similarly,
the syntax of IL gives worlds an implicit role. There are no constants or variables of type
w, so there is no explicit lambda abstraction over the domain of worlds. Instead, IL has
operators that form intensions and extensions.

Intension: If ¢ is an expression of type 7, then ~( is an
expression of type (w, 7).

Extension: If ¢ is an expression of type (w,7), then v(
is an expression of type 7.

It is time to be more explicit about the model theory. A frame F assigns a nonempty
set Domz(7) to each primitive type 7 € {e, w}; Domg(t) = {T, L}, where T and L are two
arbitrary, fixed objects. The domains assigned to complex types in F are then defined by
the following equation.

Dom#({(, 7)) = Dom(r)Pomz=().

A model M on F assigns each constant a of type 7 a value [a]riw in Dompy(7) =
Domg(7), for each world w € Domy,(w) and index i € Domy,(7); M assigns each variable
z of type 7 a value [z]r in Domay(7); for all w and i, [2]miw = [2] -

The values of complex expressions are defined as follows, where ./\/ld/ac is the model like
M except that [z] M = d.

Where ¢ and & are expressions of type 7, [( = &|miw = T i [(Jriw = [E] miw-
Where ( is an expression of type (o, 7) and £ is an expression of type o, [ (&) miw =

|I<]]M,i,w ( Hg]]./\/l,i,w) .

Where ( is an expression of type 7, [A2,({)|miw = f, where f is the function
from Domp,(o) to Domy(7) such that £(d) = [¢]pa/p ;-

2 Actually, Montague’s type apparatus extends the type-forming operators rather than the primitive types.
But it is equivalent to the version I present here; see [Gallin, 1975)] for details.



Where ( is an expression of type 7, [*(]am,iw = f, where f is the function from
Domp(w) to Domp,(7) such that f(w') = [(]arw -

Where ( is an expression of type (w, 7), [V¢]miw = [{Iaiw(W).

Treating propositions as sets of possible worlds is, of course, problematic. (See, for
instance, [Moses, 1988, Giunchiglia et al., 1993].) But despite its foundational problems,
this approach has been pursued with some success in philosophical logic, computer science,
economics, and natural language semantics. It is certainly possible to generalize the possible
worlds approach to intensionality to obtain a less restrictive account of propositions. But it
seems to me that such generalizations are premature. Without constraints, hyperintensional
theories are uninformative. Appropriate constraints seem to require better general models
of the reasoning agent than we have at present. Until such models are developed, I prefer to
use the possible worlds formalisms, which in any case have many features that would need
to be preserved in any more general approach.

Richard Montague showed that the framework of intensional logic provides a type for
propositions, and that many other types that are ontologically natural and useful in the
interpretation of natural language semantics can be characterized in IL. I will now explain
why this framework also provides an appropriate and useful architecture for thinking about
contexts.

3. Contexts as Modalities

The integration of knowledge sources and modules seems at present to be the origin of the
most detailed and illuminating examples of ways in which the theory of context can be
used.® If we look at a context as a knowledge source, the simplest way to model contexts
type theoretically would be to identify a context with the set of propositions that it delivers.
This would locate contexts in the type ((w, t), t), which is the type that I assigned to contexts
in [Thomason, 1998].

This type-theoretic account of contexts would suffice for applications in which an agent
(which is not itself a context) is simultaneously accessing information from many contexts.
Each context would then deliver its set of propositions to the collecting agent. But if we
want to allow contexts to access information from other contexts, we need an enriched rep-
resentation of contexts.

The problem is this. The type ({w, t),t) makes contexts have propositions as inputs. This
intensionality of contexts is mandated by the desired applications: we certainly do not want
a context to support every true sentence if it supports any true sentence. Since the output
assigned to a proposition by a context c is only a truth value according to this account,
although we can access a proposition p that holds in ¢ there will be no way to construct
from ¢ and p the proposition that says that p holds in ¢. Therefore, we can’t pass the output
of applying a context to a proposition on to another context as an input.

To solve this problem, we need to enrich the output of the type that is associated with
contexts. Iteration of contexts can be managed in several ways within intensional logic;
the following formalization corresponds directly to multi-agent epistemic logics, of the sort

3See, especially, the example in [McCarthy and Buvag, 1995, Section 6].



discussed in [Fagin et al., 1995], in which a binary relation R, over worlds is associated with
an epistemic agent a.

