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Abstract. Electromagnetic volume scattering theories for random media using a coherent
field approach require some understanding of the statistical behavior of the locations

of individual scatterers within the random medium. This knowledge manifests itself as
the correlation function or pair distribution function, which is used to characterize the
medium. This article presents a method for simulating the arrangements of particles of
arbitrary shape within a very dense random medium, thus allowing for these functions to be
calculated numerically. To demonstrate the significance of the Monte Carlo simulation, the
problem of scattering from a two-dimensional dense random medium is considered. Using
a first-order solution based on the Born approximation, it is shown that the approximate
theoretically derived correlation function may lead to significant errors in the prediction of

the backscatter response.

1. Introduction

Study of electromagnetic wave interaction with a
collection of random particles (volume scattering) is
of importance because of its application to a variety
of radar remote sensing problems. Volume scatter-
ing theories are developed to determine basic elec-
tromagnetic properties of the medium such as the
effective propagation constant, the attenuation con-
stant, and the incoherent scattered power. Modeling
efforts for volume scattering can be categorized into
two groups: incoherent approaches and coherent ap-
proaches. In incoherent volume scattering theories,
such as radiative transfer [Chandrasekhar, 1960], the
effect of the phases of the fields scattered between
neighboring particles is ignored. These methods are
usually applied to sparse media where single scat-
tering properties of constituent particles are used
to formulate the volume scattering problem. Inten-
sity approaches implicitly make the sparse medium
assumption that individual scatterers are randomly
positioned with respect to one another. As the scat-
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terer density increases, multiple scattering between
particles becomes, significant and the scattering so-
lution based on the incoherent approach can become
prohibitively complex [Tsang and Ishimaru, 1987).
Coherent approaches, on the other hand, such as
the Born approximation and the quasi-crystalline ap-
proximation (QCA) [Tsang et al., 1985], account for
the interaction between particles through the inclu-
sion of a permittivity fluctuation correlation function
or a scatterer center pair distribution function, both
of which provide statistical descriptions of the loca-
tion of scatterers with respect to each other. The
need for the correlation or pair distribution functions
adds another complexity to volume scattering theo-
ries, namely that associated with how to determine
these functions for the medium under consideration.
These functions play an important role in determin-
ing the scattering behavior of the random medium
and thus must be characterized accurately. The im-
portance of this characterization has been somewhat
overlooked in the literature. Simple Gaussian and
exponential functions are usually used as an approx-
imation for the correlation function since they are
amenable for algebraic manipulation, but there is lit-
tle evidence in support of the hypothesis that these
are accurate representations of natural media. It is
the purpose of this paper (1) to present a numerical
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technique to determine the correlation and pair dis-
tribution functions accurately and efficiently based
on physical modeling of particle arrangements in a
random medium; (2) to demonstrate the application
of the correlation function to the two-dimensional
Born approximation and make a comparison with
theoretically derived results; (3) to use the derived
correlation function to demonstrate limitationsin the
use of the exponential correlation function; and (4) to
highlight the use of packing algorithms as a method
of scattering analysis that can be used to analyze or
enhance existing scattering theories.

The methods of determining the correlation func-
tion or the pair distribution function can be cate-
gorized into experimental theoretical, and numerical
approaches. Experimental determination involves
capturing an undisturbed sample of the volume un-
der study and analyzing it for the desired informa-
tion. This approach is quite difficult, very time con-
suming, and its accuracy depends on the particle size
and measurement method. A classical example of
such a process is given by Vallese and Kong[1981]
where a layer of snow was infused with liquid plastic.
The final result was the two-dimensional correlation
function of the permittivity fluctuations due to the
two dissimilar dielectrics of air and ice. The observed
correlation function for one sample was then fit to a
theoretical model (exponential) from which further
calculations could be carried out. Further assump-
tions, such as azimuthal symmetry and validity of
the theoretical model, were required to estimate the
three-dimensional correlation function.

Theoretical methods of determining the correla-
tion and pair distribution functions, while benefiting
from a greater generality than experimental meth-
ods, must use simplifying assumptions to make the
theories tractable and easy to handle. For the cor-
relation function, it is common to use an exponen-
tial function [Debye et al, 1957], which is derived
by assuming that individual particles are positioned
randomly with respect to one another. Such an as-
sumption is valid in the limit when particle sizes are
distributed over a wide range and/or when the par-
ticle density is low. This function will be the used as
a basis of comparison further in the paper.

