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Abstract—The recent interest in radar polarimetry has led to
the development of several calibration techniques to retrieve the
Mueller matrix of a distributed target from the multipolariza-
tion backscatter measurements recorded by a radar system.
Because a distributed target is regarded as a statistically uni-
form random medium, the measurements usually are conducted
for a large number of independent samples (usually spatially
independent locations), from which the appropriate statistics
characterizing the elements of the Mueller matrix can be de-
rived. Existing calibration methods rely on two major assump-
tions. The first is that the illuminated area of the distributed
target is regarded as a single equivalent point target located
along the antenna’s boresight direction, and that the statistics of
the scattering from all of the measured equivalent point targets
(representing the spatially independent samples observed by the
radar) are indeed the same as the actual scattering statistics of
the distributed target. The second assumption pertains to the
process by which the actual measurements made by the radar
for a given illuminated area are transformed into the scattering
matrix of that area. The process involves measuring the radar
response of a point calibration target of known scattering ma-
trix, located along the boresight direction of the antenna, and
then modifying the measured response by a constant, known as
the illumination integral, when observing the distributed target.
The illumination integral accounts for only magnitude varia-
tions of the illuminating fields. Thus, possible phase variations
or antenna crosstalk variations (between orthogonal polariza-
tion channels) across the beam are totally ignored, which may
compromise the calibration accuracy. To rectify this deficiency
of existing calibration techniques, a new technique is proposed
with which the radar polarization distortion matrix is character-
ized completely by measuring the polarimetric response of a
sphere over the entire main lobe of the antenna, rather than
along only the boresight direction. Additionally, the concept of a
“differential Mueller matrix” is introduced, and by defining and
using a correlation—calibration matrix derived from the mea-
sured radar distortion matrices, the differential Mueller matrix
is accurately calibrated. Comparison of data based on the previ-
ous and the new techniques shows significant improvement in
the measurement accuracy of the copolarized and cross-polarized
phase difference statistics.

1. INTRODUCTION

E literature contains a variety of different methods
for measuring the backscattering cross section of
point targets. In all cases, however, the calibration part of
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the measurement process involves a comparison of the
measured radar response due to the unknown target with
the measured response due to a calibration target of
known radar cross section. Under ideal conditions, both
the unknown and calibration targets are placed along the
antenna boresight direction, thereby ensuring that both
targets are subjected to the same illumination by the
radar antenna. The situation is markedly different for
distributed targets; the unknown distributed target is illu-
minated by the full antenna beam, whereas the calibration
target—being of necessity a point target—is illuminated
by only a narrow segment of the beam centered around
the boresight direction. Consequently, both the magnitude
and phase variations across the antenna pattern become
part of the measurement process.

The magnitude variation usually is taken into account
through a calculation of the illumination integral [1}-[4],
but the phase variation has so far been ignored. The role
of this phase variation across the beam with regard to
polarimetric radar measurements and the means for tak-
ing it into account in the measurement process are the
subject of this paper.

Terrain surfaces, including vegetation-covered and
snow-covered ground, are treated as random media with
statistically uniform properties. In radar measurements,
the quantities of interest are the statistical properties of
the scattered field per unit area. One such quantity is the
scattering coefficient o ©, which is defined in terms of the
second moment of the scattered field:

4mr? (| E°)

o?= lim lim irpn o

roxd-x A |E'|

where E' and E° are the incident and scattered fields, 4
is the illuminated area, and r is the range between the
target area and the observation point. The above defini-
tion of ¢ is based on the assumption that the target is
illuminated by a plane wave. Although in practice such a
condition cannot be absolutely satisfied, it can be approxi-
mately satisfied under certain circumstances. The correla-
tion length / of a distributed target represents the dis-
tance over which two points are likely to be correlated,
implying that the currents induced at the two points due
to an incident wave will likely be correlated as well. Thus,
the correlation length may serve as the effective dimen-
sion of individual scatterers comprising the distributed
target. The plane-wave approximation may be considered

0018-926X /92803.00 © 1992 IEEE



SARABANDI et al.: MEASUREMENT AND CALIBRATION OF DIFFERENTIAL MUELLER MATRIX OF TARGETS

valid as long as the magnitude and phase variations of the
incident wave are very small across a distance of several
correlation lengths. In most practical situations, this “lo-
cal” plane-wave approximation is almost always satisfied.
When this is not the case, the measured radar response
will depend on both the illumination pattern and the
statistics of the distributed target [5], [6].

