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Scattering from Dielectric Structures Above
Impedance Surfaces and Resistive Sheets

Kamal Sarabandi

Abstract—Interest in understanding of electromagnetic inter-
action with rough surfaces has prompted the study of scattering
from typical dielectric humps over impedance surfaces. It is
shown that the Green’s function of the problem for a resistive
sheet resembles that of the impedance surface. Hence both
problems are considered here. In this paper a numerical solution
for the scattered field of a two-dimensional dielectric object,
possibly inhomogeneous, with arbitrary cross section above the
impedance surface or resistive sheet is sought. First the Green’s
function of the problem is derived based on the exact image
theory. This form of the Green’s function is amenable to numer-
ical computation. Then the induced polarization currents are
calculated by casting the integral equations into a matrix equa-
tion via the method of moments. Numerical problems in calcula-
tion of the Green’s function when both source and observation
points are close to the surface are discussed. Comparison of
numerical results for both transverse electric (TE) and transverse
magnetic (TM) cases with a perturbation solution shows excel-
lent agreement between the two methods.

I. INTRODUCTION

PPLICATION of electromagnetic waves as a means of

retrieving the desired surface parameters of the earth is
a matter of increasing concern. For example, soil moisture
content and surface roughness are two such parameters. The
problem of electromagnetic wave scattering by rough sur-
faces has long been studied and because of its complexity
satisfactory models exist only for a limited cases. The exist-
ing models are applicable to two extreme roughness condi-
tions. In the so-called small perturbation model both the
correlation length and root mean square (rms) height must be
smaller than a wavelength [1]. For the other extreme, known
as the Kirchoff model, however, both the correlation length
and rms height must be much larger than a wavelength while
the rms slope must be reasonably small [1]. To achieve
analytical expressions for the scattering coefficients, the ran-
dom surface medium is assumed to be homogeneous and to
have a Gaussian-autocorrelation function.

Measurement of natural surfaces at microwave frequencies
shows that the existing models are inadequate to explain the
scattering behavior for two main reasons [2]. First, the
roughness parameters are usually outside the region of valid-
ity of the mentioned models. Second, natural surfaces are not
homogeneous, that is the moisture content in most cases is
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not uniform in depth. The top rough layer includes clods and
rocks that are usually dry and keep the moisture of the
underlying layer from evaporating. The moist smooth under-
lying soil layer at microwave frequencies can be modeled by
an impedance surface and irregularities at the top by dielec-
tric humps of different dielectric constants. To simulate the
electromagnetic scattering behavior of such surfaces, the
scattering solution of an isolated hump is needed.

In this paper we seek a numerical solution of a two-dimen-
sional dielectric object with arbitrary cross section above a
uniform impedance surface when the object is illuminated by
a plane wave. The geometry of the problem is depicted in
Fig. 1. Common practice in obtaining the Green’s function
for scattering and antenna problems in the presence of a
half-space medium is through calculation of a Sommerfeld-
type integral [3]. These infinite integrals, in general, are
highly oscillatory and computationally rather inefficient. Al-
though many techniques have been developed to speed up

- their calculation for three-dimensional problems [4], [5] they

are of little use for two-dimensional problems. Numerical
solutions for two-dimensional scattering problems in the
presence of a half-space medium have been limited to small
scatterers or low frequencies mainly because of difficulties in
computing the Green’s function [6], [7]. Here, the Green’s
function of an impedance surface (or resistive sheet) is
derived in terms of rapidly converging integrals using appro-
priate integral transforms. Useful asymptotic expressions of
the Green’s function are also given. The scattering problem
is then formulated by integral equations which are solved
numerically using the method of moments.

II. DERIVATION OF GREEN’S FuncTioN UsING ExacT
IMAGE THEORY

The first step toward calculating the scattered field of an
object is to derive the dyadic Green’s function of the prob-
lem. Since the Green’s function is used in a numerical
solution of the scattering problem, it should be efficiently
calculable. An integral representation for the image of a line
source above an impedance surface or a resistive sheet is
derived using integral transforms similar to those employed
by Lindell and Alanen in derivation of the exact image theory
[8]. Interested readers are also referred to [9]-[11] for

“detailed discussion of the exact image theory. The new

representation for the Green’s function has an excellent rate
of convergence for most practical purposes and can be com-
puted very easily.

