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Derivation of phase statistics from the Mueller matrix
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To answer the question of what radar polarimetry has to offer to the remote sensing of
random media, statistics of the phase difference of the scattering matrix elements must
be studied. Recent polarimetric measurements of rough surfaces have indicated that
the statistical parameters of the phase difference (mean, standard deviation, etc.) are
very sensitive to some of the physical parameters. In this paper the probability density
function of the phase differences is derived from the Mueller matrix, assuming that the
elements of the scattering matrix are jointly Gaussian. It is shown that the probability
density functions of the copolarized and cross-polarized phase differences are similar in
form, and each can be determined by two parameters (« and () completely. The ex-
pressions for the probability density functions are verified by comparing the histograms,
the mean, and the standard deviations of phase differences derived directly from polari-
metric measurements of a variety of rough surfaces to the probability density function,
its mean, and standard deviation derived from the Mueller matrices of the same data.
The expressions for the probability density functions are of special interest for noncoher-
ent polarimetric radars and noncoherent polarimetric models for random media such as

vector radiative transfer.

1. INTRODUCTION

In the past decade, substantial effort within the mi-
crowave remote sensing community has been devoted to
the development and improvement of polarimetry science.
Polarimetric radars are capable of synthesizing the radar
response of a target to any combination of the receive and
transmit polarizations from coherent measurements of the
target with two orthogonal channels. Polarimetric radars
have demonstrated their abilities in improving point tar-
get detection and classification [loannidis and Hammers,
1979]. That is, for a point target in a clutter background
the transmit and receive polarizations can be chosen such
that the target to clutter response is maximum. Also, dif-
ferent point targets in the radar scene can be classified
according to their optimum polarization. Although radar
polarimeters have shown a great potential in point target
detection and classification, their capabilities in remote
sensifg of distributed targets are not completely under-
stood yet.
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Considering the complexity involved in designing, man-
ufacturing, and processing the data of an imaging po-
larimeter as opposed to a conventional imaging radar, it is
necessary to examine the advantages that the imaging po-
larimeter provides with the targets of interest. For exam-
ple, in retrieving the biophysical parameters from the po-
larimetric radar data, one should ask whether there exists
a dependency between the parameters and the measured
phase of the scattering matrix components. If the answer
is negative, obviously gathering polarimetric data for in-
version of that parameter is a waste of effort. One way of
confirming this question is by collecting data over a range
of the desired parameter while keeping other influential
parameters constant. This procedure, if not impossible, is
very difficult to conduct because of problems in repeata-
bility of the experiment and difficulties in controlling the
environmental conditions. Moreover, at high frequencies
(millimeter wave frequencies and higher), coherent mea-
surement of the scattering matrix is impossible because of
instabilities of local oscillators and relative movements of
the target and the radar platform [Meads and McIntosh,
1991]. At these frequencies, noncoherent radars are em-
ployed which provide the Mueller matrix of the target.

Another approach to examine the dependency of the
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radar response to the desired parameters of the targets is
the application of theoretical models. One of the most suc-
cessful polarimetric models for random media is the vector
radiative transfer theory [Tsang et al., 1985]. This model
is based on conservation of energy and the single scatter-
ing properties of the constituent particles. The solution of
the radiative transfer equation relates the scattered wave
Stokes vector to the incident wave Stokes vector via the
Mueller matrix. The Mueller matrix, as computed by this
method, is an ensemble- averaged quantity because of the
inherent nature of the radiative transfer theory. Since the
Mueller matrix is related to the scattering matrix through
2 nonlinear process and the components of the scattering
matrix are statistically dependent, the information about
the phase difference of the scattering matrix components
cannot be obtained from the Mueller matrix directly. To
achieve information about the phase statistics, one may
resort to the Monte Carlo type models which are compu-
tationally inefficient and, in general, inaccurate.

Experimental observations of phase difference statistics
from a polarimetric synthetic aperture radar at L-band
[Ulaby et al., 1987; Zebker et al., 1987] over agricultural
terrain and bare soil surfaces indicate that the statistics
of the copolarized phase difference depends on the target
type and its conditions. Recent measurements of bare soil
surfaces by polarimetric scatterometers show that the vari-
ance of the copolarized phase difference is a function of the
roughness parameters and incidence angle but is less sen-
sitive to moisture content [Sarabandi et al., 1991).