This standard relational semantics for modal operators specifies that O,¢ is true in w
if and only if ¢ is true in all worlds w’' such that wR,w’. The idea can be captured in IL
by (i) locating contexts in the type 71-Con = ({w,t), (w,t)) = (T-Prop, 7-Prop) and (ii) for
each context M adding following axiom, which guarantees that the behavior of the context
is determined according to the standard constraint on modalities.

(3-1) Vprprop[“[M("['p —= Yq])] = ["M(p) = "M (q)]

Here, M is a constant of type 7-Mod.

Within this framework we can provide a definition of McCarthy’s ist relation, recon-
structed here as a relation between contexts and the propositions (not the sentences) that
hold in these contexts.

(3.2) sty = AZrMod \Yr-Prop T(Y)]

This definition gives ist the type (7-Mod, (7-Prop, 7-Prop)) which inputs a modality and a
proposition, and outputs a proposition.

This approach to context has several shortcomings, some of them substantive and some
of them a matter of public relations. I will address the less important class of problems first,
leaving the substantive issues for the remaining sections.

If we treat contexts as modal operators, it is hard to see what is new about the logic
of context. Modal logic is a well developed area of logic that has received a great deal of
attention over the last forty years. Regarding contextual logic as a branch of modal logic
seems to leave relatively little work for us to do.

While it is true that this conservative approach may rule out a more logically creative
program, it still leaves room for some innovations, because (as I will argue in the next
section), the logic of context can’t in fact be identified with modal logic. But treating it
as a generalization which preserves the main features of modal logic has many advantages.
First, it enables us to import results and applications from modal logic. It is in fact, very
useful to regard contexts as simple epistemic agents, agents which know information about
other agents and can communicate with other, similar agents. This makes ideas concerning
protocol design and knowledge-based programming available in the logic of context.* We
may also be able to import the techniques that have been developed for modal theorem
proving. (See [Stone, 1998].)

4. Contextual Intensional Logic

There is a serious limitation to this approach to context; it will not deal with cases in which
the meanings of terms can differ from context to context. The computational literature
has regarded variation in meaning as an essential application of the logic of context. But
modal logic can’t track shifts of meaning among the various senses of ambiguous expressions.
Take the simplest case: two “personal assistant” databases with two users, a and b. Both

4See [Fagin et al., 1995] for discussion of these matters, and for further references.



databases record information about their users, using an internal constant @QUSER to refer
to their users. To merge this information coherently, we have to assign different propositions
to expressions like

(4.1) BIRTHDATE(QUSER, (4,4, 1969)).

But modal logic has no natural way to represent the reasoning that produces these different
assignments.®

Translating ideas from David Kaplan [Kaplan, 1978] into the type-theoretic framework,
I propose to address this problem by introducing a fourth primitive type: the type ¢ of in-
dices. Kaplan thinks of indices as arguments that determine the interpretations of “indexical
expressions” such as ‘I’, ‘here’, and ‘now’.

Indexicals are certainly a dramatic illustration of context-dependence, but typical uses
of contextual reasoning to integrate knowledge sources also need to be able to deal with the
ambiguity of lexical expressions that are not usually thought of as indexical; for instance, a
case in which one database used by a bank uses ‘Account’ to refer to active banking accounts,
while another database used by the same bank uses ‘Account’ to refer to active and inactive
banking accounts, while still a third database uses ‘Account’ to refer to brokerage accounts.

I want to extend the range of Kaplan’s indices, by thinking of an index as a simultaneous
disambiguation of all the relevant lexical indexicalities and ambiguities that can arise in
an application. Call such a simultaneous disambiguation a contertualization. If the only
contextualizations arise from ‘I’ and ‘here’, we can identify an index with a pair consisting
of a person and a place. If the only contextualizations serve to resolve the ambiguity of
ten lexical items, each of them having just two possible meanings, then we will need indices
corresponding to the 2! possible disambiguations.

As a first step in presenting Contextual Intensional Logic (CIL), we extend the types
by introducing a primitive type ¢ for indices. The recursive definition of complex types
then provides for types such as (i, (w, t)) (the type of a context-dependent proposition) and
(i, (w, (e, t))) (the type of a context-dependent property).

We will provide operators ™ and “, analogous to the corresponding operators used to
manage intensionality in IL. The interpretation of expressions involving these operators is
as follows.