The fields generated by a two-dimensional (8/dz = 0)
distribution of electric current (J,(x, y)) in terms of the

0018-926X/92$03.00 © 1992 IEEE




68 [EEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 40, NO. 1, JANUARY 1992

Impedance Surface or Resistive Sheet

Fig. 1. Geometry for the scattering problem of a dielectric cylinder above

a uniform resistive or impedance sheet.

associated Hertz vector potential are given by
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E, = ki 1+k_gﬁ)n"+ axayny,
E =—i—rl +k2(1+iiz—)r1 (1)
> ayax ¥ 0 k2ayr|
E,= k3,

The Hertz vector potential associated with an infinite cur-
rent filament located at point (x’, ') in free space with
amplitude I, and orientation p is of the form

(kofx—X) + (=) )1,

p=x,yorz (2)

where H{" is the Hankel function of the first kind and zeroth
order and Z, is the free space characteristic impedance. The
corresponding field components can be obtained by inserting
(2) into (1) and then by employing the identity

(x-x) '+ (y-»))

/+coe'k yly=y | —ikx=x")

In,(x, y)—

(1,

dk, (3)

the resulting fields can be expressed in terms of a continuous
spectrum of plane waves. In (3) k, = V k k2 and the
branch of the square root is chosen such that vV-1=i.

In the presence of the impedance surface or the resistive
sheet, when the current filament is in the upper half-space,
each plane wave is reflected at the interface according to the
appropriate reflection coefficient. It should be noted that the
incidence angle of each plane wave, in general, is complex
and is given by v = arctan(k, /k ). The net effect of the
impedance surface or resistive sheet on the radiated field can
be obtained by superimposing all of the reflected plane waves
of the form R (y)e'0+y)ikdx= ¥), where R,(y) is the
reflection coetﬁcxent corresponding to incident polanzatlon
g = E or H and the surface type. The total reflected field
can now be obtained by noting that

E;= -Ry(v)E;, Ej=Rgu(y )E;, E; = Re(v)E;

and since the direction of propagation along the y axis is
reversed for the reflected waves, the operator 3 /9 y for the x
and y components of the reflected field must be replaced

with —3/8y. Thus, in matrix notation the total field in the
upper half-space can be represented by
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0 0 G.llL
where
koZ 1 8?
G, = — 00y 4+ ——
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Gzz - T
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are the elements of the dyadic Green’s function
(G(x, y; x', y") for the two-dimensional impedance surface

or resistive sheet problem. In (5) the quantity Q ,, is given
by E

l/+‘”RH('Y)

T o g

P+ (- V) + 0l

(r=¥)) - 0

Oulx,y;x,y) =
E

eiky(y+y’)—ikx(x—x’)
. 4k, (6)
ky
and the expressions for the reflection coefficients of the

impedance surface and resistive sheet are respectively given
by [12]

ncosy — 1 cosy — 1
Rg(y) = ——— R = (7
£(v) pcosy + 1 H(7) cosy + 7 (7)
Re(v) - R -
EY) = T ¥ 2R cos v 1) = T 2R ey

(8)

where % is the normalized impedance of the impedance
surface (n = Z/Z,) and R is the normalized resistivity of
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the resistive sheet. For example the resistivity of an infinites-
imally thin dielectric layer of thickness 7 and permittivity e
is given by [13]

i

R= —.
kor(e — 1)

If an electric current distribution J, occupies region S in
the upper half-space, the radiated electric field at any point in
the upper half-space can be obtained from:

ES(x,y) = /G(x,y; x,y)-¥x, y)dx'dy. (9)
s

The first term within brackets in (5) represents the effect of
the current filament in the absence of the impedance surface
while the second term is due to the image of the current
filament. Unfortunately, the integral representing the contri-
bution of the image does not have a closed form and its
convergence rate is very poor. To achieve the image contri-
bution in an efficient way consider the following transforma-
tion:

+ oo B 1
e—ave— yll dl’ = s
/0 a+t+k,

provided Re [a] > —Re[k,]. (10)

The choice of the branch cut for k, guarantees that Re [k ]
is nonnegative as k, takes any real number, therefore the
sufficient condition for (10) is

Re[a] > 0.