An implied assumption in the preceding discussion is
that the phase variation across the antenna beam is the
same for both the transmit and receive antennas. When
making polarimetric measurements with dual-polarized
transmit and receive antennas, the phase variation of the
transmit and receive patterns may be different, which may
lead to errors in the measurement of the scattering matrix
of the target, unless the variations are known for all of the
polarization combinations used in the measurement pro-
cess and they are properly accounted for in the calibration
process.

In this paper, we introduce a calibration procedure that
accounts for magnitude and phase imbalances and an-
tenna crosstalk across the entire main beam of the an-
tenna. By applying this procedure, we can make accurate
measurements of the differential Mueller matrix of a
distributed target using the local plane-wave approxima-
tion. The differential Mueller matrix can then be used to
compute the scattering coefficient for any desired combi-
nation of receive and transmit antenna polarizations, and
by employing a recently developed technique [7], the
statistics of the polarization phase differences can also be
obtained. By way of illustrating the utility of the proposed
measurement technique, we will compare the results of
backscatter measurements acquired by a polarimetric
scatterometer system for bare soil surfaces using the new
technique with those based on calibrating the system with
the traditional approach, which relies on measuring the
response due to a calibration target placed along only the
boresight direction of the antenna beam.

II. THEORY

Consider a planar distributed target illuminated by a
polarimetric radar system as shown in Fig. 1. Suppose the
distributed target is statistically homogeneous and the
antenna beam is narrow enough so that the backscatter-
ing statistics of the target can be assumed constant over
the illuminated area. Let us subdivide the illumination
area into a finite number of pixels, each including many
scatterers (or many correlation lengths), and denote the
scattering matrix of the ijth pixel by AS(x;, y;)- The scat-
tering matrix of each pixel can be considered as a complex
random vector. If the radar system and its antenna are
ideal, the scattered field associated with the ijth pixel is
related to the incident field by
Es eZikgr(xi,y’-) ASw(xi’yj)

E; A8y (x5 3:)

AS,, (x5 y;) || Ei
ASyu(x;s .Vj) E}
1)
where E, and E, are the components of the electric field
along two orthogonal directions in a plane perpendicular

"(xian)z
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Boresight direction
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Fig. 1. Geometry of a radar system illuminating a homogeneous dis-

tributed target.

to the direction of propagation and K is a constant. In
reality, radar systems are not ideal in the sense that the
vertical and horizontal channels of the transmitter and
receiver are not identical, and the radar antenna intro-
duces some coupling between the vertical and horizontal
signals at both transmission and_reception. Consequently,
the measured scattering matrix U is related to the actual
scattering matrix of a point target S by [8]

2ikor _

e =
RST

U= )
where R and T are known as the receive and transmit
distortion matrices. For small point targets where the
illumination pattern of the incident field can be approxi-
mated by a uniform plane wave, measurement of S is
rather straightforward, and in recent years, this problem
has been investigated thoroughly by many investigators
[9]-[11]. The distortion matrices are obtained by measur-
ing one or more targets of known scattering matrices, and
then by inverting (2), the scattering matrix of the un-
known target is obtained. In the case of distributed tar-
gets, however, distributed calibration targets do not exist.
Moreover, the distortion matrices and the distance to the
scattering points are all functions of position. That is, for
the ijth pixel, the measured differential scattering matrix
AU can be expressed by

rZ

— eZikOr(xi,yj):
AT = S ——R(x, )
rz(xi’Yj) !
ASw(xi’yj) ASvh(xiayj) ?( ) (3)
. Xy Yi).
ASy (x5 y;)  AS,(x, ) d

The radar measures the sum of fields backscattered from
all pixels within the illuminated area coherently, i.e.,