Where ( is an expression of type 7, ["(am,iw = f, where f is the function from
Dom,(7) to Domay(7) such that £(i') = [¢]a,ir,w-

Where ( is an expression of type (i, 7), ["Clamiw = [CImiw(i)-

The treatment of the type indices in CIL, however, is not entirely similar to that of worlds
in Montague’s IL. We will allow constants and variables of type ¢, and explicit lambda ab-
straction over these types. This is needed in order to provide a means of defining functions
that return context-dependent values. Definition (4.3), below, of McCarthy’s ist construc-
tion, is an example.

5We could, of course, formalize the reasoning as syntactic, i.e. we could treat it as reasoning about ex-
pressions. I will not explore this alternative here; despite its apparent naturalness, it is much less satisfactory
in the long run, I believe, than the intensional approach that I assume here. The main formal problem that
a syntactic approach raises, of course, is that it reintroduces the semantic paradoxes.



Following Kaplan, I want to think of the evaluation of contextualized expressions as
taking place in two phases: (1) a disambiguation phase, where the expression is assigned an
intension and (2) an evaluation phase, where the intension is evaluated in a world. Thus, to
interpret an expression like

(4.2) ‘I'm over 21 years old’

we first need to identify the speaker, s; this yields the proposition that is true in a world if and
only if s is over 21 years old in that world. We can think of this as the two-stage evaluation
of an abstract representation of the sentence’s meaning called its character, a representation
which captures the potentiality of a sentence meaning to yield different propositions in
different “contexts” by treating the character as a function from indices to propositions.
In general, the character is first evaluated at an index to yield a content, which then may
be evaluated in a world to produce an extension. In CIL, it is natural to assign sentences
a character of type 7-Char-Prop = (i, 7-Prop); this type will input an index and output a
proposition.

Now, a context of the sort envisaged by McCarthy will perform two different functions: it
will serve as a source of disambiguation and as a local knowledge source. From the standpoint
of CIL, the first of these functions is represented by an index, or object of type ¢; the second,
as before, is represented by a modality, or object of type 7-Mod. Therefore, a context is a
pair consisting of an index and a modality.

This representation yields no very natural type for contexts in CIL, because CIL provides
no clean encoding for ordered pairs of objects of different type. However, if we use one of the
(unnatural) encodings in CIL of the cross product o x7 of o with 7, or (better) if we add a
cross-product operation to the underlying type definition, we can situate indexical contexts
in the type 79-Con = 7 X 71-Con.

But we can avoid the need to provide a type for indexical contexts by separating indices
and modalities as arguments of ist, making it, say, a function from objects of type 7 to
functions from objects of type 7-Mod to appropriate values. If we want this ist to iterate,
it should output a propositional character. The most general account of ust, then, would
give it the type (i, (T-Mod, (T-Char-Prop, 7-Char-Prop))). This ist inputs a modality M and
an index i. Then, given a propositional character p, it outputs a propositional character q,
which at any index j expresses the proposition that p expresses a proposition at i that is
necessary according to M. Therefore, expressions of the form ist(n)(¢)(¢) designate constant
characters, ones that express the same proposition at each index. So we can in fact assign
the simpler type

(1, (T-Mod, (T-Char-Prop, T-Prop)))

to ist. Accordingly, ist outputs a proposition rather than a propositional character. To
iterate this ist, we use the ™ operator, as follows:

ist (1) (O) (Mist (') (<) ()

This simplified ist can be defined as follows using lambda abstraction.

(43) 18t = /\ui/\xT-Mod/\pT-Char-Propm(p(u))



According to this definition, given an index i and a modality M, #st inputs a propositional
character p and outputs the proposition that the proposition expressed by p at i is necessary
according to M.

These ideas are contrary in spirit to remarks in which McCarthy suggests that contexts
should be formally treated as primitives. I take these remarks to mean that, although in
some applications we can axiomatize general knowledge about contexts, it is pointless to
attempt to define contexts. Actually, I agree with McCarthy that relatively little of the
work that needs to be done to explicate contexts can be done with definitions. But I do
think it is enlightening and helpful to separate contexts into two components, one of them
(the index) dealing with indexicality and ambiguity, while the other (the modality) deals
with knowledge.