The expressions for the reflection coefficients can be writ-
ten in terms of k, by substituting cos y = k, /k,. For the
case of a resistive sheet with an E-polarized incident wave
we can define « to be k, /2 R, noting that the above condi-
tion is satisfied (Re[a] = k37€¢”/2 > 0). In view of the
transformation (10) the integral representing the image con-
tribution in the upper half-space can be written as

-1

[
k
— oo Y
(1 ¥ :)k,
+ o0 +u-,eik,(y+y’+iu)—ikx(x—x’)
= - qe” ¥ dkx dv
/0 * / k

— o ¥y

elky )ik (x=X") gk
X

Employing the identity given by (3), the zz-component of the
dyadic Green’s function for the resistive sheet problem in the
upper half-space can be obtained from

=2 (ko =0 =)

Gl= —

+ oo
_/ e
0

-Hé"(ko Vix-x+(r+y+ iV)Z) dV]~ (11)

In a similar manner for the lower half-space the zz-compo-

69

nent becomes

G =

24

4"2 [Hm(k V(x=x) + (=3 +y))
.H(g”(ko\/(x—x’)2+(—y+y’+iu)2)dvl.

(12)
This integral representation converges very fast because both
functions in the integrand are exponentially decaying. Also
from this representation it can be deduced that the i image of a
line current above a resistive sheet is a half-plane current
with exponential distribution and is located in the complex
y-plane occupying the region —y’ — i <y < —y’ (see
Fig. 2).
Similarly by defining 8 = 2 Rk,, for the case of H-polari-
zation the quantity Q, in (6) for a resistive sheet in the
upper half-space is given by

n = H" (ko V/(x - ¥)* + (3 + »)?)

<+ oo
_/ Be—ﬁv
0

- HP(koV/(x (13)

In the corresponding case of an impedance surface the dyadic
Green’s function can be obtained from (5) with the following
expressions for the quantities Q and Q

Qc = HY (ko V (x = ) + (y + 7))

+ oo
_ 2/ a1e~a’u
0
'Hél)(ko\/(x_
0y = HY (ko V/ (x - x)°

+oo
Bre—ﬂ'r

+(y+y +w))

X4+ (y+y +iv))dv (19)

+(y+y))

-2
0

CHP (ko V (x =) + (y+ ¥ +iv) ) dv. (15)

The quantities o’ and $’ in (14) and (15) in terms of the
normalized surface impedance are, respectively, given by

7 ko
o = —,

B = ko

The validity of the new image representation can be checked
by considering some special limiting cases. For example
consider the resistive sheet problem for E-polarization. Sup-
pose the resistivity is very small (approaching perfect con-
ductivity) which implies that | | > 1. In this case contribu-
tion to the integral in (11) comes mostly from point » = 0
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Fig. 2. The location of the image of the line source in the complex Y
plane.

and therefore

<+ oo
/ oze“"”Hé”(k0 \/(x XV +(y+y+ iv)2) dv
0

-+ oo
ae ¥ dv

~ HP (ko V(x =) + (v 457 [

0

— HP (ko v/ (x = %) + (7 + 7))

which is the image for the perfectly conducting case. The
asymptotic behavior of the integral in terms of a convergent
series of inverse power of a can also be obtained by per-
forming integration by parts repeatedly, that is

+ oo
/ aeHO (ko V/ (x = x) + (y+ ' + iv)’ ) dv
(1]

where A¢(0) is the nth derivative of

H{(k, \/(7— x’)2 +(y+y+ iu)z) with respect to »
evaluated at zero. The first order of approximation is