= e2ik0r(x,,y’-)= = =
U= Z Z (x5 ) R(xi’yj)AS(xi7.Vj)T(xi’yj)' 4
i irJj
Thus, the measured scattering matrix is a linear function
of the random scattering matrices of the pixels. For uni-
form distributed targets, we are interested in deriving
information about the statistics of the differential scatter-
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ing matrix from statistics of the measured scattering ma-
trix U. One step in relating the desired quantities to the
measured ones is to perform a calibration procedure to
remove the distortions caused by the radar and the an-
tenna systems. The traditional approach used for calibrat-
ing polarimetric measurements of extended-area targets
relies on two approximations. First, it is assumed that for
each measured sample, the differential scattering matrix
of the illuminated area is equal to some equivalent scat-
tering matrix at boresight. Using this approximation, it is
hoped that the equivalent scattering matrix has the same
statistics as the original differential scattering matrix. This
approximation is purely heuristic and cannot be justified
mathematically. Second, the measured data for each sam-
ple are calibrated as if they were a point target, and the
result is modified by a constant known as the illumination
integral to account for the nonuniform illumination [3],
[4]; thus, the crosstalk variations away from the antenna’s
boresight direction over the illuminated area are ignored.
The illumination integral accounts for only magnitude
variations of the gain patterns of the transmitter and
receiver antennas, and no provision is made for account-
ing for any possible phase variations in the radiation
patterns.

In this paper, we attempt to derive the second moments
of the differential scattering matrix from the statistics of
the measured matrix without making any approximation
in the radar distortion matrices or using the equivalent
differential scattering matrix representation. In random
polarimetry, the scattering characteristics of a distributed
target usually are represented by its Mueller matrix, which
is the averaged Stokes matrix [4]. The Mueller matrix
contains the second moments of the scattering matrix
elements. By the central limit theorem, if the scatterers in
the illuminated area are numerous and are of the same
type, then the statistics describing the scattering are
Gaussian (Rayleigh statistics). In such cases, knowledge of
the Mueller matrix is sufficient to describe the scattering
statistics of the target [7].

In a manner analogous with the definition of the scat-
tering coefficient as the scattering cross section per_unit
area, let us define the differential Mueller matrix M° as
the ratio of the Mueller matrix (AM) derived from the
differential scattering matrix (AS) to the differential area,
ie.,

AM

lim ——
A/:nlo AA°

To compute the differential Mueller matrix, the ensemble
average of the cross products of the differential matrix
components is needed. Let us define

M -

(SSn) (STsoy (Sarsny (S5rsy,
o o | SwSio CSESL) (SUSRD (SRS
(SpESe)  (SpeSoy  (SprSey  (SpESs)
(SShy (S5 Shh> CSOrSi? CSEESinD

&)
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where
(Asjq AS,)>
AA )

In terms of the correlation matrix W¢,
Mueller matrix can be computed from

52489 = lim
< rq st j_’o

the differential

M° = 47y Wy ! (6)
where [4]
1 0 0 0
_{o01 0 0
1o o 1 1
0 0 —i |

In order to calibrate a radar system so as to measure
the differential Mueller matrix, let us represent each
2 X 2 matrix in (4) by a corresponding four-component
vector, in which case (4) simplifies to

szl,r(x i) _ .
Z Z ) D(xi’yj) Ay(xi’yj) (N
l’ /
where
U, AS,,(x;, )’j)
= U — ASuh(xi»}’,')
#=\|,"1  BF(x,y)= 8
U (xi- ) Ashv(xi’yj) ®
Ui Ashh(xt’Yj)
Ruv(xi»)’,‘) Tw(x‘-,yj)
‘9?7( ) Rou(xi5y;) y:( ) T.(x:5y;)
X = , X, y;) =
o) Rhu(xia)’j) Yi T, (x5 y)
th(xis}’j) (x5 ¥;)
and it can be easily shown that
RWT;}v Rwth thnu RuhT;)h
= R, T, R, T, R, T,, R,T
D(Xi,yj) _ Rvuyfw Ruu]flh Rh; R h]_','h . (9)
hvtvu hvtvh hhtw hh*vh
thThu thThh thThv thThh

The mth component of the measured target vector (%,,)
defined by (8) can be obtained from (7), and is given by

):Z

21k0r(x ¥

ZDm(x,,y)AY(x,,y)
x| ST !