To show how the intended sort of applications would be formalized in CIL, it will be
helpful to present a simple example. A group of people including Ann, Bob and Charlie use
personal databases to manage their calendars. The language of the databases has a first-
person pronoun referring to the database user, as well as constants referring to Ann, Bob and
Charlie. In Ann’s database, ‘I’ refers to Ann. Assume that the databases contain information
about meetings, in the form of a set of triples whose whose first and second members denote
people, and whose third member denotes a time. They also contain information about
databases, in the form of a set of quadruples whose first member denotes a database, whose
second and third members are people, and whose fourth member denotes a time. In this
example, we do not distinguish between people and their databases; a constant a of type e
refers to Ann (and to her database); similarly, b refers to Bob and ¢ to Charlie.

Ann’s database contains the following items.

(ADB1.1) (1,b,9)
(ADBL1.2) (I, ¢, 10)
(ADB1.3) (b,1,b,9)

Without using the contextual apparatus of CIL, the knowledge state of the database can
be represented using the following axioms. Here, [a] and [b] are constants of type 7-Mod,
representing the modalities corresponding to Ann’s and Bob’s databases.’

(ADB2.1) [aIMEET(Ann, Charlie, 9)
(ADB2.2) [aIMEET(Ann,c, 10)
(ADB2.3) [a1[bIMEET(Ann,b,9)

These axioms correspond to a natural way of talking about what Ann (or her database)
knows: Ann knows that she is to meet with Bob at 9, Ann knows that she is to meet with
Charlie at 10, Ann knows that Bob knows she is to meet with Bob at 9. However, such a
formalization involves translating Ann’s indexical representation into neutral terms. In this
simple example that is not a difficult problem, but it can be a challenge in more complicated
cases. Moreover, it is plausible to assume that (ADB2.3) holds because Ann’s and Bob’s
database are communicating. When this happens, Ann’s database somehow has to impose

SMEET has type (e, (e, (e, t))). MEET(n, (,£) is an abbreviation of [[MEET(%)](¢)](£).



the right interpretation on the presence of (I, a,9) in Bob’s database; somehow, Ann has to
know that ‘I’ refers to Bob when Bob uses it.

These are problems of the sort that McCarthy’s ist is designed to solve. The somewhat
different account of ist in CIL performs a similar function. First, in this example we identify
indices with people; Dom, (i) = {a, b, c}, where a,b,c € Domy,(e). Now, nothing prevents
domains of different types from overlapping, but each expression must have a unique type;
so we need different constants for people considered as individuals and for people considered
as indices. We will use a., b., and c, for the former, and a;, b;, and ¢; for the latter. Although
ae and a;, for instance, both denote the same thing, a. = a; is not a well-formed expression
of CIL.

We then let I be a constant of type e such that [I]a;w = i for all i € Domp,(i); "1
returns a in Ann’s database, b in Bob’s database, and ¢ in Charlie’s database; in other words,
1 is assigned the character intuitively associated with the first person singular pronoun.

Using ist, we reaxiomatize Ann’s database as follows.

(ADB3.1) Vist(as, Lal, "MEET(I, b, 9))”
(ADB3.2) Vvist(a;, [al,"™MEET({, ¢, 10))
(ADB3.3) Vist(a;, [al, V[ist(b;, (b1, "MEET(I, be, a,))])

Recall that in this example, we are identifying indices with people; and we can use an
appropriate modality to represent what each of the two databases knows. Let [a] and [b]
express the modalities corresponding to Ann’s and Bob’s databases; also recall that these
modalities are functions from propositions to propositions. Then ist(a;, [b1,""MEET(b.,1,9)),
for instance, says that the propositional character expressed by ‘Bob has a meeting with me
at 9’ expresses a proposition in Bob’s database that this database knows.

The reaxiomatization using ist permits a formalization of how (ADB2.3) can be inferred
from observing the syntactic information that is available in Bob’s database. The steps in
this reasoning require the following axioms.