5 (1) w0

n=0\ &

~ h(0) ~ H(0) - ~ h(——l)

[0

=H(§‘)(k0\/(x—x')2 + (y+y’— é)z)

which is a line image located in the complex plane at
y= —y +i/a. Asitis important in the scattering prob-
lems, the other asymptotic behavior of interest is the far field
approximation where the point of observation is far from the

\/(x—x’)2+(y+y’)2§>)\0. In

image point, i.e., p, =
this condition

vV ( —x')2+(y+y’+iu)2 =p,|1

+

iv cos ¢, )
P2

where we have assumed that p, > v. The validity of this
assumption comes from the fact that the integrand of (16) is
approximately zero if » > y_, for some finite v,,,. Now by
using the large argument expansion of the Hankel function

and then substituting for o we get

+ oo
- «e

lim e
P Jg

Jw(vax—xf+(y+y+wf)w

2 ) -1
~ eitkopa=m/H
wkop, 1+2Rcos ¢

Note that the last term in the above equation is the plane
wave reflection coefficient for the E-polarization case. This
result is identical to the asymptotic value of the integral given
by (6) evaluated using the saddle point technique. In applying
the saddle point technique the poles associated with the
reflection coefficient function (R ,(7y)) may be captured when
the contour is deformed. The contribution of these poles
gives rise to surface waves, but their effect can be ignored if
the surface is lossy and the observation point is away from
the interface. Also, the large-argument expansion of the
Hankel function can be used for the distant approximation.
Now it can easily be shown that for an electric current
distribution J,, the radiated far field does not have a
component and the far-field amplitude defined by

E= 2 eitkop—m/HQ
wKop

has the following components:

koZ
Sy = 04 0 {]S cos o J (x', ')

,e-ikosinebx’[e—ikncosday’ _ RH(QS)eikOCDS"’y’] dx’ dy’

—/ sin ¢ J,(x’, ¥')
s

,e—ikosinxbx’[e‘ikocosdzy' + RH(QS)eikocos ¢y’] dx’ dyl

(17)

koZ
s.=-—, e

/S (¥, ¥)

. e—ikosindax’[e—ikocosd:y’ + RE(d))eikocosd:y’] dx’ dy;

II. DERIVATION OF INTEGRAL EQUATIONS

Suppose a dielectric object, possibly inhomogeneous, is
located above an impedance surface (resistive sheet) and is
illuminated by a plane wave. The direction of propagation of
the plane wave is denoted by the angle ¢, measured from the
normal to the surface. Therefore the incident wave for E-
and H-polarization cases may be represented by

i _ spikp(sin ¢px—
E' = Se'ko n ¢gx cosd;oy)’
E’ = (cos ¢o % + sin ¢ p)ekolsinox=cos do7),

The incident field induces conduction and displacement cur-
rents in the dielectric object which together are known as the
polarization current. The polarization current in terms of the
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total electric field (E‘) inside the dielectric object is given by
J. = —ikoYo(e(x, y) — 1)Ef (18)

where e(x, y) represents the relative dielectric constant of
the object. The total field is comprised of the incident,
reflected, and scattered fields which are, respectively, de-
noted by E’, E’, and E*, then

E'=E +E +E°. (19)

In the E-polarization case where the electric field is perpen-
dicular to the plane of incidence the incident field excites a
z-directed polarization current, which leads to a scattered
field in the z direction. For the H-polarization case, how-
ever, the polarization current and the scattered field are in the
transverse plane and therefore the integral equations for -
and H-polarization cases are decoupled. Using (9) for the
scattered field and (19) for the total field with (18) the
following integral equations for the polarization currents can
be derived

J(% 3) = =ikgTo(e(x, ) = 1){ ttomnors

.(e—ikocosdaoy + RE(¢0)eik0cos¢oy)

+/ / Jz(x,’ yl)Gzz(X, y; x', y’) dx'dy’} .
(20)