In view of difficulties in measuring the scattering ma-
trix at high frequencies and performing controlled exper-
iments, it is necessary to establish a relationship between
the Mueller matrix and the statistics of the phase differ-
ences of the scattering matrix elements. In the next section
we derive the probability density function of the copolar-
ized and cross-polarized phase difference in terms of the
Mueller matrix elements assuming that the scattering ma-
trix elements are jointly Gaussian. Then the assumptions
and final results are compared with the experimental data
acquired by polarimetric scatterometers in section 3.

2. THEORETICAL DERIVATION OF PHASE
DIFFERENCE STATISTICS

The polarimetric response of a point or distributed tar-
get can be obtained by simultaneously measuring both the
amplitude and phase of the scattered field using two or-
thogonal channels. If the incident and scattered field vec-
tors are decomposed into their horizontal and vertical com-
ponents, the polarimetric response can be represented by
the scattering matrix S, which for plane wave illumination
we can write

E’ = elkr Swe Sok ] Ei

1
r | She Sha @)
where r is the distance from the radar to the center of

the distributed target. It should be noted that in the
backscattering case, reciprocity implies that Sy, = She.
Each element of the scattering matrix, in general, is a com-
plex quantity characterized by an amplitude and a phase.
When the radar illuminates a volume of a random medium
or an area of a random surface, many point scatterers con-
tribute to the total scattered energy received by the rada,
and therefore each element of the scattering matrix may
be represented by
N ,
Sl’! = ISPlle.én = z: Is;q Iei‘:' p,g= ”;h . (2)

n=1

Here N is the total number of scatterers each having scat-
tering amplitude |sp,| and phase pe- It should be men-
tioned that the phase of each scatterer, as given in (2),
includes a phase delay according to the location of the
scatterer with respect to the center of the distributed tar-
get. Without loss of generality all multiple scattering over
the surface or in the medium can be included in (2). Since
the location of the scatterers within the illuminated area
(volume) is random, the process describing the phasor 8pg
is a Wiener process (random walk) [Davenport, 1970). If
N is large enough, application of the central limit theorem
shows that the real and imaginary parts of the scattering
matrix element Sy, are independent identically distributed
zero mean Gaussian random variables. Equivalently, it can
also be shown that |S,,| and ¢,, are Rayleigh and uniform
independent random variables, respectively. The three el-
ements of the scattering matrix, in general, can be viewed

. a8 a six-element random vector, and it is again reasonable

to assume that the six components are jointly Gaussian.

Observation of polarimetric data for a variety of dis-
tributed targets such as bare soil surfaces and different
kinds of vegetation-covered terrain all indi¢ates that the
cross-polarized component of the scattéring matrix (Shy)
is statistically independent of the copolarized terms (S,,
and Sp). Therefore the statistical behavior of Sh, can
be obtained from a single parameter, namely, the variance
(02) of the real or imaginary part of Sh, = X5 +iXe; that
18,

2, .2

Ixo,xs(25,26) = 2:0_3“5'[3{ 352:;6]

or equivalently the joint density function |Sys| and @y is

1 2
SisutoaGounl don) = Toslonerpl-2L) (g
which indicates that ¢, is uniformly distributed between
(=m,+7). .

Since measurement of the absolute phase of the scat-
tering matrix elements is very difficult, it is customary to
factor out the phase of one of the copolarized terms, for ex-
ample Sy, and therefore the phase difference statistics are
of concern as opposed to the absolute phases. Since Sk,

-is assumed to be independent of S, (not a necessary as-

sumption) and both ¢, and ¢y, are uniformly distributed,
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it can be easily shown that the cross-polarized phase differ-
ence ¢, = dyx — Pyy 18 also uniformly distributed between

(==, +n).

