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Propagation in a Two-Dimensional Periodic
Random Medium with Inhomogeneous
Particle Distribution

Kamal Sarabandi, Member, IEEE, Ahad Tavakoli, and Fawwaz T. Ulaby, Fellow, IEEE

Abstract—The behavior of electromagnetic waves when propa-
gating in a periodic random medium, such as a row-structured
canopy, is considered. The semideterministic character of the
particle distributions is represented by nonuniform extinction
and phase matrices and the problem is formulated by the
radiative transfer equation. Solution of the radiative transfer
equation is pursued in two ways: 1) iteratively and 2) by using a
new numerical technique based on the discrete—ordinate ap-
proximation and Taylor series (DOT) expansion. It is shown
that the numerical solution for the periodic canopy is computa-
tionally efficient, and also a closed form for the first-order
solution (iterative approach) of the radiative transfer equation
is obtained for periodic cases. The analytical and numerical
results are compared with transmission measurements at L- and
C-band frequencies for a corn canopy. Measurements were per-
formed for a variety of canopy conditions such as different
densities, number of rows, and stalks only (without foliage). The
agreement between measurements and model predictions is very
good for all canopy conditions.

1. INTRODUCTION

E problem of propagation in man-made random
media usually involves some parameters that are de-
terministic in character in combination with others that
are random in nature. An example of such a problem is a
corn field where the plants are arranged in a row-struc-
tured fashion as shown in Fig. 1. This canopy structure is
statistically periodic in the y direction and homogeneous
in planes perpendicular to the periodic direction (i.e., in
the x-z plane). Each period of this structure includes a
slab of corn plants adjacent to a slab of air. The stalks are
planted uniformly along the row direction (along the x
axis) with the leaves filling the space around the stalks.
The leaves may have a nonuniform distribution along the
y direction. The objective of this paper is to characterize
the propagation behavior of a plane wave propagating in
any direction in the x-y plane and then investigate the
beam broadening effect as observed by measurements.
In this paper we assume that there is no variation along
the z direction and treat the problem as a two-dimen-
sional (2-D) one. The stalks will be modeled by long
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circular cylinders and the leaves are modeled by infinites-
imally thin dielectric strips.

The standard radiative transfer technique [1], [2] is used
to obtain a solution for the propagation matrix of the
medium. This technique is based on conservation of en-
ergy and single scattering properties of constituent parti-
cles in the medium (near-field interaction of particles are
ignored). In radiative transfer, the quantity of interest is
the specific intensity I(r, §), which is defined as the power
per unit area and per unit solid angle propagating along §,
and which is a function of position in the random medium
(r). In applying transport theory to the electromagnetic
problem the specific intensity I(r, §) usually is defined by a
four-component vector. For a monochromatic elliptically
polarized plane wave with electric field vector

E = (Ef + E,h;)e*

with unit vertical and horizontal polarization vectors
t;, h;, Lis defined through the modified stokes parameters:

1 IE,I*
i 1 Z
1= [h = - |Eh| (l)
U n| 2Re(E E})
v 2Im(E EF)

where n is the intrinsic impedance of the medium. The
vector radiative transfer equation, which simply expresses
the conservation of energy in a unit volume of the medium,
is given by

V-A(r, )8 = —x(r, I, $)

+/ P(r, 5, 5)(r.§)dQ (2
O

where k(r, §) and P(s, §') are, respectively, the extinction
and phase matrices of the medium. The extinction matrix
represents the losses due to absorption and scattering by
particles per unit volume and, in general, is a function of
position and direction of propagation. The phase matrix
accounts for the fraction of the intensity incident upon
the unit volume along direction §' that is bistatically
scattered by the unit volume into direction §.

Referring to Fig. 1, for a plane wave incidence there
would be no variations with respect to variables x and z,
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Fig. 1. Top view of a row structured periodic canopy. Each period
consists of a row of vegetation next to a slab of air.

and therefore (2) is simplified to
L dI(y, D
§ y—dy

—k(y, H(y, $)

+fP(y,§,§’)I(y,s”)dQ. 3)
Q

Since scatterers are infinite in the z direction and the
incidence direction is normal to Z, then
dQ =d¢

noting that the intensity is redefined by power per unit
length per unit angle. Thus, the radiative transfer equa-
tion for this problem takes the following form:

dl(y, ¢)
dy

§ = cos ¢x + sin ¢P

sin ¢

= —K(y’ ¢)I(_Y, ¢)
+f02”P(y,¢,¢’)l(y,¢’)d¢'~ 4)