(DB.1) O("Vz Vy.[[""MEET(I, z,y)](b;) = "MEET(b, x, y)])
(DB.2) O("Va Yy [["[[b1("MEET(I, 7, y))]](a:) = ["[[b1(*"MEET(ac, 7,y))]](a:)])
(DB.3) O("Vz Vy.Vz.[MEET(z,y, z) = MEET(y, z, 2)])

Axiom (DB.1) is one of several schemas that constrain the characters of literals involving
the first person pronoun; in this case, it implies that what ‘I have a meeting with Ann at
9’ expresses for Bob is the same proposition as that expressed (for any agent) by ‘Bob has
a meeting with Ann at 9’. The necessity sign in (DB.1) is universal necessity, so (DB.1)
implies that all databases know this equivalence. Axiom (DB.2) says that for Ann, ‘I’ means
Ann even in statements about what Bob knows.® Schemas of this sort are analogous to
McCarthy’s “lifting axioms;” they allow the reformulation of index-dependent information
from one index to another. Finally, Axiom (DB.3) states the symmetry of MEET in the first
and second arguments.

The formalization of a train of reasoning that could lead Ann to conclude that Bob knows
he has a meeting with her at 9 from observing Bob’s database proceeds as follows.

Tist(n, ¢, £) abbreviates ist(n)(¢)(£).
8This last axiom is somewhat overspecialized. I believe that it can be made to follow from more general

principles, but will not try to do that here.




(i) Ann’s database observes the triple (I, a,9) in Bob’s database.

(ii)) The knowledge that Ann’s database obtains from this observation
is readily formalized as

Vist(a;, Lal, ist(b;, [b1,"MEET(I, ac,9) ) )-

Note that there is a simple, straightforward syntactic mapping
between the terms of the observed triple and those of the formal-
ization. This relationship is made possible by the use of characters.

(iii) Using the definition of ist, we obtain
Vist(a;, [ad,"[b1(["MEET(I, ac, 9)](be) ) )

from (ii) by lambda abstraction.
(iv) From (iii), we obtain

Vist(ai, Lal,"[[b1("MEET(b,, a.,9))])

using (DB.1).
(v) (DB.3) then yields

Vist(a;, [al,"[[b1(*"MEET(ae, be,9) )] )-
(vi) From (v), using (DB.2) and the definition of ist, we obtain
Vist(a;, [a1,"[[b1("MEET(Z, b, 9) )] ).

(vii) Finally, (vi) can be used to justify the occurrence of (b,1,b,9) in
Ann’s database.

I hope that this example, simple as it is, gives a sense of how CIL could be useful in
specifying inter-contextual reasoning.

5. Getting Dynamic

In [McCarthy and Buva¢, 1995, McCarthy and Buvaé, 1998, McCarthy and Buvaé suggest
that operations of entering and exiting a named context would be useful additions to the
logic of context, adding the thoughts that these operations should be analogous to pushing
and popping a stack, and that there should be analogies between contexts and the subproofs
of the Fitch-style natural deduction format ([Fitch, 1952]). Similar remarks can be found
in [McCarthy, 1993]. The presentations that I have seen of these ideas are intriguing, but
somewhat sketchy.

Ideas from dynamic logic (see, for instance, [Harel, 1984]) provide natural and principled
methods for extending a purely declarative logic like CIL to one that contains dynamic
operators. One advantage of this approach is that it provides a model theoretic interpretation
of the resulting semantics.

10



In this section, I will indicate in a preliminary way how these techniques can be applied
to CIL to obtain a version of Dynamic Contextual Intensional Logic (DCIL) with operators
of the sort envisaged by McCarthy and Buvac.

A dynamic version of Intensional Logic is presented in [Groenendijk and Stokhof, 1990].
This project was motivated by the desire to account for anaphora in natural language using
dynamic variable binding. The requirements of dynamic contextual reasoning are rather
different, and the logic DCIL presented below does not share many points of similarity with
Groenendijk and Stokhof’s Dynamic Montague Grammar.

Recall that in CIL an expression ( is assigned a value [(]a,w in @ model M; this value
depends on a world w and an index i. We now revise this interpretation by adding a modality
M in Dom(7-Mod) as another parameter, so that ¢ is now assigned [(]a,m,iw- Constants
and complex expressions are interpreted as before, so the interpretation of expressions does
not depend on the new parameter; but since the two parameters M and i constitute a context,
we can now say that in CIL expressions are interpreted relative to a context and a world. In
fact, where ¢ € Dom,(7-Mod) x Domp,z, we can let [(Jamiw = [CIMew-

To put it crudely, the difference between a static and a dynamic model theory is that the
latter relationalizes some of the parameters on which interpretation depends in the static
case. Here, we are interested in a logic supporting dynamic operators that change contexts
to contexts; so the dynamic models should involve relations over contexts. This can be
accomplished by relativizing evaluation to a pair of contexts: [(]1,c,cr,w is the value assigned
to ( relative to a world w and a pair of contexts ¢ and ¢’. The semantic definitions of CIL for
complex expressions are generalized unchanged to the dynamic case, except for the clause
for identity. This is restricted so as to render identities static; that is, identities are not
allowed to change the context. (See the discussion of static expressions, below.)