" The copolarized elements of the scattering matrix, how-
ever, are dependent random variables which can be de-
noted by a four-component jointly Gaussian random vector
J_‘{. Let us define

Spv = X1 +iXo,

and since X, -+, X4 are Gaussian, their joint probability
density function (pdf) can be fully determined by a 4 x
4 symmetric positive definite matrix known as covariance
matrix A whose entries are given by [Davenport, 1979]

itje {1!"')4}

The joint probability density function in terms of the co-
variance matrix takes the following form:

Sin = Xs + 11Xy

Aij = z\j,‘.=< Xin >

' =1 e [-Lxa
fX(zln ) 24) = 4'3IAI,} exp [ 2“ x] ) (4)
where X is a transpose of the column vector X. To char-
acterize the covariance matrix, the following observations
are in order. First, it was shown that the real and imagi-
nary parts of the scattering matrix elements are mutually
independent and identically distributed zero mean random
variables; therefore '

A = Ap =< XZ>=< XZ> , (5)
Az =< X1 X3 >=0 , (6)

C gz = A=< X3 >=< X{> , (7
. Az =< X3 X4 >=0 . (8)

Second, it was shown that the absolute phase ¢, is uni-
formly distributed and is independent of {Spp|. Thus the
random variable ¢,, + @, is also uniformly distributed
and is independent of |Syy||Sks| from which it can be con-
cluded that

< |Suul|Shn| cos(doy + dnn) >= 0 9)
< ISI-'U"Sﬁﬁlsm(¢vv + ¢Ma) >= 0 .

In fact, the complex random variable SyyShn is obtained
from a similar Wiener process which led to the random
variables S,, and Sy;. On the other hand

X1X3 —Xa2Xa= |SuullSan|cos(dvy + dnn)

X1 Xa+ XaXs = [SunllSwalsin(dus +n) . 10

In view of (9) and (10) it can easily be seen that
M3 =X , (11)
AH = —Ags (12)

The properties derived for the entries of the covariance
matrix, as given by (5)-(8), (11), and (12), indicate that
there are only four unknowns left in the covariance matrix,

namely A11, Ms, Ai4, and Ags, which can be obtained
directly from the Mueller matrix of the target as will be
shown next.  The Mueller matrix relates the scattered
wave Stokes véctor to the incident wave Stokes vector by
[van Zyl and Ulaby, 1990}

w:%mp,
r

where F** are the modified incident and scattered wave
Stokes vector defined by

|Ey|?

|Exf?
2R(E, E}]
2S{E. E})

F=

The Mueller matrix can be expressed in terms of the el-
ements of the scattering matrix as follows [Ulaby et al.,
1987)

ISNJF 1Suh|2 a[S:hSw]

|Shol? |Shal? R[ShnShv]
2R[SouSh,]  2R[SnuShn) RISwuSin + ShvSia)
29(SuuStu] 29(SheSial HSuuSin + ShuSta]

M=

~{SypSuv]

—S[S::h’glw]
—Q[Suu S;,, — Shv S;fa]
R[Swo S;sh = ShSy h]

In the case of a random medium we are dealing with a
partially polarized scattered wave, and the quantity of in-
terest is the ensemble-averaged Mueller matrix. Using the
assumption that the copolarized and cross-polarized terms
of the scattering matrix are independent and employing
the properties given by (5)-(8), (11), and (12), the Mueller
matrix in terms of the entries of the covariance matrix is
given by

2)«11 20’3 0 0
- - 20’3 2*33 0 0
M=<M>= 0" 0T oaa 4202 2ha
0 0 -—2A14 2)«13 - 263

| (13)
Equation (13) provides enough equations to determine the
unknown elements of the covariance matrix and variance
of the cross-polarized component, i.e., -

2= Ma
An = i » A= Ma
Az = Y ) Arg = ﬁ“‘%‘“‘-"

With the covariance matrix the joint pdf of X, -+, X4
can be obtained as given by (4). Using a rectangular to

polar transformation, i.e.,

1= p1e08dyy z2= p18indyy ,
Iz =

pacos dpp 4= pasingny
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the joint pdf of the amplitudes and phases takes the fol-
lowing form

1
f’llpls.vn.kl (Pl) P2y %U’¢hh) = 413 APIP)