The pair distribution function of Percus and Yev-
ick[1958] is another such theoretically derived func-
tion commonly used in conjunction with QCA and
dense media radiative transfer [Tsang and Ishimaru,
1987]. This particular distribution is tailored for a
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medium consisting of discrete-sized spherical parti-
cles and in which there are no interparticle forces ex-
cept exclusion, as in a classical fluid; external forces,
such as gravity, are not taken into account. For
macroscopic media such as snow, soils, and sand, the
Percus-Yevick distribution may not be applicable be-
cause particle positions are dominated by forces such
as friction, gravity, and inertia. It is not difficult to
come up with examples where the Percus-Yevick pair
distribution function would give considerably differ-
ent results than would be expected for macroscopic
particles under the influence of these conditions. For
instance, if we were to create a dense assembly of
uniform spheres in their lowest energy state, a crys-
tal, and then randomly remove 10-20% of them, the
pair distribution function would not change because
the basic structure of the crystal still remains (see
Appendix). In a classical fluid however, particles are
allowed to rearrange themselves to reach the lowest
energy state, which is dependent on their relation to
one another. Thus the pair distribution function in a
classical fluid would change as the Percus-Yevick dis-
tribution predicts, but there is no reason to expect
that the pair distribution functions of macroscopic
particles under a different set of forces would be sim-
ilar. Thus it is important to explore other avenues
of determining these functions to either verify the
validity of employing these theoretical techniques to
specific applications or generate the functions them-
selves.

Numerical methods refer to algorithms for deter-
mining the correlation function and pair distribution
functions through the use of a computer to simulate
the scatterer positions in a given space. Some of
these methods are used to validate already existing
theoretical distributions [Ding et al,, 1992; Broyles
et al., 1962], while others are used to determine the
desired correlation or pair distribution functions di-
rectly [Buchalter and Bradley, 1992, 1994]. Pack-
ing algorithms are basically split into two groups,
those that physically model the pouring deposition
of particles and those that generate possible particle
arrangements. Of the physical models of pouring,
a general trend is to model the interaction of hard
grains as they “pour” downward into a given volume.
Models such as this are used to investigate local par-
ticle ordering and the effects of shaking packed sets
of particles. The algorithm of Buchalter and Bradley
is the most elaborate of these methods, it models
collisions and rotations of uniform two-dimensional
[1992] or three-dimensional [1994] monosized ellip-



SIQUEIRA ET AL.: NUMERICAL SIMULATION OF SCATTERER POSITIONS

soids as they pour into a two- or three-dimensional
volume. Nevertheless, modeling of the physical pour-
ing of particles is complex and time consuming; as
this set of models more closely attempts to match
the physical processes involved in the pouring pro-
cess, the computation time will increase proportion-
ally. For this reason, the numerical pouring model
of physical deposition may not be appropriate for
Monte Carlo simulations and may not be amenable
to the real world situation of varying particle shape
and size.

For the scattering problem, we may be more in-
terested in computational efficiency in determining
possible arrangements of particles rather than phys-
ically modeling their deposition if the resulting ar-
rangement appears reasonable. In the arrangement
set of algorithms, some methods, such as in the se-
quential addition method [Ding et al., 1992], simply
find open spaces for particles to fit within a con-
fined area or incorporate an external force such as
gravity, from which local potential energy can be
minimized and particle stability can be maximized
[Visscher and Bolsterli, 1972]. While the existing al-
gorithms of this type can be considered to be much
more computationally efficient than the physical de-
position models, up until now they have been lack-
ing in flexibility to model arrangements of particles
of different shapes, particularly when it comes to the
three-dimensional problem.

The method described here should be considered
a method of generating particle arrangements rather
than a numerical pouring model. It takes into ac-
count the three important factors of determining par-
ticle arrangements: nonpenetration of neighboring
particles, gravity, and particle shape. This presented
method is capable of determining particle distribu-
tions in both two and three dimensions and is compu-
tationally efficient enough to provide a large sample
size for Monte Carlo simulations. The new method
is not restricted to spherical/elliptically shaped par-
ticles and, as will be described, may be used in con-
junction with coherent volume scattering theories to
explore the scattering from dense random media.

This paper is arranged as follows: first the pack-
ing algorithm is described in section 2, and examples
for both the two- and three-dimensional problems
are given. Methods describing accurate calculation
of the correlation function and pair distribution func-
tion from the computer-generated particle positions
are given in section 3. In order to demonstrate the
importance of the packing algorithm to the problem
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of volume scattering from a very dense medium, scat-
tering solutions based on the Born approximation us-
ing the correlation function computed from the pack-
ing algorithm and an exponential function having
the same correlation length are compared as a func-
tion of incidence angle and frequency. Because the
angular backscatter response is proportional to the
two-dimensional Fourier transform of the correlation
function, it is possible to introduce the concept of a
“visible region” where we can gain insight of how the
choice of observation frequency samples the Fourier
space of the correlation function. This is done in the
second half of section 3, where the angular depen-
dence of the backscatter response is demonstrated
for a particular example at two different frequencies,
one below and one above the resonance of the mean
particle size. In the Appendix, we offer a brief dis-
cussion of the dependence of the pair distribution
function on the particle arrangement method.