II. PHASE AND EXTINCTION MATRICES FOR
CONSTITUENT PARTICLES

In the formulation of the mean field intensity in a 2-D
random medium by radiative transfer, the scattered inten-
sity by a unit cross-sectional area of the random medium
into direction ¢, is related to the intensity incident upon
the unit area from direction ¢, by the phase matrix
P(y, ¢,, #,). Also the extinction matrix «(y, ¢) character-
izes the loss of intensity due to absorption and scattering
by the unit area. To relate the extinction and phase
matrices of the medium to the constituent particles, we
ignore near-field interactions between particles and only
consider single-scattering. interactions, which is a reason-
able approach for low-density media (the volume fraction
of vegetation material in a canopy seldom exceeds 1%).

[ m
¥ Nty 0
j=1
0 Y. N(a)
j=
K= 1 m
0 0 -y
2
J
0 0
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The field scattered by a 2-D object whose generating
axis is parallel to the z direction and is illuminated by a
plane wave E' is given by [Harrington, 1961]

E = Leikup—(i‘n/ét)SEi
p
where § is the scattering matrix of the object. In 2-D
problems, transverse electric (TE) and transverse mag-
netic (TM) fields are decoupled and therefore the scatter-
ing matrix becomes diagonal, i.e.,

[s 0
S =

Q)

0 S,

Using a similar definition for the scattered Stokes vector
as given by (1) (modified by 1/p) and using (5), it can be
shown that [3]

1
I, = —LI,
p
where L is known as the Stokes matrix and is given by
Is,,I> 0 0 0
2
L 0 [S),] 0 0 ®)
0 0 RelS,, 7] ImI[S,,S5,]
0 0 Im[S,,.S,,I* RelS,, S5

The radiative transfer formulation is based on conserva-
tion of energy and the Stokes vectors are added incoher-
ently, thus the phase matrix must be obtained from the
Stokes matrix averaged over the particle type, size, and
orientation-angle distributions. If m types of particles
exist in the canopy and each has N, particles per unit
area, then

m

P(¢, ¢') = < )y Nij>. )

j=1
The extinction matrix of the canopy can also be obtained
by applying the optical theorem for 2-D particles. Using
(5) for the scattering matrix, it can be shown that the

extinction cross section is related to the forward scattering
amplitude [4]

mw
—4\/2_T;Re[spp(¢,d>)] p=vorh.

Because no cross coupling occurs between v and A polar-
ized waves propagating in 2-D media, the extinction ma-
trix can be shown to have the following form (see [5]):

|

Uep =

0 0

0 0
€))

N{(a' + o) K34
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where
K3g = ~Kyg3
= -2

o

K ZA/,(II’II[S”((#, ¢) - Shh(d)’ ¢)]>

0 j=1

From (6) and (8) it is obvious that the first two compo-
nents of the Stokes vectors are decoupled from each other
and from the other Stokes components. Hence the vector
radiative transfer equation reduces to uncoupled scalar
equations for I, and I,. Since the total energy is carried
by the first two components only, we just consider the
solution to scalar radiative transfer equation for these
components. Before deriving the extinction and phase
functions for particles of particular shape and orientation
distributions, it is worth noting that the scattering matrix
(for 2-D particles) is a function of ¢, ¢; (where ¢, and ¢,
are the incident and scattered azimuth angles) and the
particle orientation ¢,. In the case of uniform particle
distributions, the extinction coefficient of the medium
becomes independent of the incidence and scattering an-
gles, and the phase function becomes a function of ¢, — ¢,
only.

The geometry of interest for constituent particles of a
corn canopy are infinitely long, vertically oriented, homo-
geneous cylinders representing stalks and infinitesimally
thin dielectric strips representing the leaves.

A. Extinction and Phase Function for Stalks

The cylinder is one of the few geometries for which an
exact electromagnetic scattering solution exists. If a plane
wave propagating in a direction denoted by ¢, is illuminat-
ing an infinitely long dielectric cylinder with radius r,
whose axis coincides with the z axis, it can be shown that
the bistatic scattering matrix elements can be obtained
from [6]
ve CnE €os n(¢: - ¢1)

0

n

%)
Il

81

Y CHcosn(¢, — ¢;) )

n=0
where ¢, denotes the scattering direction and

Spn =

CnE= Tero(_l)(n+l)an
1) I(x) — Vel (x) T, (x))
HO(x)J(x,) — Ve HY (x)T,(x,)
cl = —”;’" (-D" a,

Vel (x)Ji(x)) — T (x)T,(x))
Ve HO(x)T(x)) — HY (x)J,(xp)

In (9), € is the relative dielectric constant of the cylinders,

xo = korg, X, =koVer,

a, = {1’
n 2’

and
n=20
otherwise ’
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Since the cylinders are vertically oriented and azimuthally
symmetric, evaluation of the extinction and phase func-
tion does not involve particle orientation averaging. Using
(9) in (6) and (8) gives the phase and extinction functions.