1
- exp {—g[ale +azp3 — 203.01P2]} ' (14)

where

A= |Al= (Annldss = Aly— Hi)? )
ay = Ass/vVA az = AH/\/—A- g
ag = [A13co8(Bnn — duv) + A148in(Sar — uy)) /\/K_:

To obtain the copolarized phase difference statistics, the
joint density function of ¢,, and ¢y, is needed which can
be obtained from

f‘..,&u(%u.éhh) =./u‘/;fm.ﬂ:.".-.‘u(ﬂl:p2:¢0m¢hk)

dpydp;. (15)
Noting that @, is a positive real number, the integration
with respect to p; can be carried out which results in

1 1.[* aq 2
fo,., 00, (Gvo, Enn) =m {;—l—fo pre=FPidpy+

‘/i_?as fu " [1 + eﬁ(%’%m}]

e—ﬂr(dtan—ﬂg)ﬁgdpz} ] (16)

where erf( ) is the error function and the plus or minus
sign is used according to the sign of as. To evaluate the in-
tegrals in (16), we need to show that both az and aja3 —a3
are positive numbers. By definition, a; is positive, and to
show a,a; — aj is positive, we note that A is a symmetric
positive definite matrix, therefore its eigenvalues must be
positive. It can be shown that A has two distinct eigenval-
ues, 73 and 73, each with multiplicity 2, and their product
is given by

7172 = Adss — Afy — Ay > 0.
Thus

\

0183 — 63 = 7172 + [M3 cos(dnn — duv) )
=14 8in($nn — Puv))

is positive. After integrating the first integral and the first
term of the second integral in (16) directly and using inte-
gration by parts on the second term of the second integral,
(16) becomes

1 a3

1
f'un‘hh (¢0|J J¢hﬁ)= 412‘,75 {ﬂlaz + a;a;(alag — ag)

/7 las| * o las]
+7§a1(maa —-aj) ./o "’“W:‘”)

e~ Tr(®182-a3)p] dpg} .

By expanding the error function in terms of its Taylor se-
ries, interchanging the order of summation and integration,
and then using the definition of the gamma function, it can
be shown that

= o]
las]  \ -si-(araa-a2)ed, _ 20,
./; erf:;.;ga;pﬂ)e ' dp2= 7(ai1a3 — a3)
tan~! 7@“&[ .
(2 4189 — az

The joint density function of ¢, and ¢4 is a periodic
function of ¢ = ¢pn — ¢y, and therefore the random vari-
able ¢, after some algebraic manipulation, can be shown
to have the following pdf over the interval (=m,+7)

fa(4) =

A“,\”—Aga-).'ig{ D
27 (A11Ass — D?) VAirdss — D?

; o D ]}
=+ tan” " ———— , (17
[2 VAnAs — D? (17
where we recall that
D=Xijgcosd+ Ai4sin¢

and the elements of the covariance matrix in terms of the
Mueller matrix elements are given by

_ Mu _ M
An= 28 Ag= =2
Mas + Mag Mot - Mag
Ais = — Alg = ——

Some limiting cases can be considered in order to check
the validity of (17). For example, when S,, and Shy are
uncorrelated, then both A;3 and )14 are zero for which
fe(¢) = 1/(2x), as expected. Also, for the case of com-
pletely polarized scattered wave where S,, and Sy, are
completely correlated, the determinant of A is zero, and so
fa(¢) is a delta function.

It is interesting to note that the pdf of the phase dif-
ference is only a function of two parameters defined by

2 2
= _L__u'\ +’\ s C = t.&n-l "A'E
h114\33 AIS

where « and ( can vary from 0 to 1 and —7 to , respec-
tively. In fact, if the wave were completely polarized, ¢
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would have been the phase difference between the copolar-
ized terms. The parameter { will henceforth be referred
to as the polarized phase difference. In terms of these pa-
rameters, (17) can be written as

1-a? f + acos(¢—¢) -

e T ar et B =0 T —aTeor’(4 =0
z —1__acos($—¢)
g +tan Ji—ate (=0 } (18)