T(%, ¥) = —ikyY,(e(x, y) — 1){cos gy eitotinbox

,(e—ikocos¢0y _ RH(¢0)eik0cos¢oy)
+//[Jx(x$ Y)Gyi(x, y; x', )

s
(X', ¥)Gy(x, y; X', )] dx’ dy’} (21)

Jy(X, y) = —ikoYO(e(x,y) - 1){sin o ekosindox

. (efikocos Doy + RH(d)o)eikocos ¢0y)

+//[JX(X’,y')ny(x,y;x',y’)
+J,(x', ¥)G,,(x, y; X', y')] dx’ dy’} . (22)

IV. THE METHOD OF MOMENTS SOLUTION

There is no known exact solution for the integral equations
that were developed in the previous section. In this section an
approximate numerical solution of these equations is obtained
by employing the method of moments.

Let us divide the cross section of the dielectric structure
into N sufficiently small rectangular cells such that the
dielectric constant and the polarization current can be approx-
imated by constant values over each cell. First consider the
integral equation (20), which corresponds to the E-polariza-
tion case. Using the point matching technique the integral

7t

equation can be cast into a matrix equation of the following
form:

[Z][#] = [~] (23)

where [ Z] is the impedance matrix, [ J 1 is the unknown
vector whose entries are the value of polarization current at
the center of each cell, i.e., (x,, ¥,), and finally [¥'] is the
excitation vector whose entries are given by

v, = ikoYo(e(x,, 7,) — 1)
. eikOSiﬂ¢oxn(e‘ikoC°S Porn 4 RE(d,O)e"koCOS%yn). .

The off-diagonal elements of the impedance matrix can be
obtained by approximating the Green’s function via its Taylor
series expansion around the midpoint of each cell and then
performing the integration analytically. This technique allows
us to choose very small cell sizes without incurring too much
error because of the adjacent cells. For diagonal elements the
free space Green’s function is approximated by its small
argument expansion and then integration is performed analyt-
ically over the cell area. This allows us to choose rectangular
shape cells instead of squares that are approximated by
circles of equal areas in the traditional method [14]. In order
to give the expressions for elements of the impedance matrix,
let us define the following functions

Urzn = _H(gl)(ko,-:’lm) cos? or?m
H®(korg,
+ -1k(+ (cos?62, — sin?07,) (24)
0" mn
Vn(lln = _Hé])(kOrgm) sin? orgm

HWY(k ra
M(shﬁ 07, — cos”61,) (25)
korp,

where r?%, and 07, are the distance and the angle from the
source, its mirror image, and its continuous image points to
the observation point which are given by

V (%m = %)2 + (5 = 7). ifg=s
r"']"' = \/(xm - xn)2 + (ym +._Yn)2 s if qg=1i
\/(x,,,—x,,)2+(ym+y,,+iv)2, ifg=c
arctan(u), ifg=s
X, = X
04 arctan(ym—-*-y") ifg=1i
mn = X, —Xx,]’
+ i
arctan Im TVt , ifg=c.
Xm — X,

The diagonal entries of the impedance matrix for resistive
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sheet are given by

1 kiAx, Ay,
z,m=—1—;(e(x,,,y,,)—1)[ L

2
2 re-sarer ir 3
. 2 VAxXE+ AP 4y - — - =
[ln(4 X, + y,,) ¥ ) 2
koAx, \? A
+(—°——") arctan | —2"
2 Ax,
koAy, \*[ T Ay,
+ — — arctan
2 ) 2 Ax,

ik} Ax,Ay,
4

-
[ e HE (korty) dv
0

} (26)
(E(X", yn) - l)a

and the nondiagonal entries are expressed by

iszx,, Ay,, s
Zpy = g (X Im) ~ 1) [Hé”(kormn)

koAx,) kyAy,)
+( 0 ) U,:,,,"’ ( ) n)
24 24

s
an

—a/ e H§" (korsn) dvl. (27)
0

Here, Ax, and Ay, are the dimensions of the nth rectangu-
lar cell and v = 0.57721 is Euler’s constant. The entries of
the impedance matrix for the impedance surface can also be
obtained in asimilar fashion by adding the mirror contribu-
tion, replacing « with o and doubling the integrals in (26)
and (27).