Thus, the averaged cross products of these components
are

Zlk()[’(xn}',) r(x; )]

2= ELET o

YT (x )
4

> Z D, (x;, yj)D:zkp(xi” )’j')

=1 p=

{AF (X1, y)AS 5 (0, ). (10)
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If the number of scatterers in each pixel is assumed to be
large, or the correlation length of the surface is much
smaller than the pixel dimensions, then

<A5ﬂl(xi’ yj)A‘?:(xi" y]')>

0, i+#i'and j#j'
T KIS AA,, i=iandj=j".
It should be mentioned here again that the target is
assumed to be statistically homogeneous, and the antenna
beam is assumed to have a narrow beam. Hence, (9””5”"* Y
is not a function of position within the illuminated area.
In the limit as A A approaches zero, (10) takes the follow-

ing form:
/] iy Pt

@z =Y %
I=1p=1

Dfp(x,Y)dx@]<$°%”*>- 1
Equation (11) is valid for all combinations of m and n
and, therefore, it constitutes 16 equations for the 16
correlation unknowns. Let us denote the measured corre-
lations by a 16-component vector %, and the actual corre-
lations by another 16-component vector 2 so that

Z=(H*),  i=4l-1D+p
¥ =%,2}), j=4m—-1)+n.
In this form, (11) reduces to the following matrix equa-

tion:

- (12)

where the jj element of B is given by

N

) T 4(x 55 D5 V) D3 (5,7) didy (13)

and, as before,
i=4-1)+p,

Once the elements of the correlation calibration matrix B
are found from (13), (12) can be inverted to obtain the
correlation vector & The elements of the correlation
vector are not arbitrary complex numbers; for example, 2,
and 2 are complex conjugate of each other and 2] is a
real number; thus, these relationships can be used as a
criterion for calibration accuracy. The differential Mueller
matrix can be obtained from the correlation matrix W°
whose entries in terms of the vector 2 are given by

j=4(m—1) +n.

o |7 Ze 2 &
% % 2, %

Evaluation of the elements of B requires knowledge of
the radar distortion matrices over the main lobe of the
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antenna system. The distortion matrices of the radar can
be found by applying the calibration method presented in
the next section.

II1. CALIBRATION PROCEDURE

As was shown in the previous section, the correlation
vector & can be obtained if the calibration matrix D(x, y)
given by (9) is known. A simplified block diagram of a
radar system is shown in Fig. 2. The quantities 7, f,, 7,, 7,
represent fluctuating factors of the channel imbalances
caused by the active devices in the radar system. Without
loss of generality, it is assumed that the nominal value of
these factors is one, and their rate of change determines
how often the radar must be calibrated. The antenna
system also causes some channel distortion due to varia-
tions in the antenna pattern and path length differences.
The crosstalk contamination occurs in the antenna struc-
ture, which is also a function of the direction of radiation.
It has been shown that the antenna system, together with
two orthogonal directions in a plane perpendicular to the
direction of propagation, can be represented as a four-port
passive network [8]. Using the reciprocity properties of
passive networks, the distortion matrices of the antenna
system were shown to be [8]

R (¥, €)

w0 1w )
[ 0 rh(w,f)ch,f) 1 }”4)

1 C(M)] (4, €) 0
C(y,¢) (W, §)

(15)

where y, ¢ are some coordinate angles defined with re-
spect to the boresight direction of propagation. The quan-
tity C(, £) is the antenna crosstalk factor and
r(, €), 1, E),t. (¥, €),t,(&, £) are the channel imbal-
ances caused by the antenna system. These quantities are
not subject to change due to variations in active devices,
and once they are determined, they can be used repeat-
edly.