2. Packing Algorithm

We begin by introducing a user-defined distribu-
tion of particle states, P, where the state of a par-
ticle is a vector representing the particle size, shape,
orientation, and dielectric constant. For the pur-
poses of demonstration, elliptically shaped particles
will be used, however, this packing algorithm is not
restricted to the simplified elliptical shapes. In two
dimensions the state of such a particle is represented
by

Py =(ap,bp,0p,¢p) (1)
where a,, b, are the lengths of the two principle axes,
6, describes the orientation, and ¢, is the dielectric
constant of the particle. To simulate the particle po-
sitions in two dimensions, a rectangular region with
J being the discrete horizontal coordinate and z be-
ing the vertical coordinate is considered (Figure 1).
Coordinates of the intersection of the principal axes
of the particle p denote the position of the particle,
which, together with the particle state, completely
specifies the particle in the medium. The vector state
of a particle is chosen by a random number generator
with a prescribed distribution for the different states
ap,bp,0p, and €,. In this paper, it is assumed that
the principal axes of the particle have a normal dis-
tribution (N (@, 04)) and the orientation angle of par-
ticles has a uniform distribution (U(—m, 7)). The ex-
act distributions of the particle states may be chosen
according to physical measurements or an empirical
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new particle, p

Figure 1. Illustration of the two-dimensional pack-
ing algorithm. Particles are fit to the surface S, to
find the minimum height, z. Once a particle has been
fit to the surface, it becomes part of the surface for
the next iteration of the process.

model. The particle is then laid down individually
via the packing algorithm into the region to be filled.
By making the limits of the region large compared to
the sizes of the individual particles and by using the
periodic boundary conditions, a semi-infinite layer of
particles can be simulated. Periodic boundary con-
ditions refer to making the spillover of a particle on
one boundary appear on the opposite boundary of
the region.

The packing algorithm starts by setting down an
initial layer on the bottom of the rectangular region
so that the lower surface is covered by a single layer of
particles. This set of particles creates a bumpy solid
surface, Sp. Particles are then sequentially added to
the region in the following manner:

1. A particle state P, is selected from the dis-
tribution, thus setting the particle shape and
orientation.

9. The surface of the particle is discretized and
then categorized into a set of lower and up-
per surface points, as shown in Figure 2. The
points of the lower surface will be used in
matching the surface of the particle to the cur-
rent surface, Sp.

3. A fitting method is used to find the lowest
height, z,, as a function of the horizontal coor-
dinates, that the particle will fit to the surface.
This is equivalent to minimizing the potential
energy of the particle.

4. The particle’s position, 7p, and state, P, are
stored in a file, and the surface is updated to
Sp+1 using the upper surface points determined
in step two.

5. The first step is returned to until the desired
layer thickness is reached.
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The algorithm in its current state assumes that,
averaged over a large sample, orientation is uniformly
distributed between 0 and 27. An additional com-
plexity may be added to the algorithm to minimize
zp as a function of particle orientation also (i.e.
is no longer one of the preset states given in (1)).
While this may provide a more realistic variation to
the algorithm, it is unlikely that the additional com-
putational costs would outweigh the benefits. Biases
in the orientation distribution that the user wishes
to impose can be more efficiently introduced via the
probability distribution chosen for the orientation
states.

The fitting method described in step three is one of
the key components that makes this algorithm com-
putationally efficient. While any fitting method will
be sufficient in this treatment, the one used here bor-
rows a concept from the image processing technique
of gray scale morphology [Serra, 1982; Giardina and
Dougherty, 1988; Appleton et al., 1993]. In this pack-
ing algorithm, a gray scale dilation is used to find the
minimum height that a given shape fits to the sur-
face. To describe this procedure, consider a particle
such as the one shown in Figure 2. The surface of
a particle is represented by an upper (M"PP€T) and
a lower surface (M1°%er). The lower part of the sur-
face determines how the particle will fit the the cur-
rent surface, Sp, and the upper part determines how
the particle will contribute to the new surface, Sp41,
once the particle has been deposited. Given a para-
metric equation for the surface of a particle, z(%),
these surfaces can be described by

MpPP(i) = {max, 2 (i) : -m <i<m}  (2)

L 1 1 1 | 1 1 i 1
-m - i P +m

Figure 2. Illustration of the lower surface of a par-

ticle, Mgower. The particle is discretized into a hori-
zontal grid and the maximum and minimum heights
of the particle at points on the grid define the upper
and lower surfaces.
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Mo (3) = {min, z,(i) : —m < i <m}

(3)
where for a normally oriented ellipse, z, (i) =
(1 - %), with a, and b, given in (1) and m
b4

being the horizontal limit of the extent of the ellipse
(m > max(ap, bp) Vp). Note that the form of z,(%) is
used here only for demonstration purposes and does
not constrain the process once (2) and (3) have been
determined.

The height of where a particle will rest for a given
horizontal position, j, along the surface S, is given
by the morphological dilation (Figure 3)

height(j) =

{max; (Sp(j +1) — MPV(0)) : —m < i < +m).