The integrals in (26) and (27) are evaluated numerically
using the Gauss-Legendre quadrature technique [15]. It should
be mentioned here that when the observation and source
points are both close to the surface (ko(y, +,) <D
for some value of » = yy, the distance function r,
= \/(x,,, = x,)> 4 (¥ + yu + iv,)® becomes very
small. Consequently the integrand of the integral representing
the image contribution varies very rapidly around this point.
In order to evaluate the integral accurately, the contribution
of the integrand around », should be evaluated analytically.
The integrand achieves its maximum when the absolute value
of the distance function is minimum. This minimum occurs at

vo= V(xm— %) = Gm+2.)' - (28)

If the argument of the square root in (28) is negative, then the
distance function takes its minimum at », = 0. Fig. 3 shows
the integrand function in (27) when both observation and
source points are very close to the surface. The analytical
evaluation of the integral around the point », can be per-
formed by using the small argument expansion of the Hankel

50. T T T

dB

Fig. 34. The absolute value of the integrand function in (30) for R = 0. 18
+i0.37 at 10 GHz, y,, + ¥, = 6 X 1073 A, and five values of x,, — X,,.

function, i.e.,

vot+Av
/ o= HO (korS,,) dv
14

0—Av
2y i2
= e %0 2Av(1 + —) + — 1
T T
where

i
Il = E(y,,, +y,, + iVO)

r2 — Av? — 2 Av(y,, + ¥, + ivg)
rd — Av: +i2 Av(y,, + ¥, + ivy)

Xp— X, e+ Av:+2Ap(x,-x,)

+ n
2 r2 4+ Av? -2 Av(x,, — x,)
k2
- Av[2 —In—
4

-\/(rg - Av2)2 + 4202 (y, +y, + iv0)2].

For self-cell (diagonal element) calculation we note that
X,, = X,,, which renders v, = 0 and

Ay i2 2
/ e H" (kors,,) dv = Au(l + ——7) + =0
0 T T
where
Y+ Yy, +iAy

I = (Y + )1
1 (ym yn) n ym+yn

+ iAv|ln

ko( Yy + ¥, + i 4V) 1]
2 - .

In the H-polarization case, using the same partitioning of
the cross section of the dielectric body, the coupled integral



SARABANDI: SCATTERING FROM DIELECTRIC STRUCTURES

equations (21) and (22) can be cast into a matrix equation
similar to (23) where

L
(5]~ M,

The elements of the excitation vector are given by (n =
1’ s N)

v, = ikoYo(e(x,, ¥,) — 1) cos ¢,

. eikosindzox”(e—ikocosqsoy,, _ RH(¢0)€ik°c°S ¢0y,,)

VpaN = ikOYO(e(xn’ yn) - 1) sin ¢0
. eikosin¢0x,,(e-ik0cos¢oy,, + RH(¢O)eik0ms¢oz”,)_

Here again the entries of the impedance matrix are obtained
by expansion of the Green’s function over each cell as
explained in the E-polarization case. Since the Green’s func-
tion has a higher degree of singularity in this case, these
expansions are even more important to use in order to avoid
anomalous errors.

For the resistive sheet the nondiagonal elements of the
impedance matrix are given by

ik3Ax,Ay,

Lmn = 4 (E(Xm, ym) - 1)

{ +3/ e B A, } (29)

ik}Ax,Ay,

Lamn = 2 (e(xps ) = 1)

{ 4B [ ﬂw;dd (30)
Z3mp = Ml(f(xm’ym) - 1)

-{B;,,, - Bl + B/:e‘“”B;,,, dv} (31)
a = BRI () )

-{c;m + Ci,— B/ e ?ce, du} (32)
o .

where A7, Bi,, and C], are given in the Appendix.