In order to find the radar distortion parameters at a
given point (x, y) on the surface, we first need to specify a
convenient coordinate system with respect to the antenna’s
boresight direction so that the distortions become inde-
pendent of incidence angle and range to the target. The
azimuth-over-elevation coordinate angles (i, £) provide a
coordinate system that is appropriate for antenna pattern
measurements. The angle ¢ specifies the elevation angle
and ¢ specifies the azimuth angle in a plane with eleva-
tion £, as shown in Fig. 3. The mapping from (¢, &)
coordinates to (x, y) coordinates can be obtained by con-
sidering a radar at height 4 with incidence angle 6, and
the boresight direction in the y—z plane, as shown in Fig.
4. It is easy to show that constant-¢ curves on the surface
of a sphere map to constant-y lines and constant-¢s curves
map to hyperbolic curves. The mapping functions are

qu

o0
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H-Receiver

Fig. 2. Simplified block diagram of a polarimetric radar system.

boresight

Fig. 3. Azimuth-over-elevation coordinate system (4, &) specifying a
point on the surface of a sphere.

N

X

Fig. 4. Geometry of a radar above x—y plane and transformation of
azimuth-over-elevation coordinate to Cartesian coordinate.

given by

3 htan ¢
B cos (6, + &)

y=~htan (0, + &)

where ¢ = £ = 0 represents the boresight direction.

The entries of the calibration matrix D(y, £) as defined
by (9) should be obtained through a calibration proce-
dure. Following the single-target calibration technique
given in [8], a single sphere is sufficient to determine the
channel imbalances as well as the antenna crosstalk factor
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for a given direction. Hence, by placing a sphere with
radar cross section o ° at a distance r, and a direction (¢,
£) with respect to the radar, the receive and transmit
distortion parameters can be obtained as follows:

Un

R T :rZe*ZikUr(]
0 (1+ C¥)Wo'/am

w v

pefm __2€ U
R, (1+C%) Uy
LT 1+ CPU,
R R TOR 77}
1
C=+—(1-Y1—-a) (16)
Va
where
» Uil
a2
U Usn

and U® is the measured (uncalibrated) response of the
sphere at a specific direction (¢, £). In terms of the
known quantities given by (16), the calibration matrix D
can be written as

1 Ca C C
o C? Ca

CB ChB B CaB
CB CaB CB ap

D(y,£) = R,T, 17)

where the dependences on ¢ and ¢ of all parameters is
understood.

In practice, it is impossible to measure the sphere for
all values of ¢ and ¢ within the desired domain; however,
by discretizing the domain of ¢ and ¢ (main lobe) into
sufficiently small subdomains over which the antenna
characteristics are almost constant, the integral given by
(13) can be evaluated with good accuracy.

Polarimetric measurement of a sphere over the entire
range of ¢ and¢ is very time consuming, and under field
conditions, performing these measurements seems impos-
sible. However, this measurement can be performed in an
anechoic chamber with the desired resolution Ay and A¢
only once, and then under field conditions, we need to
measure the sphere response only at boresight to keep
track of variations in the active devices. Without loss of
generality, let us assume that 7, = 7, = 7, = 1, = 1 for the
sphere measurements when performed in the anechoic
chamber, and that these quantities can assume other
values for the measurements made under field conditions.
If the measured distortion parameters at boresight (field
condition) are denoted by prime and calculated from (16),
then the channel imbalances corresponding to the field
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Pattern,
VH-pol. (dB)
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Fig. 5. Polarimetric response of a metallic sphere over the entire mainlobe of X-band scatterometer; normalized o, (a)
corresponds to G? and normalized o,,, (b) corresponds to G,G,; phase difference between copolarized (c) and cross-polarized
(d) components of the sphere response correspond to phase variation of the co- and cross-polarized patterns of the antenna.

measurements are

(ra ) ikr ) Ro(0,0)T1,(0,0)
v e i 0(70 ’0)

T R,,(0,0),T,,(0,0)
_ T;,(00) T,(0,0)

© To(0,0) T,,(0,0)

i Riu(0,0) R,(0,0)

7 T RL(0,0) Run(0,0)° 1s)

Now, the calibration matrix at any direction (Iz)'(:/:, £))
can be obtained from (17) by replacing R,,7,,, ¢, and B
by R, T, , a’, and B’ where