4)

The minimum height attainable used by step three
in the procedure is
zp = min; (height(j)). (5)
Successful algorithms have been implemented for
both two- and three-dimensional elliptical particle
distributions, and examples are shown in Figures 4
and 5 (to make the three-dimensional problem more
efficient, a local minimization over an area of sev-
eral particle diameters was performed rather than
global minimization, indicated by (5)). The two-
dimensional example clearly shows the algorithm’s
ability to generate very dense arrangements of parti-
cles in a short amount of computer time, two charac-
teristics that make the algorithm amenable to Monte
Carlo dense media volume scattering analysis. Fur-
thermore, an analogous dense medium three- dimen-

lower
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Figure 4. Demonstration of the two-dimensional
packing algorithm. Particle radius is 2mm =+ 0.4mm.
In this case the volume fraction is 0.8. This particu-
lar simulation took 23 seconds on a Sun 10 worksta-
tion.

sional example is given for nonspherical particles
with a Gaussian size distribution.

Results from the packing algorithm can be used
to determine physical characteristics such as volume
fraction, correlation length and function, and pair
distribution function, of a volume under study. Fu-
ture work in this area may be to include impurities
such as water and determine the coating of individual
grains through the implementation of simple physical
processes such as surface tension and entropy max-

g

| S— 1 1M 1 1 1 1 1 1 1 1
=
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i=lp

Figure 3. Illustration of (4) for two different points (j1, j2) on the surface S ( j). The dilation
of the surface is shown for each point on the surface where the maximum is hlghhghted by
a circle. This is the height of where the center of the ellipse would lie for a given horizontal
location, j. The minimum of these heights defines the point of minimum potential energy.
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Vertical axis, z (mm)

0 5 10 15 20
Horizontal axis, j (mm)

Figure 5. Demonstration of the three-dimensional
packing algorithm. Shown are several slices taken
out of a 50-mm?3 cube filled with ellipsoidal particles
with radii of 2mm + 0.4 mm. Shading varies from
light to dark to indicate increasing depth in the cube
for a range of 2mm. This simulation using 3300 parti-
cles took approximately 12 min using four processors
of an IBM SP Parallel computer. Particles of arbi-
trary shape may be modeled at minimal additional
computation cost.

imization. Other natural substances, such as snow,
may also be simulated by reducing the minimization
of potential energy constraint, which can be accom-
plished by making individual particles stick once they
reach the surface of the packed layer. The simplicity
with which the algorithm can be changed for parti-
cles with a general cross section is demonstrated in
Figure 6 where packing of two-dimensional rocks is
simulated. In this figure the standard packing algo-
rithm is used with a random walk modification of the
individual particle surfaces.

3. Permittivity Correlation and Pair
Distribution Functions

One of the principal uses of the packing algorithm
is in the calculation of the permittivity correlation
and pair distribution functions which can be used in
conjunction with coherent theoretical approaches to
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Vertical axis, z (mm)

Horizontal axis, j (mm)

Figure 6. Demonstration of the packing algorithm
for two-dimensional rocks. Rock surfaces are gener-
ated by a random walk about a uniform radius 2mm
+ 0.4mm. This particular simulation of 100 x 100
mm took approximately 30 s on a Sun 10 worksta-
tion.

compute scattering in inhomogeneous random me-
dia. One such classical approach is the Born approx-
imation (Figure 7) [Tsang et al., 1985], where the
permittivity fluctuations act as distributed sources
in an effective homogeneous medium. The scattering

free space

 random medi
S

Figure 7. Geometry for a two-dimensional random
medium. Medium 0 is considered free space, and
medium 1 is a random media consisting of particles
as described in Figure 4.
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solution is then determined using a perturbation se-
ries. It is shown that for a random medium where the
variation of the fluctuating permittivity is relatively
small, the scattering coefficient from the medium can
be directly calculated from the Fourier transform of
the correlation function given by

Cr—7) ={e;(Pes (7)) (6)

where €;(7) is the fluctuating part of the permittiv-
ity function. The most commonly accepted form for
the correlation function is the exponential function
which was derived originally by Debye et al.[1957] for
a sparse random collection of spherical particles and
is given by

C(F) = e~ ITl/ro, )

The corresponding two-dimensional power spectral
density is given by
- 3

8= W )
Here, the parameter 7y is related to the mean diam-
eter of particles in the random medium. For dense
random media, experimental and numerical methods
have been attempted to determine C(7—7') from the
recorded samples of the medium under study. For
most practical cases, the behavior of the correlation
function when 7 is in the near vicinity of 7 does
indeed resemble that of an exponential or Gaussian
function. Because of the ease with which these func-
tions can be manipulated algebraically, their use has
become widely prevalent in the literature. A diffi-
culty that arises however, is that the power spectral
density is proportional to the integral of the corre-
lation function over all space, and thus estimation
of the correlation function for only small values of
7 — 7 may not be sufficient for accurate estimation
of the power spectral density for different ranges of
observing frequencies.