Where ¢ and £ are expressions of type 7, [( = {mecw = T iff ¢ = ¢ and
[[C]]M,c,c’,w = IIg]]M,C,C',W'

Where ( is an expression of type 7, [Az,({)|mecrw = f, where f is the function
from Dom(c) to Domy,(7) such that f(d) = [(] vd )y c e

Where ( is an expression of type (o, 7) and £ is an expression of type o, [((§) | me.c,w =
[[C]]M;C7CI1W ( I]:g]]MaCaCI:W) ‘

Where ( is an expression of type 7, ["(]m,c,er,w = £, where f is the function from
Dom(w) to Domay(7) such that f(w') = [(]arc,cr,w'-

Where ( is an expression of type (w, ), [V¢]mecerw = [CIM,c,crw(W)-

Where ( is an expression of type 7 and ¢ = (i, M), ["(Jmc,r.w = f, where f is the
function from Dom, () to Doma,(7) such that £(i') = [{Ja,er e w for ¢” = (i, M).

Where ( is an expression of type (i, 7) and ¢ = (i, M), ["Clamcerw = [€IMye,er,w (1)

To provide a logical environment in which sentences—expressions of type t—can perform
changes in the context, we have generalized evaluation to make it depend on a pair of
contexts. For uniformity, we have had to treat the interpretation of expressions of arbitrary
type in this way, but this generalization doesn’t have a natural interpretation for many types;
as far as I can see, for instance, although [ce)]at,c,crw is formally defined, it has no clear
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intuitive meaning. We need to devise a way of making such cases vacuous. And we must do
this in the context of a logic that is not partial, in which [(Jac,ew is always defined.’

Consider the type t; here we have some reliable dynamic intuitions. To say that a formula
¢ of type t is dynamically vacuous is to say that ¢ is a test; i.e., that it has no effect on
context. Such formulas meet the following condition.

Definition 5.1. Static type t expressions.
An expression ¢ of type t is static in M if for all ¢, ', w, if ¢ # ¢’ then [¢pmcew = L.

We generalize this definition to arbitrary types by choosing, for each type 7, a designated
“null value” 1L rq,. Wemake L, = L; also, we want to ensure that L g (o,r) (Lat,e) = Lat,r-
We can do this by defining L, by the following induction on types.'

Definition 5.2. 1 ;.
Basis. Ly = 1; Lae € Dompg(e); Law € Dompg(w); Lagi € Dompy(i).

Induction. L.y is the constant function f from Dom, (o) to Dom,(7)
such that f(d) = L4, for all d € Doma (o).

An expression of type 7 is static in case it receives the type 7 null value relative to any
pair of different contexts.

Definition 5.3. Static type T expressions.
An expression £ of type 7 is static in M if for all ¢, ', w, if ¢ # ¢’ then [{]|meew = Lo

A static model is one that treats all constants as static. We can show that in a static
model, all expressions are static.

Definition 5.4. Static model.
A model M is static if for all constants «, « is static in M.

Theorem 5.1. If M is static, then all expressions ¢ are static in M.

Proof. By induction on the complexity of expressions.

There is a natural correspondence between models of CIL and static models of DCIL. To
convert a CIL model M to an equivalent static DCIL model M', let [a]av cew = [ e w
for all constants a. Use the same identity to convert a static DCIL model to an equivalent
CIL model.

We can create special-purpose versions of DCIL with more interesting dynamic properties
by adding truthlike constants that exhibit dynamic behavior. I will describe three such
examples: ENTER, dynamic conjunction, and a dynamic “else” construction. Also, I will
introduce a context-dependent modality [HERE], which selects the necessity operator of
the current context.

[HERE] is a constant of type 7-Mod. [[ HERE 1]y w(p)(W') = T iff M(p)(w') =
T, for all w,w',c,c’ and all p € Domy,({w,t)), where First(c) = M.