B. Extinction and Phase Functions for Leaves

Leaves in this model are considered as long thin dielec-
tric strips. The thickness and dielectric constant of leaves
are usually such that they can be modeled as resistive
sheets at centimeter wavelengths [7], [9]. At high frequen-
cies, where the width of a leaf is large compared to the
wavelength, the physical optics approximation can be used
to find the scattered field. Otherwise, numerical tech-
niques such as the method of moments should be em-
ployed instead. Consider a resistive strip of width w illu-
minated by a plane wave as shown in Fig. 2 where the
orientation and incidence angles, measured from the x
axis, are denoted by ¢, and ¢;, respectively. Depending on
the polarization, the incident field is assumed to have the
following form

E! = fefkorcos ¢ty siné)  E_polarization

H' = Y, gefkoxeos ¢ty siné - H_polarization.

Following the procedure outlined by Senior et al. [7] the
physical optics currents for E- and H-polarized incident
waves are given by

1, =1( 2~ 16, - s ore
z 2 i 1z

Jo= F”(; —ld; — ¢,|)J},’C 10
Where JFC refers to the physical optics current that
would exist on the surface of the resistive sheet had it
been a perfect conductor. T'¥ and T'¥ are the reflection
coefficients for the resistive sheet for horizontal and verti-
cal polarization and are given by

I‘E(; -l - ¢',|) =1+ %cos(g — ¢ — ¢1|)}71
ks
FH(3—|¢,~_¢’1|)
_ _[1 . Ezésec(g — 1o, - dnl)]l. (11)

In (11) Z, is the free-space characteristic impedance and

R is the resistivity of the leaf given by
R Lo _
kor(e—1)

where T and e are the thickness and dielectric constant of
the leaf. Noting that
JPC = 2V, sin (|, — ¢Deikoces (4= ¢0¥  E-polarization

JEC = 2Yeikocos (460X H.polarization
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Fig. 2. Geometry of a resistive strip depicting the orientation, inci-
dence, and scattered angles.

and using the far-field approximation, we can show that

B ko etkop—i(m/4) Siﬂ(kﬁi _ ¢1‘)

: ) (

L
+ Z—o sin (‘(b, - ¢1|))

[ wsinlkow/2(cos |, — o] — cos ¢, — &,D)]
kow/2(cos |, — ¢,| — cos |, — ¢,

kl) eiko p—i(m/4)

2

sin (¢, — ¢,
2R
(1 + A csc (|, — d>1|))

H! =Y,

w sin [kow/2(cos [, — ¢,| — cos |d, — ¢,D]
kow/2(cos |, — ¢ — cos|p, — &,

this approximation provides reasonable results for values
of w as small as A,,.

For cases where the width of the strips is not large
compared to the wavelength, numerical techniques, such
as the method of moments, may be used to find the
scattered field. However, use of such computational tech-
niques to compute the phase and the extinction matrices
from the scattered field would be prohibitive in terms of
computational time. In what follows, we demonstrate an
efficient procedure for numerical computation of the ex-
tinction and phase matrices. The integral equations for
the induced currents on the resistive sheet, as shown in
Fig. 2, for TM and TE cases, respectively, given by [8]:

kOZD

RJ (x;) _ eikncos(¢,*¢l)X' -
z
4

[ LCORPK I~ 2 dg
/

—w
RI(x) = —sin (¢, — ¢, |)e'*ocos(d—apx
2

kozo w/2
k& ax;Z

1 ¥W/ZJX,(§) 1+

)Hé”(kolx’ —{hd¢

(13)

where H{" is the Hankel function of the first kind and
zeroth order. These integral equations can be cast into a
linear system of equation by applying the method of
moments and point matching technique. By solving the
linear system of equations an approximate solution for the
currents can be obtained. Having found the induced cur-

Hence,
( sin |, — ¢, sin X ]
2R Ty 0
1+ ——sin|¢, — ¢
kg Zy
=, %, ‘ _ (12)
2 sin |¢;, — ¢, sin X
0 2R x
1+ —cscle, — ¢,
ZO
L |
with

kow
X= '2_[005(‘15,' - ¢1) - COS(¢1 - ¢l

The averaging over the orientation angle ¢, involved in
the derivations of the extinction and phase matrices can-
not be evaluated analytically, hence, the integrals should
be calculated numerically. The physical optics approxima-

tion is valid as long as the width of the strips is large
compared to the wavelength, and if the material is lossy,

M
Z J,f,eikﬂx’" cos (b, — b))
m=1

0

rents, the scattered fields can be obtained from

k, ekopin/d)
BT T

k() w/2 .
S — —_ — —iky{cos (b, — @)
H: ‘/ 2 sinlg, ¢,|f7w/21,,(g)e f Ddyg.