The packing algorithm described in the previous
section is an ideal tool for determining the validity
and range of applicability of assumptions made in
the determination of this correlation function. Fur-
thermore, since the packing algorithm is capable of
making a full Monte Carlo realization of a random
medium, it may be used to enhance the understand-
ing of the physics behind the scattering mechanisms
in a very dense medium. Computationally, it is much
faster to perform simulations in two dimensions to
first develop an understanding and then in the fu-
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ture to extend the results to three dimensions. In
two dimensions, it can be shown that the radar cross
section using the Born approximation is given by

oo, (6:) = |Xoul'K
0 kG v, 4
on(0) = 7alYoul’K
1
o = 2R3k, ~2k1si) | ks 2
cos(8;)(2k7,;) ki
kxi = k’oSil’l(gi)
kizi = kimcos(6;) 9)

where 6; is the angle of incidence, Xo1; and %You
are the transmission coefficients from medium 1 to
medium 0, k1, is the mean field propagation con-
stant due to the average dielectric, (¢), kj,; is the
imaginary part of the propagation constant in the
scattering medium and the power spectral density ¢
is

¢(kz, k:) = @#/C(F— #)elFTd2r.  (10)

The unknowns in this formulation are the propaga-
tion constant and the correlation function for the
random medium. The propagation constant can be
either the spatial average of the dielectric constant
within the random medium (Born approximation)
or derived from a mixing formula (distorted Born
approximation). In what follows, the Born approx-
imation will be developed for a prototypical exam-
ple in which the described packing algorithm will be
used to provide the correlation function. After il-
lustrating the two-dimensional correlation function
with the associated power spectral density, a com-
parison will be made with similar results obtained
by using an exponential correlation function (7) hav-
ing the same correlation length. In the calculation
of the permittivity fluctuation correlation function
from the collected samples of the medium, it is com-
mon to generate the autocorrelation function of each
sample and then average the resultant autocorrela-
tion functions. However, a difficulty may arise from
this procedure: the Fourier transform of the correla-
tion function may become negative over some partial
frequency range. This is a result of poor estimation
of the tail of the correlation function and possible
asymmetry in the sample cross section, the former
being a consequence of the finite size of the sampled
medium. To circumvent this difficulty while keep-
ing the size of the sampled medium within realis-
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tic dimensions, the power spectral density should be
computed directly from the Fourier transform of a
profiled sample of the random medium. Since the
correlation function of the permittivity fluctuation
process is continuous, it implies that the process is
continuous in the root mean squared sense, which in
turn implies that the power spectral density can be
directly computed from

. 1
¢(kz, k) = Xlglloo Xz
Z — o0

X ,z 4 2
E / / e (z, 2)ek=s b dpdz| b (10)
0 0

The example considered here simulates the obser-
vation of a two-dimensional layer of sand particles
with permittivity ¢, = 3.15 + 50.005, (¢) = 2.54 +
j0.004, (6?) = 0.56, and volume fraction f = 0.8. In-
dividual realizations of Gaussian-distributed packed
particles were created using a mean radius » =2 mm
with a standard deviation of 0.4 mm for the two prin-
cipal axes and a uniform distribution for the orien-
tation angle of the ellipses. Observation frequencies
used for this discussion will be at a below-resonance
frequency of 10 GHz ()A;/2 = 8.5mm) and an above-
resonance frequency of 35 GHz ()\;/2 = 2.4mm),
where resonance refers to the average half wavelength
(Xs/2) dimension of the scattering particles. Over
three hundred packing realizations of the dimensions

-
/
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Correlation, C(r-r")

0.64

0.4

0.2
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0.2 x 0.2 m were used to determine the power spec-
tral density directly from the Fourier transform of the
packed profiles given by the packing algorithm. The
correlation function and the power spectral density
are shown in Figures 8 and 9, respectively, where the
nonaxial symmetry patterns are clearly displayed.
The strongest peak in the power spectral density
lies along the diagonal, as would be expected in
a tightly packed array of two-dimensional spheres
with a narrow size distribution. A wider distri-
bution would give a more axially symmetrical two-
dimensional spectrum.

This can be demonstrated by using a Rayleigh dis-
tribution to determine particle radius rather than us-
ing a Gaussian distribution. Because the packing
algorithm has a limited resolution due to the dis-
cretization of the particle ((2) and (3)), the Rayleigh
distribution is truncated at the very small scale. Fur-
thermore, for the sake of comparison with previous
theoretical and experimental work, particle shapes
used with the Rayleigh distribution were made cir-
cular rather than elliptical, this has the effect of re-
ducing the randomness of particle locations, but this
is an effect that is ameliorated by the wider particle
size distribution.