1
1

1l

<
)

1 :“1| o)

~

T

R’UUTU,'U = _vthwTvu
? ;h
ax = -«
tv
’ Fh
B = =B (19)

Having found the calibration matrices for all subdo-
mains, the element ij of the correlation—calibration ma-

trix (B), as given by (13), in the azimuth-over-elevation
coordinate system takes the following form:

b= [ | D, €)D3,(, €)

cos? ¢ cos (0, + £)
. =

dydé (20)

where () is the solid angle subtented by the illuminated
area (main lobe of the antenna).

IV. EXPERIMENTAL PROCEDURE AND COMPARISON

To demonstrate the performance of the new calibration
technique, the polarimetric response of a random rough
surface was measured by a truck-mounted L-, C-, and
X-band polarimetric scatterometer with center frequen-
cies at 1.25, 5.3, and 9.5 GHz. Prior to these measure-
ments, each scatterometer was calibrated in an anechoic
chamber. The scatterometer was mounted on an
azimuth-over-elevation positioner at one end of the cham-
ber, and a 36 cm metallic sphere was positioned at the
antenna boresight at a distance of 12 m. Then the polari-
metric response of the sphere was measured over the
mainlobe of the antenna. The sphere measurements at
L-band, which has the widest beam of the three systems,
was performed over (y, ¢£) € [—21°, +21°] in steps of 3°,
and the ranges of (i, ¢) for C- and X-band were +10.5°
and +7° with steps of 1.5° and 1°, respectively. To im-
prove the signal-to-noise ratio by removing the back-
ground contribution, the chamber in the absence of the
sphere was also measured for all values of ¢ and &.

Fig. 5(a) and (b) shows the co- and cross-polarized
responses of the sphere at X-band, and Fig. 5(c) and (d)
shows the co- and cross-polarized phase differences (¢,
= ¢, by, — b,,). Similar patterns were obtained for
the L- and C-band. Using the sphere responses, the
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Fig. 6. Comparison between the new and old calibration techniques applied to the X-band measured backscatter from a
bare soil surface. (a), (b), and (c) show the difference in the co- and cross-polarized backscattering coefficients, and (d)
demonstrates the enhancement in the ratio of the cross-polarized backscattering coefficients obtained by the new method.

correlation—calibration matrices were determined as out-
lined in the previous section.

To evaluate the improvement provided by the new
calibration technique, we shall compare results of polari-
metric observations of a bare soil surface processed using
the new technique with those obtained previously on the
basis of the boresight-only calibration technique. The data
were acquired from a truck-mounted 17-m-high platform
for a rough surface with a measured rms height of 0.56 cm
and a correlation length of 8 cm. The polarimetric
backscatter response was measured as a function of inci-
dence angle over the range 20°-70°. To reduce the effect
of speckle on the measured data, 100 spatially independ-
ent samples were measured at each frequency and inci-
dence angle. Also, the response of the sphere at the
boresight was measured to account for any possible
changes in the active devices. The collected backscatter
data were calibrated by the new and old methods. The
first test of accuracy of the new calibration algorithm was
to make sure that the components of the correlation
vector 2 satisfy their mutual relationships, as explained in
Section II. For all cases, these relationships were found to
be valid within +0.05%.

The second step in the evaluation process is the relative
comparison of the backscattering coefficients and phase

statistics derived from the two techniques. Fig. 6(a)-(c)
shows the co- and cross-polarized backscattering coeffi-
cients as a function of incidence angle, calibrated by the
old and the new methods. The differences in backscatter-
ing coefficients, as shown in these figures, are less than
0.75 dB. It was found that the difference in backscattering
coefficients is less than 1 dB for all frequencies and
incidence angles. Although 1 dB error in o° may seem
negligible, in some cases, such as the variation with soil
moisture content for which the total dynamic range of o°
is about 5 dB, the 1 dB error becomes significant. Fig. 6(d)
shows the ratio of two cross-polarized scattering coeffi-
cients after calibration by each of the two methods. Theo-
retically, this ratio must be one and independent of inci-
dence angle. In this figure, it is shown that the new
calibration method more closely agrees with theoretical
expectations than the old method.