The approximate form of the scattering matrix assuming
that the strip is divided into M small sections takes the
following form:

w/2 Jz(g)e-ikogcus(¢x~d>,) d{
w/2

0
(14)

M
Sin |, — ¢l 20 g (x,, Jeikorm oos( )
m=1
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where x,, is the coordinate of the mth cell in the x' zontal polarization, respectively, are
coordinate system and J,, is the value of the current for

M M
the mth cell. The matrix approximation of (13) can be ki =Z,N, ¥ Y Re[[Z;] JTolkolx, = x,,)
written as m=11=1 "
fel = Zude =Yy O - B T T Re[zi],)
Py -
where Z ,; are the impedance matrices and V, and Vy, t 2 i am
are the excitation vectors whose elements are [T Ckolx; — x,D) + J,(kolx, — x,,D] (18)

E i— . .
V. = etkocos(di=dnx,, where N, is the number of the leaves per unit area.

Inspection of (18) reveals that the extinction coefficients
are independent of the incidence angle.
For evaluation of the phase matrix we note that

k *
8.1 =23~ & IPIPMETY WL
m n j

VH — *Sin |¢1 _ qslleik[,cos(zbfé‘)xm. (16)

m

From (15) and (16) we have

M
Jrfx = Z [ZEI] leikncos(tb,*‘i’!)xl
m
=1

1
M .__/”efku[cosw,—<b,><x,—xn>—cos<¢r¢,)<x,,. ) dg,.
J;r _ _ Z [Z;ll]m1 sin l¢l _ ¢1|eikncos(¢>,—d>,)x, 29 0
=1 Noting that the integrand is a periodic function of ¢, we
and have
kg M M 1 fz” iko[COS (b dy)x1—xy)~ cOS (B~ X Xy —%))]
_ _ elfolcos (o INX— Xy Dy XX =) 4
S.. (¢, b, &) = —Zy\| — Z Z [ZE]] 2 i
87 ml 0
m=11=1
. — i Z#eikoqcos(dn—'y) dd)
Xezko[cos(z:b,—qﬁ,)x,fcos((b:frb,)xm] 2 o 1

where

q= ‘/(xl —x,)" + (x, — x)" = 2(x; — x,)(x,, —x;)cos (¢, — &)

_ (x;, —x,)sin(¢p, — &)
M M vy = tan~!

k .
Sl b 6) = -Zy/ = ¥ ¥ (2], (x; = x,) cos (&, — ¢) = (x,, —x))

=11/=1 . . .
" After some algebraic manipulation we can show that

in | s Isin | i T | k - —1}*
> ¢ ¢[ o ¢ (bl PL‘l' = NLZOZé Z Z Z 2 [ZE]]mI[ZE]]"fJO(kOq)
m I n j

eikolcos (§i=d)x;=cos (¢;= ¢ )]

(19)
Suppose the orientation angle distribution of the leavesis  p, - N, Zg_{c_o_ Y Y Y Yz, lza',
uniform in interval (0,2 ), then the ensemble average of 2w TS j
§,, and S, in the forward direction (¢, = ¢,) can be {1/2c082( ¢, — by (koq)
obtained from o
+2cos (¢, — @) cos 2y — (¢, — &, (kyq)
+ cos (4‘)’ - 2(¢x - d’,))]z;(k()q)]' (20)

k, M M
) =-Zo)| = L ) [ZEI] 1J0(ko|xl — X,
8 11=1 "

m=

IT1. SOLUTION OF THE RADIATIVE TRANSFER EQUATION

The radiative transfer equation is an integro-differen-

ke M M 1 tial equation with nonhomogeneous boundary conditions.