The probability density functions of both distribu-
tions are shown in Figure 10, where it can be seen
that the Rayleigh distribution is wider by about a
factor of three. Thus for the wider particle size distri-
bution we would expect that the correlation function
and spectral density to more closely approximate

15

5

0
-5 ol ARIS (m(“\
yerti©

Figure 8. Two-dimensional correlation function for the particles in Figure 4. The correla-

tion function is not axially symmetrical.
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Figure 9. The power spectral density derived from data shown in Figure 4. Strong
peaks along the diagonal highlight the periodicity in the correlation function seen along
this axis. Arcs drawn along a constant radius are proportional to the backscatter intensity

as a function of incidence angle.

that of the exponential function (which would be cor-
rect for completely random particle placement) and
this is indeed shown to be the case. Plots in Figures
11a through 1lc illustrate the correlation function
and its power spectral density along three principal
axes of the two-dimensional volume for both particle
distributions and the exponential correlation func-
tion. It can be seen that at both short and long dis-
tances, the correlation function of both particle dis-
tributions and the theoretical exponential function
agree very well, but it is at the midrange distances
where the functions can be seen to differ. These dif-
ferences become more apparent in the low-frequency
region of the power spectral density for the derived
correlation functions. Note again a better agreement
of the Rayleigh-distributed particle result with the
theoretical exponential function, but still there is an
appreciable error at the low-frequency region.
Referring to the Gaussian distribution function,
the effect of the strong peaks in the power spectral
density function along the XZ axis in Figure 11b can
be clearly seen in the extended periodicity of the
correlation function along this axis. Again, this is
indicative of the natural ordering of the system for
tightly packed arrays of particles with a narrow par-
ticle size distribution, and we note that it is less of
a feature when the particle sizes follow a Rayleigh
distribution. An important consequence of this lack

of symmetry, however, is that it would be inappro-
priate to calculate the correlation function along one
axis of the distribution (such as the function in Fig-
ure 10a) and to enforce axial symmetry. The effect
of such an action would be that the resulting power
calculated through (10) would not be positive for all
frequencies because the chosen correlation function
along the one axis is not, and cannot be, the correla-
tion function for an axially symmetrical medium. In
effect, then, if an exponential or Gaussian function
is not to be used, the only appropriate way to calcu-
late the correlation function is to completely sample
the fluctuations in two- or three-dimensional space.

o o
()] ®
20

o
'S
T

Probability density

3 4 5 6 7 8
Particle radius (mm)

Figure 10. Gaussian (solid line) and truncated
Rayleigh (dot-dashed line) probability distribution
functions of particle radii used in the packing algo-
rithm. Both distributions have the same mean.
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Furthermore, and more importantly, as is shown by
Figures 11a through 11c, the deviation of the numer-
ically derived power spectral density from the expo-
nential power spectral density is as high as an order
of magnitude at the lower frequencies, which is pre-
cisely the region of validity for the Born approxima-
tion.

As indicated by (9), only a portion of ¢(ks, k)
is “visible” at a particular frequency. The loci of
the spatial frequencies as the incidence angle varies
from 0° to 90° is an ellipse with semi-axes of 2k
and 2k1,, as illustrated in Figure 12. In this fig-
ure it can be seen that while the spectral density
is not axially symmetric, the visible regions at each
of the observing frequencies are nearly so. The ef-
fects of the asymmetry are most strongly observed
at frequencies near the resonance of the particles
within the medium. This figure can be used to under-
stand the relationship between observing frequency
and physical structure of a random medium. De-
creasing particle sizes would have the effect of mov-
ing features radially outward in the figure, the same
effect as decreasing frequency. Narrowing the par-
ticle distribution would have the effect of increasing
the magnitude of the peaks shown in the figure and
further disturb the high-frequency agreement of the
observed backscatter with the backscatter response
expected for a medium whose particles follow an ex-
ponential function. Another interpretation of the fig-
ure shows that the particle size distribution of a ran-
dom medium may be explored by frequency sweeping
near the particle resonance at angles slightly greater
than 45°.

Given the derived correlation function for a spe-
cific particle size distribution we can carry out the
remaining mathematical operations in (9) to get the
observed backscattering cross section, which is shown
in Figures 13 and 14. In Figure 13 the backscatter-
ing coefficients of the medium for both the vertical
and horizontal polarizations at 10 GHz and 35 GHz
are shown and compared with those derived based
on an exponential correlation function for a Gaus-

Figure 11. Slices of Figures 8 and 9 taken along the
principal axes of (a) 8 = 0°, (b) 6§ = 45°, and (c) 6 =
90°. The solid lines and the dot-dashed lines show
the numerically derived values for the Gaussian and
Rayleigh particle size distributions, respectively. The
dotted lines show the equivalent correlation function
and spectrum for the best fit exponential.
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Spectral Intensity, Phi
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Figure 12. Illustration of the visible region of
the Born approximation at two different frequencies
shown overlaid on a contour map of the power spec-
tral density (Figure 9) for the Gaussian particle size
distribution. Note that the greatest angular varia-
tion due to the packing structure occurs near reso-
nance at f = 21 GHz.

sian particle size distribution. Figure 14 is the same
as Figure 13 for an observation frequency at parti-
cle resonance (21 GHz), where differences between
observed and predicted backscatter response are ex-
pected to be the greatest.