9Providing for partiality in CIL is a very natural step to take, but I believe it is better methodology to
take these steps separately and incrementally. I have not yet tried to formulate a partial version of this logic.

10Note that the null values of type e, w, and i are chosen arbitrarily. Probably the most natural way to
do this would be to create special elements for this purpose.
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ENTER is a constant of type (7-Mod, (i,1)). [ENTER]|pmec o w(M,1) = T iff ¢ =
(M, i), for all c,c’, M, i.

; is a constant of type (t, (t,t)). ;(¢)(¢) is written ¢;¢. [¢;9V]mecw = T iff
for some ¢”, [@]mecrw = T and [P pmercrw = T-

ELSE is a constant of type (¢, (t,t)). ELSE(¢)(¢) is written ¢ ELSE.
[¢ ELSEY pmc,erw = T iff either (i) for some ¢”, [¢]meerw = T and ¢/ = ¢”
or (ii) for all ¢” [¢] m,cer,w = L and for some ¢, [Y]mcerw = T and ¢’ = ¢”.

These constructs can be used to formalize one of McCarthy’s ideas; that the ENTER
operator might enable a context to retrieve information from another context by accessing
it. The following formalization describes a process that elaborates the database example of
Section 4, whereby Ann’s database can discover that ‘I have a meeting with Ann at 9’ holds
from the standpoint of Bob’s database.

ENTER(Lb1,b;) ; MEET(I, a,9) ;ist(Lb1, b;, MEET(I, a,9))
ELSE —ist([ b1, b;, MEET(],a,9); ENTER([a], a;)

The theory appears to be faithful, on the whole, to McCarthy and Buvac’s ideas. How-
ever, a dynamic “Exit” operator that returns to the previous context cannot be formalized
without making significant changes in the underlying model theory.

I am uncertain myself about the usefulness of operators like ENTER([b1,5;). I find
operators that require explicit names of contexts somewhat unnatural. It may be that,
like possible worlds, contexts are best managed by implicit operators. If this is a genuine
problem, the entire theory would need to be reworked.

Bear in mind that the material presented in this section is rather tentative. The formal
properties of DCIL need to be explored more carefully; and I would very much like to develop
sharper intuitions about the interactions between contextual dynamics, higher-order types,
and intensionality.

6. Conclusion

There are several dimensions in which the logical framework that I have presented needs to
be generalized in order to obtain adequate coverage:

(6.1) The logic needs to be made partial, to account for expressions
which simply lack a value in some contexts.

(6.2) To account for default lifting rules, we need a nonmonotonic logic
of context.

We have a general sense of what is involved in making a total logic partial, in making a
static logic dynamic, and in making a monotonic logic nonmonotonic. For these reasons, I
have adopted the strategy of concentrating on how to formulate an appropriate base logic
to which these extensions can be made.

There are a number of approaches to the formalization of partial logics; indeed, the main
problem with the logic of partiality, it seems to me, is that there are so many alternatives,
and it is hard to select between them. Three-valued logic has been used in connection with
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the logic of context; see [Buva¢ and Mason, 1993]. However, a four-valued logic is more
symmetrical, and plausible arguments, starting with [Belnap, 1977], have been given for its
computational usefulness. Most important for the project at hand, [Muskens, 1996] provides
an extended study of how to modify IL using this approach to partiality. It is relatively
straightforward to adopt Muskens’ work to CIL.

There is, however, a much more ambitious application of partiality, according to which
indices are regarded not as full, but as partial disambiguations of expressions. This program,
which would require a more radical rethinking of the theory, may be needed to deal with
applications of context to natural language interpretation, though perhaps it is unnecessary
in cases in which indices correspond to carefully constructed knowledge sources. See, for
instance, [van Deemter and Peters, 1996 for information on partial disambiguation.

As for nonmonotonicity, although circumscription is usually formulated in second-order
extensional logic, it is relatively straightforward to add a theory of circumscription to IL.
Similarly, I believe that other standard approaches to nonmonotonic logic could be adapted
to a type theoretic framework. But this only provides a bare framework. The problems
of developing a nonmonotonic logic capable of formalizing realistic problems in contextual
reasoning would remain to be addressed.

None of these logical developments is entirely trivial, and in fact there is material here
for many years of work. I hope to report on developments in these directions in the future.
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