Noting that cos 8,,, = cos 5, = O and sin 6/, = sin ¢, = 1,
the diagonal elements are of the following form:
1 kiAx,Ay,

Zinn = -1-

;(E(Xn, yn) - 1)

73

+2 arctan (

Ayn kO Ayn ?
+ —_—
Ax, 2 )
Ay,
Ax,
ikl Ax, Ay,

4 (6(xn’ yn) - l)

T
— — arctan
2

. { —A‘;,,, + B/ e‘ﬁ"Ai,,, dv} s (33)
0
zZnn = z3rm = 0 (34)
1 kiAx,Ay,
=—-1- — , 2=
z4nn W(E('xn yn) ) 4
ko in 3
inf—+vAx2 + A 2)+ -—=-=
["( g VAT A [Ty T 5Ty
T Ay,
+2| — — arctan
2 Ax,
(%Any (An)}
+ arctan
Ax,
ik} Ax,Ay,
+———(e(x,, ¥,) - 1)
. {C,’;,, - B/ e“B"C,”,,, du} . (35)
0

Upon comparing (13) and (15) the expressions for the ele-
ments of the impedance matrix for the impedance surface can
be obtained by doubling the integral expressmns and replac-
ing 8 by 8’ in (29)-(35).

The distance function in the integrand of all the integrals in
the elements of the impedance matrix assumes a very small
number when the observation and source points are both
close to the surface of the resistive sheet. Since the singular-
ity of the integrands in this case are much higher than the E
polarization case, analytical evaluation of the integrals around
the point », is even more critical. Fig. 4 shows the variation
of the integrand as a function of » for some typical values of
source and observation points, and also compares the inte-
grand with its approximation. It should be noted here that the
phase of the integrand varies very rapidly around v, resulting
in a faster variation of the integrand than what is shown in
Fig. 4. If the integral in (29) around the A» neighborhood of
v, is denoted by S, then

S = eiﬁVO[Hél)(koro)(ym +y, + iVo)z
| =
- n
T 2
Ao = %) = (20 + ivo)zl}zz

2i )
_"_kg [(xm - xn) -

— e P (Y + ¥, + iuo)z] I
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dB

Fig. 4. The absolute value of the integrand function in (38) and its
approximation for R = 0.18 + i0.37 at 10 GHz, y,, + ¥, = 6 X 107° N,
and five values of x,, — Xx,.

where
1 rd 4 Av? + 2(x, — x,) Ay
L= 2(x, — Xn) " 124+ A2 — 2(x, — X,) AV’
Ay
BTN

r2 = Av? = 2y + Yo+ ivg)
(r2 = Av2)" + 4 AV (Y + ¥y + i Brg)’

1 r2 4+ Av? +2(x,, — x,) Ay

n .
4(x,, — x,,)3 ré + Av? — 2(x,, — x,) Av

+

In evaluation of the diagonal elements, we set x, = X,,
which leads to v, = 0 and the integral in (33) is approxi-
mated by

i2
S = —
where

. Ym ¥y, +iAv
L= —i|(§p +y,) In e

Y + Vu
ko(y, +y, +iAv
+iAvin o(Ym + Vr )—iAv
2
Ay

I = )
2 I A ) (I Y, +iAY)

To extract the contribution of the integrand in (30) around »,
we use similar approximations as in (29). If this integral is

denoted by S,, then
S, = e—ﬂvo(xm - xn)(ym +y, + in)
i 2y
-”Hé”(koro) + (— _ B 1)
T T
2 korg 4
-—1 L+ —1I;.
. ] ST }
The integral in (31) around the point », is approximated by

S, where S; = S,, and similarly for the integral in (32) if S,
represents the integral around v, then

5, = e-ﬁvo{Hév(koro)(xm _x)

i iy 1) i korg
+l{l—=-—-=] - —1In
(27r T 2 T 2

(o = X = (90 + im}zz

%) = (I + ¥ + iu0)2] L.