(S = =2, 87 XX [ZH ]ml If we assume that the air-canopy boundaries are diffuse,

moti=t _there would be no reflections at boundaries and the

intensity would be continuous across each boundary. Also

1 1 the intensity should approach zero as y approaches infin-

'[Ejo(koul —x,D £ 512(k0|x, —x,D| (A7) ity. Solution to this equation in analytical form, is very

difficult, if not impossible. However, under certain condi-

where J; and J, are the Bessel function of the zeroth and fions, approximate solutions or efficient numerical solu-

second order, respectively, and the plus or minus sign tiOnS are attainable. Here we present two approaches to

must be used according to the sign of x, — x,,. Therefore this Problem: 1) an iterative solution and 2) a numerical
the extinction coefficient of leaves for vertical and hori- Solution.
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A. Iterative Solution

For a canopy condition where extinction is dominated
by absorption, that is the albedo a = g,/0°" < 1, the
iterative method is the standard approach used to solve
the radiative transfer equations (RTE). In this approach,
first the contribution of the phase function to the intensity
is ignored (i.e., P(¢, ¢') = 0) so the equation reduces to a
first-order homogeneous ordinary differential equation
that can be solved easily. Then the solution of this equa-
tion (the zeroth-order solution) will be substituted back
into the RTE to obtain the first-order solution. By contin-
uing this process, solutions to any desired order can be
obtained in principle. To set the formulation in a form
amenable for boundary conditions, common practice is to
separate the intensity in the random medium into two
functions I*(y, ¢) and I (y, ¢) corresponding to posi-
tive- and negative-going intensities, respectively. In this
form ¢ ranges from 0 to =, and the RTE becomes

drt(y, )

sin d)T =

-k (y, )

+[7T[P(y, b, I (y,d)
[0}

+P(y, ¢, ¢ + m)I[(y,¢' + w)ldd'
ar(y, ¢)
d)_—dy
= ~kWI (y,¢)

+ [P ¢ + 7, DI (9, )
0

+P(y, ¢+ 7, ¢ + m) (y,¢ + w)ld¢’.
(©2))

But P(¢,d') = P(¢ — ¢') which is a periodic function
with period 27, i.e., P(a) = P(a + 2r), thus

P+ m,¢' +m)=P(p—¢) 2P (¢—-¢),

~sin

0<op,d <7
P+ m,¢)=P(¢p,¢ + 7)) =P(wr+ ¢— &)
2P (p-¢), 0<¢,¢' <.

To get the zeroth-order solution, P(¢ — ¢') must be set
to zero, then

drt(y,
n¢_0_(y_¢) = —xk(W I (y, d)

dy
dly (y, &)

- ¢—°[}— = -k (y,¢). (22
If the incident wave is a plane wave in direction ¢;, then
1700, ¢) = I's(¢ — ¢) (23)

and the solution of (22) is given by

I§ (y, @) = I'e” =< *"0s(¢ — &), I (y,¢)=0

(V23
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where
y
7(y) —fox({)dp

Now (24) can be substituted back into (21) to obtain the
first-order solution which is given by

Iy, ) = {e*swmsw —$)

+csc ¢e—csc dyr(y)fyP+(y’ 4) _ ¢-)6(CSC ¢—csc p)T(y') dyr}li
1
0

(25)
Also the solution for I7(y, ¢) can be obtained by noting
that I7(Y,, ¢) = 0, where Y, is a distance after which
there is no canopy, thus

I (y,¢) = {csc gesc 070 [ Vtes e airty)
y

'P*(Y’,¢,¢i)dy’}1". (26)

Equations (25) and (26) can be simplified by noting that
k(y)and P(y, ¢ — ¢') are periodic in y. Let us define the
integral over one period L of «({) by T, ie.,

T=/0LK(§)dg.

Also assume that the observation point is in the (N + Dth
row, then by subdividing the integral in (25) into summa-
tion of integrals over multiples of a period, and noting the
fact that

@7

jO”LK(g)d;=nT,
P*(y+nL,¢—¢')=P*(y,d — ¢')
we can show that
I, #) = {‘"( - 60

—NTcscdp _ e—NTcsc &;

~T(csc p—csc ¢;)

+csc ¢e—csc ¢T(yNL)[
1-e

'F+(L,d),¢,-) 4 e‘NTCSCdﬁ

F*(y = NL, ¢ — qbi)]}li. 28

In a similar manner the negative going intensity can be
obtained by assuming that Y, is some integer multiple of
a period (i.e, Y, = ML) and is given by

Ilv(y’ ¢) = ¢sc ¢ecsc<b-r(yNL){e—(csc d—(N+1)csc ¢ )T

1 — e—(csc ¢ —csc o, XM—-N)YT

1-— e*(csc ¢—csc pT
'FV(L,(i),¢i) + ecsc¢,-NT

[FV(L7 ¢7 ¢l) —_ F—v(y _NL7 d)’ ¢l)]}1l
(29)
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where

Fi(x,¢>, ¢l) — j(;xp’_r(g’d) _ ¢i)e(icsc¢~cscd>,-)r({)d{,

0<x<L.
Higher order solutions can be obtained by substituting
(28) and (29) into (21). However, obtaining the higher
order solutions in a closed form seems difficult. Therefore
the solutions for problems with large albedo must be
computed numerically.