Referring to Figures 8 through 14, the following
observations are in order: (1) differences between the
backscattering coefficients estimated from the corre-
lation function derived from the Monte Carlo simula-
tion and the exponential function can be as high as 10
dB; (2) angular variation may depend strongly on the
observation frequency and particle size distribution
(see Figure 14); and (3) the correlation function and
the respective power spectral density are not likely
to be radially symmetrical, but this may not have a
strong effect on the observation with the exception
of frequencies near resonance.

Another statistical function relating to particle po-
sitions that is commonly used in the study of ran-
dom media is that of the pair distribution function,
p(7j|7:), which is the probability of finding a particle
located at a position 7;, given a particle located at
position 7; [McQuarrie, 1976]. The knowledge of the
pair distribution function becomes necessary where
the effective propagation constant of a dense random
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Backscatter Cross Section (dB)

3lgngle of lncldt-:‘nce5 (degreese)

Figure 13. Results of the two-dimensional Born ap-
proximation for both 10 and 35 GHz for the Gaussian
particle size distribution. Solid lines are for vertical
polarization, dashed lines are for horizontal polariza-
tion, and the open and crossed-out circles indicate
vertically polarized results of the Born approxima-
tion using the best-fit exponential (Figure 11).

media is to be determined [Tsang et al., 1985; Laz,
1952]. As the packing algorithm can be used to de-
termine the correlation function, it can also be used
to determine the pair distribution function.

12,
e T T T T T T T

Backscatter Cross Section (dB)

; ; ; i ; %
0 10 20 30 40 50 60 70 80 90
Angle of Incidence (degrees)

N

Figure 14. Results of the two-dimensional Born
approximation at particle resonance (f = 21 GHz)
for both numerically derived (Gaussian particle size
distribution) and exponential correlation functions.
Solid lines and circles indicate vertical polarization,
and dashed lines and crosses indicate horizontal po-
larization. The symbols represent the theoretical ex-
ponential curves in both cases.
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Figure 15 illustrates the aggregate pair distribu-
tion function for the particle arrangement consisting
of two-dimensional ellipses shown in Figure 4. In
this figure, the pair distribution function is shown
as a gray scale image in two dimensions where the
brightness is directly proportional to the probability.
As expected, a dark area covers the central region
indicating the zero probability of having two parti-
cles intersecting one another. More remarkable is the
ringing effect along the diagonals of the image, indi-
cating periods of high and low probability, which is
reflective of the results obtained by the correlation
function. This effect is highlighted in the graph in-
set in Figure 15, where the pair distribution function
is shown quantitatively along the horizontal, verti-
cal, and diagonal axes. The strong peaks along the
diagonal axis are a result of the dense packing with a
narrow size distribution. In comparison, the Percus-
Yevick pair distribution function predicts an axially

Vertical Axis, z (mm)

-10
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symmetrical function for single-sized spherical parti-
cles. The example given here clearly is not so and
cannot be so for monosized particles under the influ-
ence of gravity. This does not disprove the Percus-
Yevick pair distribution function, but it does call into
question its application to macroscopic granular me-
dia under the influence of external forces.
Additional treatment of the sensitivity of the pair
distribution function to particle extraction is given
in the Appendix. In this treatment it is shown how
the pair distribution function does not change when
particles are randomly removed from a simulated ar-
rangement of particles. The central assumption to
this observation is that when particles are removed,
the remaining particles are not allowed to phyically
rearrange themselves. This is an arguably unphysical
phenomenon, but it emphasizes how similar arrange-
ments of particles may result in considerably different
pair distribution functions. This point is especially

0 10
Horizontal Axis, j (mm)

20

Figure 15. The pair distribution function, p(¥; |F;), for the packed array shown in Figure 4
(Gaussian size distribution). Dark areas indicate low probability and bright areas indicate
a high probability of finding another particle at 7;, given a particle at 7;. The inset graph
gives the quantitative pair distribution function along the vertical, horizontal, and 45° axes.



SIQUEIRA ET AL.: NUMERICAL SIMULATION OF SCATTERER POSITIONS

important for those who use the Percus-Yevick pair
distribution function in the modeling of snow.