2i [(X,,, B

2
Tk

When x,, = x,,, then », = 0 and this integral is represented
by

i i iy 1
+ —I - (—————-—)AV.
T 27 T 2

Once the system of linear equations for the polarization

-
xk2

" current has been solved the scattered field from the dielectric

structure at any point in the upper half-space can be obtained
by means of (17) for both E- and H-polarization cases.

V. NUMERICAL RESULTS

In this section the results based on the numerical solution
are presented. As a verification of the numerical code we first
compare the numerical solution of scattering echo width of a
dielectric hump over a resistive sheet with a perturbation
solution of the problem [16]. Consider a homogeneous di-
electric hump with dielectric constant e = 36 + {17 over a
resistive sheet with resistivity R = 0.18 + /0.37. Suppose
the functional form of the hump is given by

w2

YW
and that the hump is illuminated by a plane wave at 10 GHz
(N = 3 cm). Figs. 5-8 show the bistatic echo width and the
phase of the far-field amplitude of the hump for A =
37, /1000, w = N\ /15, and w = ), /25 at incidence angles
¢, = 0° and ¢, = 45° for both polarizations. In each figure
the results based on the perturbation technique are compared
with the numerical results. The agreement is very good in
spite of the fact that the perturbation solution is only a first
order one. For thicker dielectric humps (larger A) the pertur-
bation technique cannot be used and the moment method is
the only available method of solution.

With confidence in the numerical code we now consider
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Fig. 5. Bistatic echo width of a dielectric hump with ¢ = 36 + 17, and

A = 3)\; /1000 over a resistive sheet with R = 0.18 + i0.37 at f= 10
GHz for E-polarization.
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Fig. 6. Bistatic echo width of a dielectric hump with ¢ = 36 + 17, and
A =3)\, /1000 over a resistive sheet with R = 0.18 + i0.37 at f = 10
GHz for H-polarization.

several examples with impedance surfaces. In all of the
following examples the impedance of the surface is taken to
be 7 = 0.21 — i.04 and the dielectric hump is assumed to be
an isosceles triangle with base w and altitude w/4. The
triangular humps are also considered to be homogeneous with
€ = 3 + il placed over the impedance surface. Figs. 8 and 9,
respectively, show the bistatic echo width and phase of the
far-field amplitude for two different sizes of triangular humps
at normal incidence (¢, = 0°) and A\ = 3 cm. The angular
dependency of the backscattering echo width of the same
humps is shown in Fig. 10. ‘
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Fig. 7. Phase of far-field amplitude of a dielectric hump with ¢ = 36 + i17,
and A = 3, /1000 over a resistive sheet with R = 0.18 + i0.37 at f = 10
GHz and ¢, = 0 for E- and H-polarization.
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Fig. 8. Bistatic echo width of triangular humps with ¢ = 3 + i1, over an
impedance surface with # = 0.21 — i0.04 at f =10 GHz for E- and
H-polarization.

VI. CoNCLUSION

An efficient numerical technique has been developed to
compute the scattering behavior of inhomogeneous dielectric
cylinders of arbitrary cross section above impedance surfaces
and resistive sheets. The efficiency of this method is accom-
plished by deriving new expressions for the Green’s function
of the problem. Using an appropriate integral transformation
the ordinary integral representation of the Green’s function
containing a highly oscillatory integrand was transformed
into a new integral form that is rapidly convergent. Useful
asymptotic expressions of the Green’s function were also
derived. Analytical treatment for singular behavior of Green’s
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Fig. 10. Backscattering echo width of triangular humps with ¢ = 3 + i1,
over an impedance surface with 7 = 0.21 — i0.04 at f = 10 GHz for E-
and H-polarization.

function when both the source and the observation points are
close to the surface is given.

Several numerical examples are presented for resistive
sheet and impedance surface problems. The accuracy of the
numerical code is checked by comparing the numerical solu-
tion of scattering from a very thin dielectric hump above a
resistive sheet with a perturbation method. Excellent agree-
ment is obtained in all test cases.

APPENDIX

The following functions are defined to simplify the expres-
sions for the elements of the impedance matrix in the H-
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polarization case
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