B. Numerical Procedure

If the albedo of the medium is not much smaller than
one, the iterative solution does not converge rapidly. In
such a case we have to resort to an appropriate numerical
method. One such technique is the discrete ordinate
eigenanalysis method in which the continuum propagation
direction of the intensity within the medium is discretized
into finite number of directions [2]. By this approximation
the integro-differential equation can be cast into a system
of first-order differential equations. For cases where the
medium has homogeneous extinction and phase functions
the system of linear differential equations can be solved
by the eigenanalysis method. For the general case, how-
ever, this method cannot be applied. The extinction and
phase functions of the row-structured canopy as discussed
earlier are periodic and an alternative approach must be
pursued.

In what follows we introduce a new numerical tech-
nique for the solution of the radiative transfer equation
with inhomogeneous extinction and phase functions. This
method is specifically very efficient for problems with
periodic extinction and phase functions. We discretize the
direction of propagation into 2n directions and subdivide
each row into many thin slabs, then we relate the
input-output intensity of each thin slab by approximating
the elements of the transmission matrix by linear func-
tions of the incremental width parameter. Finally by mul-
tiplying the resultant transmission matrix of individual
slabs, the overall transmission matrix can be obtained.
This method henceforth will be referred to as discrete
ordinate Taylor (DOT) expansion method.

Starting from (21) and approximating the integrals, the
following coupled system of differential equations can be
obtained:

dl+(y) + + + - -
e = —K()I'(y) + P*(MI*(y) + P~ (NI (y)
d1i (y) ~ ~ -
& =KMWL (y) =P~ (WMI*(y) — P (NI (y)

(30)

where P*(y) is a 2n X 2n matrix whose elements are
defined using the following approximation

csc ¢J0"Pi(y, & I (y, &) de

= T PO, )

j==n
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and K(y) is a diagonal matrix with
[Kli(y) = csc ¢;x(;, y).

Equation (30) is valid for all of the thin slabs. Suppose
thickness of each slab (A) is chosen thin enough so that
the functions in (30) can be approximated by their Taylor
series expansion around the values of y at the left bound-
ary of the slabs up to the first term. That is, for the mth
slab we have

I5(y) =a, + b (y —y,),
K(y) =K, + K, (y —y,)
3D

P*(y) =P + P (y —y,).

After substituting (31) into (30) and rearranging the terms
of equal power in y, the following algebraic equations for
the coefficients are obtained:

b, = -K,a, +Pla} + P a,
b,=K,a,, — P, a; —Pta. (32)

The intensity in the (m + 1th slab is related to the
intensity of the mth slab by (see Fig. 3)

an (33)

=al + bIA.
Using (32) in (33), the intensity on the right-hand side can
be related to the left-hand side of the mth slab by

AP,
I+ AK,, — P

a

a
where .# is the unit matrix. The matrix in (34), which
relates the input—output of the thin slab (T,), will be
referred to as the transmission matrix. A must must be
chosen small enough, so that the intensity, extinction, and
phase functions behave as linear functions over any A
interval of the medium. The rate of change of the inten-
sity in the medium in the worst case (P = 0) is exponen-
tial (/ = ¢e™*”) and since extinction and phase function
are known, a lower estimate for A can be chosen to satisfy
the linearity conditions. Higher order approximations in A
can also be obtained by retaining more terms in the
Taylor series expansion. For example, if we keep the
expansion terms up to the second order in A, the trans-

artz-f—l ‘]_A(Km_PnT)
a,.| ~AP;

m+1

33+

| o
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Fig. 3. Configuration showing a row of vegetation consisting of M thin
slabs. Also depicting the incidence and reflected vector intensities for
the mth slab of thickness A.

mission matrix for the mth slab becomes

F+ (=K, +P)

m

2

A2
AP, + _P"]

where superscript prime in K/, and P}' denotes deriva-
tive with respect to y. In principle, the approximation of
transmission matrix can be obtained to any order in A, at
the expense of complexity of the matrix entries. The
transmission matrix of a row comprised of M thin slabs
therefore is given by