4. Conclusions

In this paper we have introduced a new approach
to determining particle arrangements. The approach
is computationally efficient, flexible, and was demon-
strated to work in two dimensions as well as three for
nonspherical particles. A two-dimensional “rocks”
example was also given that demonstrated the abil-
ity of the algorithm to work with particles of arbi-
trary shape. The algorithm was then used to com-
pute the correlation function for two different size
distributions of particles, one Gaussian and the other
Rayleigh, and it was highlighted that the proper way
to calculate the correlation function was through an
averaged periodogram in the spectral domain rather
than averaging individual correlation functions or as-
suming radial symmetry from the outset. The cor-
relation functions of the two particle size distribu-
tions were compared with a theoretical exponential
correlation function, where it was shown that the de-
rived functions deviated from the theoretical at low
frequencies but agreed well at high frequencies. It
was also shown that the wider Rayleigh distribution
gave a better fit overall to an exponential function,
as would be expected.

Derived correlation functions from the packing al-
gorithm were used to compute radar backscatter via
the Born approximation, where it was shown that
an increase in the backscatter response as a func-
tion of observation angle can be related to angular
asymmetry in the correlation function. This asym-
metry may be due to the natural ordering of particles
when arranged under the influence of gravity. Fi-
nally, another application of the packing algorithm
was given as it applies to the determination of the
particle pair distribution function, which is a key
unknown in the quasi-crystalline approximation, and
an argument was presented as to why the more com-
mon Percus-Yevick pair distribution function is not
appropriate for use with granular media.

Appendix

As mentioned in the main body of the paper, the
pair distribution function plays an important role in
many field theories of scattering behavior. Often this
is thought of as being a robust quantity and the pair
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distribution function of one medium is applied to an-
other with the hopes that the pair distribution func-
tion would still be applicable. For instance, it is very
common to apply the Percus-Yevick pair distribution
function for classical fluids to the problem of snow
[Wen et al., 1990; Tsang and Kong, 1992; Tsang,
1992]. In fact, the pair distribution is very depen-
dent on the method of particle arrangement as was
illustrated in Figure 15. One interesting aspect of the
pair distribution is that it remains unchanged under
the process of particle extraction (assuming that par-
ticles are not allowed to rearrange themselves). The
example given here highlights how similar arrange-
ments of particles may result in strikingly different
pair distribution functions.

In general, the pair distribution funétion may be
written as [McQuarrie, 1976, pg. 258]

(12)

where p(73|71) is the probability of a particle being
located at 7 given a particle located at 7y, and p(7;)
is equal to the particle number density, ng. Note that
when |Fy — 71| > b (where b is the average grain di-
ameter), p(¥2|[F1) = p(71), and then g¢(F2,7) = 1,
as expected. Now, given a particular particle ar-
rangement method (say, a classical fluid), we have
the probability function

9(T2,71) = p(72|71)/p(71),

(13)

If we reduce the particle density in our system by the
factor f, we have

po(T2|T1).

Po(T1) = fpo(71) (14)
and similarly (because particle removal is indepen-
dent of particle position),

(15)

Then by (12), the pair distribution function remains
unchanged.

This result can be easily demonstrated numerically
by generating random arrangements of particles. A
common method of simulating a classical fluid is to
randomly introduce particles into an empty container
(Figure A1). In Figure Ala, the particles represented
by dotted lines illustrate a classical fluid simulation
for a volume fraction of 30%. The particles repre-
sented by solid lines in Figure Ala show the remain-
ing particles after reducing the number of particles

Po(F2|T1) = fpo(F2|71).
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Figure A1. Particle arrangement method for a clas-
sical fluid. (a) 30% volume fraction using sequential
addition (dotted circles) and 10% volume fraction

resulting from particle extraction (solid circles). (b) .

10% volume fraction using sequential addition.

from a volume fraction of 30% to a volume fraction
of 10% by random extraction. Figure Alb gives a
classical fluid distribution of particles for a volume
fraction of 10% where, as for the 30% case, parti-
cles have been randomly placed in the box but not
removed. The pair distribution function for these
different methods is given in Figure A2.

Clearly, the pair distribution of the 10% volume
fraction obtained from extraction yields the same
pair distribution function obtained from the 30%
classical fluid simulation. These pair distribution
functions are distinctly different from the function
obtained for the 10% classical fluid simulation. The
reason that the two simulations for 10% volume frac-
tion differ is that in the particle extraction case,
particles are randomly removed, regardless of their
position. When creating the 30% volume fraction
simulation (from which the extraction example was
derived), particles are occasionally excluded if they
overlap, and it is this exclusion process which makes

1.5}
5
S 1r
5
Q
=
k7]
a 05 * 10% v.f. - extraction
- = - 10% v.f. - fluid
o — 30% v.f. - fluid

0.5 1 1.5 2 2.5 3

Radial Distance (particle diameters)

Figure A2. Comparison of the different pair distri-
bution functions obtained from simulations demon-
strated in Figure Al.
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the classical fluid pair distribution functions different
for the 30% and the 10% volume fractions. Reduc-
ing the number of particles does not alter the effect
of this exclusion process. Thus, the fact that the pair
distribution function does not change when particles
are extracted has been shown both theoretically and
by example.
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