It can be shown that the maximum of the pdf occurs at
¢ = ¢ independent of a. However, the width of the pdf
(e.g., the 3-dB angular width) is only a function of & which
will be referred to as the degree of correlation. The prob-
ability distribution function given by (18) is the analog of
Gaussian distribution for periodic random variables where
¢ and « are the counterparts of the mean and variance for
Gaussian random variables, respectively. Figure 1 shows
the pdf for different values of ¢ while keeping o constant,
and Figure 2 shows the pdf for a fixed value of { while
changing o as a parameter. The calculated mean and stan-
dard deviation of the phase difference as a function of both
the polarized phase difference and the degree of correlation
are depicted in Figures 3 and 4, respectively. .
Last, it is necessary to point out that the formulation

0.020 T T T T LM
o=0.8

— 0.015 - -

E, §=180 (=0 (=45 (=90 (=135

é lfa\ f’\\ .'" ""

2 oy v\

§ 0.010 .'.‘ \‘ [\ If "‘ .': -

> \

:

2

& .
0.005 Y
» 0,000 255 : U PR v

-180. -135. -90. -45. 0. 45, 90. 135. 180.

Ghh — ¢yy(Degrees)

Fig. 1. The probability density function of the copolarized
phase difference for a fixed value of o (degree of correla-
tion) and five values of { (coherent phase difference).
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Fig. 2. The probability density function of the copolar-
ized phase difference for a fixed value of { (coherent phase
difference) and four values of o (degree of correlation).

of the copolarized phase difference pdf, as given in (17), is
not restricted to the backscattering case or to the copolar-
ized and cross-polarized components being uncorrelated.
In fact, we can derive the cross-polarized phase difference
statistics in a similar manner, and the pdf in this case for
the backscattering case can be obtained from (17) upon
the following substitution for the elements of the cross-
polarized covariance matrix
Mz

) A= s
ir )::=%".

3. COMPARISON WITH MEASUREMENTS

Using the polarimetric data gathered by scatterometers
from a variety of natural targets, the assumptions leading
to the pdf of phase differences as derived in the previous
‘section are examined. Also, by generating the histograms,
means, and standard deviations of the phase differences
from the data and comparing them with the results based
on the pdf derived from the measured Mueller matrices,
validity of the model is also examined. The polarimetric
radar measurements of bare soil surfaces were performed
at L-, C-, and X-band frequencies for a total of eight differ-
ent soil surface conditions (four roughness and two mois-
ture conditions). For this experiment we tried to preserve
the absolute phase of the measured scattering matrix by
calibrating the surface data with a metallic sphere located

A=
Az =
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Mean

1
Fig. 3. The mean value of the copolarized phase difference
as a function of & (degree of correlation) and ¢ (coherent
phase difference).

at the same distance from the radar as the center of the
surface target. For each frequency, surface condition, and
incidence angle a minimum of 700 independent samples
were collected. The detailed procedure of the data collec-
tion and calibration is given by Sarabandi et al. [1991].
By generating the histograms of the real and imaginary

Standard Deviation

Fig. 4. The standard deviation of the copolarized phase

difference as a function of « (degree of correlation) and ¢
(coherent phase difference).
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Normalized Magnitude Distribution
Fig. 5. The histogram of the real and imaginary parts.
of Sy and Sy for a rough surface with a rms height. of
0.32 cm and a correlation length of 9.9 ¢cm at C-band and
at a 30° incidence angle.

4.0

parts of the elements of the scattering matrix for all sur-
faces, it was found that they have a zero mean Gaussian
distribution as we assumed. Figure 5 represents a typi-
cal case where the histogram of the real and imaginary

0.020

T 1] LI

0.018 -

0.016

Measured (Mean=-5.0°, Std. Dev=47.7")
Calculated (Mean=-7.8%, Std. Dev=47.2%)

0.014 |-
0012 -
0.010 -
0.008 -
0006
0.004

0.002

i

0.000 =

-180. -120.

-60. 0. 60. 120,

‘f)hh - ¢w

Fig. 6. The histogram and pdf of the copolarized phase
difference for a rough surface with a rms height of 0.32 ¢m
and a correlation length of 9.9 em at C-band and at a 30°

incidence angle.