(35)

which relates the input and output intensities of a single
row. If there are N rows of the canopy under considera-
tion the overall transmission matrix can be obtained from

Tl] T12
TZl T22
The overall transmission matrix for large values of N can

be calculated by diagonalizing the matrix. Suppose T can
be diagonalized, i.e.,

Ts = QAQ_1
where Q is a matrix whose columns are eigenvectors of

T, and A is a diagonal matrix whose entries are the
eigenvalues of T,. Thus

[Ts1" = QAYQ ™!
where AY is a diagonal matrix whose entires are the

T =[T]" £ [ (36)

AP, + —P~
"2
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eigenvalues of [T] raised to the Nth power. Noting that
there is no intensity incident on the (N + 1)th boundary,
(ay,, = 0), the reflected and transmitted intensities, re-
spectively, are given by

= ‘[Tzz]il[Tn]Ii

I'= [Tn - le[Tzzrszl]Ii-

IV. CoMPARISON WITH EXPERIMENTAL RESULTS

A corn canopy is an example of a periodic vegetation
structure under investigation in this study. Measurements

A A , _
A7+ 7(—1(,,, + P,;)] + ?[fK’m + P = (P, )z]

2

A? A
AS + 7(—Km +P7)

'

s+ (-K,, +PD)

+%2[—K’m +Py - (P,,',)Z]

of the magnitude of wave patterns transmitted horizon-
tally through a corn canopy were made at 1.5 (L-band)
and 4.75 (C-band) GHz for both vertical and horizontal
polarizations. Detailed experimental procedure is given by
Tavakoli et al. [10]. Briefly, the receivers were kept sta-
tionary at the height of 1.2 m above the ground, and the
transmitters were made to glide along a rail system at the
same height as the transmitters. Vertical and horizontal
polarizations were transmitted simultaneously and the
detected power of the received fields as a function of
distance were recorded using an HP-8510 network ana-
lyzer. The measurements were performed for a full (stalks
and leaves) canopy as well as a defoliated (stalks only)
canopy. At the end of the experiment, the corn plants
were cut and removed and then direct line-of-sight meas-
urements were conducted to obtain the reference pat-
tern. A summary of the canopy parameters are given in
Table I . Before proceeding with the comparison of the
theory with experimental data, it is useful to examine the
behavior of the phase function of cylinders and resistive
strips. Using the data of Table I, the phase function of a
single cylinder and a single resistive strip at C-band were
calculated as a function of (¢, — ¢,) and are represented
in Fig. 4. It can be seen that considering the number of
leaves and stalks in the canopy, the phase function of
leaves becomes comparable in magnitude to the phase
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Fig. 4. Calculated phase function of a single (a) cylinder, (b) resistive

strip as a function of ¢, — ¢, at 4.75 GHz for the parameters listed in
Table I.

TABLE 1
CANOPY PARAMETERS USE IN THE CALCULATION OF THE
THEORETICAL RESULTS

A € €
f=15GHz 20 cm 28 +i8 33 +il10
f =475 GHz 6.3 cm 26 + i8 31 +i10

Leaf: w = 5cm 7= 0.25 mm

Stalk: d = 1.75 cm

Row spacing = 80 cm

Number of plants per square meter = 6.2
Number of leaves per plan = 13

function of stalks at 4.75 GHz. Hence, leaves play as
important a role in the scattering process as stalks, which
was also observed in the experimental data. Referring to
Fig. 4(b), it can be concluded that the physical-optics is in
good agreement with the exact solution derived by the
method of moments at 4.75 GHz. It should be mentioned
that in computation of the phase function by the method
of moments, the size of the cells (segments) does not have
to be as small as the size that is required for accurate
computation of the scattering amplitude (usually A/15).
This is due to the fact that the averaging process over the
magnitude of the scattering amplitude in the calculation
of the phase function washes out the fine features of the
scattering amplitude.

Fig. 5 shows comparisons between the phase function of
a single resistive strip calculated by the physical optics
method and the result obtained by using the method of
moments. The phase function is calculated as a function
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Fig. 5. Calculated phase function of a single strip as a function of w/A,
using the iterative and DOT methods with the parameters listed in Table
1 for (a) V-polarization and (b) H-polarization.