The third step involves a comparison of the phase
difference statistics of the distributed target. It has been
shown that when the dimensions of the antenna footprint
are much larger than the correlation length, the probabil-
ity density function (pdf) of the phase differences can be
expressed in terms of two parameters: the degree of
correlation () and the polarized phase difference (¢ ) [7].
The degree of correlation is a measure of the width of the
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pdf, and the polarized phase difference represents the
phase difference at which the pdf is maximum. These
parameters can be computed directly from the compo-
nents of the Mueller matrix and are given by [7]

a =

2
1 \/ (Hss +#0) + (Mg — M)
2 ’111122

My — My
My + My

{=tan"! (

Parameter « varies from zero to one, where zero corre-
sponds to a uniform distribution and one corresponds to a
delta-function distribution (fully polarized wave). Parame-
ter { varies between —180° and 180°.

Fig. 7(a)—(c) shows the degree of correlation calculated
by the new and old methods for the copolarized phase
difference (¢, — ¢,,) at the L-, C-, and X-band, respec-
tively. There is a significant difference between the two
methods in all cases. The partially polarized backscattered
Stokes vector obtained by the old calibration method
appears more unpolarized than the Stokes vector ob-
tained by the new method. The virtue of this result can be
checked in the limiting case if an analytical solution is
available. A first-order solution of the small perturbation
method for slightly rough surfaces shows that the
backscatter signal is fully polarized, and therefore, the pdf
of the copolarized phase difference is a delta function,
corresponding to « = 1. The roughness parameters of the
surface under investigation falls within the validity region
of the small perturbation method at L-band. The value of
a at L-band derived from the new calibration method is
in much closer agreement with theoretical expectations
than the value obtained by the old method. Fig. 8(a)-(c)
shows plots of the copolarized phase difference at the L-,
C-, and X-band, respectively. At the L- and X-bands, the
value of { obtained by the two methods are positive and
not very different from each other. Also, it noted that {
has a positive slope with incidence angle. However, this is
not the case for the C-band; the value of { obtained by
the old method is negative, has a negative slope, while the
behavior of { obtained by the new method is very similar
to that at the other two frequencies. This deviation is due
to the large variation of phase difference between the V-
and H-channels of the C-band radar over the illumination
area, and since the old method does not account for phase
variations, it is incapable of correcting the resulting er-
rors. Similar results were observed for the statistics 6f the
cross-polarized phase difference (¢, — ,,).

V. CONCLUSIONS

A rigorous method is presented for calibrating polari-
metric backscatter measurements of distributed targets.
By characterizing the radar distortions over the entire
mainlobe of the antenna, the differential Mueller matrix
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Fig. 7. Degree of correlation for copolarized components of the scatter-
ing matrix for the L-band (a), C-band (b), and X-band (c).

is derived from the measured scattering matrices with a
high degree of accuracy. It is shown that the radar distor-
tions can be determined by measuring the polarimetric
response of a metallic sphere over the main lobe of the
antenna. The radar distortions are categorized into two
groups, namely, distortions caused by the active devices,
and distortions caused by the antenna structure (passive).
Since passive distortions are immune to changes once
they are determined, they can be used repeatedly. The
active distortions can be obtained by measuring the sphere
response only at boresight, thereby reducing the time
required for calibration under field conditions. The cali-
bration algorithm was applied to backscatter data col-
lected from a rough surface by L-, C-, and X-band
scatterometers. Comparison of results obtained with the
new algorithm with the results derived from the old cali-
bration method show that the discrepancy between the
two methods is less 1 dB for the backscattering coeffi-
cients. The discrepancy, however, is more drastic for the
phase-difference statistics, indicating that removal of the
radar distortions from the cross products of the scattering
matrix elements (differential Mueller matrix elements)
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Fig. 8. Polarized phase difference for copolarized components of the
scattering matrix for the L-band (a), C-band (b), and X-band (c).

cannot be accomplished with the traditional calibration
methods.
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