-~
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o'o_m B Ll . i L] T Ll
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0.b1_5 - Cﬂculm(uwwor.sm.nev-ms_n ]
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0.010 |- - : ‘ s
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0006 . J

0.002 :—H—|"
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Fig. 7. The hmtogram and pdf of the cross-polarized phase
difference for a rough surface with rms height of 0.32 cm

and correlation length of 9.9 cm at C-band and at a 30°
incidence angle. :

parts of Sy, and Sy, of a dry surface with a rms height of
0.32 cm and correlation length of 9.9 cm at C-band has a
bell-shaped distribution. The properties of the covariance
matrix as given by (5)-(8) and (11)-(12), are verified by cal-
culating the covariance matrices of the data for all cases.
The normalized vocariance matrix of the surface with rms
height .3 cm ‘and correlation lengt.h 9 cm at C-band is given
by

1.00 0.03 075 —0.12
A | 003 090 008 o068
075 0.08 0.77 0.5
-0.12 0.68 0.69

0.05

where it possesses the mentioned properties approximately;

that is, Ad11 & A2z, Ad12 & Age = 0, Agg & Agq, A13 & Age,

and A4 & —A33. The small discrepancies are due to the

fact that the measurement of the scattering matrix with

absolute phase has an uncertainty of £30° .

The Mueller matrix of the typical surface at C-bnnd is
given by

1.000

. | 0.028

. M= 1 0.000

0.000

0.030
0.767
0.000
0.000

0.000
0.000
0.770
0.110

0.000
0.000
-0.11
0.711

from which the copolarized and cross-polarized phase dif-
ference pdfs are calculated using (17) and are compared
with the measured phase histograms in Figures 6 and 7, re-
spectively. Similar comparisons were also made for the rest

60 -+
50 X-band (Calculated)
[} X-band (Measured)
40.F | ---------- L-band (Calculated)
— c] L-band (Measured)
g. 30
s 20.
-]
‘s 10.f
31
g 0.t © é"
= -10.F
20.b
-30. =

0. 10. 20. 30. 40. 50. 60. 70. 80.
Incidence Angle (Degrees)

Fig. 8. Angular dependency of the mean of the ¢opo-

larized phase difference for a dry rough surface with a rms

height of 0.4 cm and a correlatlon length of 8.4 cm at L-
and X-band.

of surfaces, frequencies, and incidence angles, and it was
found that the expression (17) predicts the density func-
tions very accurately. Some examples of these comparisons
are shown in Figures 8 and 9. Figures 8 and 9 compare

90.
80.F

10}

-

o S0t &

]

% 40.-.

3 30}

A X-band (Calculated)

g 20 ©  X-band (Measured)
10 - L-band (Calculased)
' @ L-band (Measured)
0. A L A ' i i i
0. 10. 20. 30. 40, 50. 60. 70. 80,

Incidence Angle (Degrees)
Fig. 9. Angular dependency of the standard deviation
of the copolarized phase difference for a dry rough surface
with a rms height of 0.4 cm and a correlation length of 8.4
cm at L- and X-band.
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the mean and standard deviation of the copolarized phase
difference versus incidence angle at L- and X-band for a
surface with rms height of 0.4 cm and correlation length
of 8.4 ¢m in dry conditions using the results based on the
direct calculation and the results derived from (17).

4. CONCLUSIONS

Prompted by the experimental observations which show
strong dependence of phase differences of the scattering
matrix elements on the physical parameters of random me-
dia, the statistical behavior of the phase differences for
distributed targets is studied. The pdfs of the phase dif-
ferences are derived from the Mueller matrix of the tar-
get. In derivation of the density functions it is assumed
that the real and imaginary parts of the copolarized and
cross-polarized terms of the scattering matrix are jointly
Gaussian and their covariance matrices are found in terms
of the Mueller matrix elements. The functional forms of
the copolarized and cross-polarized density functions are
similar and are obtained independently. It is shown that
the density function of the phase difference is completely
determined in terms of only two parameters. The assump-
tions and final expressions are verified by using a set of
polarimetric data acquired by scatterometers from rough
surfaces.
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