of w/A using the parameters of Table I. It can be seen
that the physical-optics solution is a good approximation
for calculation of the leaves’ phase function at C-band.
But, at lower frequencies, the exact solution derived by
the method moments must be used instead (i.e., at L-
band). Therefore, in the calculation of the phase function
for leaves, the exact solution at 1.5 GHz, and the physical
optics solution at 4.75 GHz are used. For a plane wave
incident on seven rows of a full corn canopy, the bistatic
scattering coefficient was calculated and is presented in
Fig. 6. The result of the iterative and DOT solutions are
comparable at L-band for H-polarization where scattering
in the medium is negligible. However, the first-order solu-
tion underestimated the DOT solution by up to 3 dB for
vertical polarization at both L- and C-band. The coherent
component of the transmitted wave is also calculated
using the iterative and DOT methods and are given in
Table II. The polarization and frequency dependency of
the coherent solutions is similar to the that of the diffused
scattering. .
Measurements of the magnitude of wave patterns trans-
mitted horizontally through seven rows of a corn canopy
were made at 1.5 and 4.75 GHz for both vertical and
horizontal polarizations. We can now compare the simu-
lated results for the iterative and DOT solutions with the
experimental data. In calculation, each row is subdivided
into sections of 1.95 cm wide slabs for L-band and 1.77 cm
wide slabs at C-band were stalks are only present in the
central slab and leaves are uniformly distributed in all
slabs. Figs. 7 and 8 compare the result of simulation with
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Fig. 6. Calculated bistatic scattering coefficient for a plane wave inci-
dent normally on seven rows of a corn canopy, using both the iterative
and DOT methods at (a) L-band (b) C-band.

TABLE II
COHERENT COMPONENT OF THE TRANSMITTED WAVE (IN DB), WHEN
A PLANE WAVE OF UNIT MAGNITUDE IS INCIDENT ON SEVEN
Rows oF A CorRN CANOPY

V-polarization H-polarization

First order DOT First order DOT
L band —24.1 -22.7 -2.7 -22
C band -30.8 -273 —-18.6 —-16.8

the experimental data for stalks at 1.5 and 4.75 GHz,
respectively. It should be noted that the radiative transfer
technique produces statistical average of the transmitted
wave pattern and the experimental wave patterns are not
averaged over many measurements. It can be seen that
both the first-order iterative solution and the DOT solu-
tion produce satisfactory wave patterns at both frequen-
cies. Figs. 9 and 10 depict similar results when leaves are
also present. Good agreement between the experimental
data and the theory is obtained for a vertically polarized
wave, but poor agreement is achieved for the horizontal
polarization. The model underestimates the propagation
loss for horizontally polarized waves. This shortcoming is
due to the fact that leaves are modeled as vertically
oriented, infinitely long strips, whereas in reality, leaves
are not perfectly vertical. Therefore, the simulated propa-
gation loss is not accurate for H-polarization.

V. CONCLUSION

In this paper, a 2-D radiative transfer model for hori-
zontal wave propagation through a periodic random
medium was developed. Solutions of the radiative transfer
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Fig. 7. Comparison between the theoretical and experimental transmit-

ted wave patterns for seven rows of stalks at L-band for (a) V-polariza-
tion and (b) H-polarization.

Amplitude (dB.)

Amplitude (dB.)

Fig. 8. Comparison between the theoretical and experimental transmit-
ted wave patterns for seven rows of stalks at C-band for (a) V-polariza-
tion and (b) H-polarization.
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Fig. 9. Comparison between the theoretical and experimental transmit-
ted wave patterns for seven rows of stalks and leaves at L-band for (a)
V-polarization and (b) H-polarization.
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Fig. 10. Comparison between the theoretical and experimental trans-
mitted wave patterns for seven rows of stalks and leaves at C-band for
(a) V-polarization and (b) H-polarization.
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equation was pursued both iteratively and by a new method
based on the discrete-ordinate approximation and the
Taylor series expansion (DOT). As an example, a corn
canopy was considered where stalks were represented as
infinitely long, vertically oriented dielectric cylinders, and
leaves were represented by vertically oriented thin resis-
tive strips. An efficient numerical procedure was devel-
oped to compute the extinction and phase functions of
particles with arbitrary cross section. This model was used
to compute the extinction and phase function at L-band
and the physical optics approximation was used to calcu-
late the extinction and phase function of the leaves at
C-band. It is shown that the models agree with the experi-
mental data for a defoliated canopy at both polarizations.
The model also predicts the propagation characteristics of
a vertically polarized transmitted wave through a full corn
canopy, but underestimated the horizontal propagation
loss due to the fact that the leaves are not perfectly
vertical. Overall, the model can be used to study the
electromagnetic interaction with a random medium with
inhomogeneous particle distribution of arbitrary cross sec-
tion when the longitudinal dimension is much larger than
the cross sectional dimensions of the particles.
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