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A Convenient Technique For Polarimetric Calibration
of Single-Antenna Radar Systems

KAMAL SARABANDI anp FAWWAZ T. ULABY, FELLOW, IEEE

Abstract—This paper introduces a practical technique for calibrat-
ing single-antenna polarimetric radar systems. With this technique,
only a single calibration target, such as a conducting sphere or a tri-
hedral corner reflector, is needed to calibrate the radar system, both
in amplitude and phase, for all linear polarization configurations. By
using a metal sphere, which is orientation independent, error in cali-
bration measurement is minimized while simultaneously calibrating the
cross-polarization channels.

The antenna system and two orthogonal channels (in free space) are
modeled as a four-port passive network. Upon using the reciprocity
relations for the passive network and assuming the cross-coupling terms
of the antenna to be equal, the cross-talk factors of the antenna system
and the transmit and receive channel imbalances can be obtained from
measurement of the backscatter from a metal sphere. For an X-band
radar system with cross-polarization isolation of 25 dB, comparison of
values measured for a sphere and a cylinder with theoretical values
shows agreement within 0.4 dB in magnitude and 5° in phase. Also, an
effective polarization isolation of 50 dB is achieved using this calibra-
tion technique.

I. INTRODUCTION

CCURATE knowledge of the scattering matrix of a
target is an important ingredient for extracting bio-
physical information about the target. The scattering ma-
trix of a target can be measured by using a set of orthog-
onal polarization. In practice, however, it is very difficult,
if not impossible, to design an antenna system with per-
fect isolation between the orthogonal polarization chan-
nels, which leads to contamination of the measurements.
In recent years, considerable effort has been devoted to
the development of techniques for calibrating polarimetric
radar systems. Calibration techniques available in the lit-
erature can be categorized into two major groups: 1) cal-
ibration techniques for imaging radars, and 2) calibration
techniques for point-target measurement systems, which
may also be appropriate for imaging radars. In the first
group, the scattering properties of clutter are usually em-
ployed to simplify the calibration problem [5]. van Zyl
[6] and Klein [3] developed a method for estimating the
cross-talk contamination of the antenna by assuming that
the like- and cross-polarized responses of natural targets
with azimuthal symmetry are uncorrelated. Among the
point-target calibration techniques, the generalized cali-
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bration technique (GCT) by Whitt et al. [7] characterizes
the distortion matrices (channel imbalances and antenna
cross-talk) of the receive and transmit antenna by using
three calibration targets. An eigenvalue approach is em-
ployed to solve for the distortion matrices. In a similar
technique by Barnes [1], the distortion matrices are ob-
tained by using targets with specific scattering matrices.
This technique is referred to by Whitt er al. [7] as the
constrained calibration technique (CCT). Although, in
principle, GCT and CCT can fully characterize the dis-
tortion matrices, they are very sensitive to target align-
ment and to the knowledge of the theoretical values of the
scattering matrices of the calibration targets. A third cal-
ibration technique for point targets by Sarabandi et al. [4]
uses a sphere and any other depolarizing calibration target
(scattering matrix of this target need not to be known),
and is therefore immune to errors caused by target ori-
entation and lack of precise knowledge of the theoretical
values of the calibration targets’ scattering matrices.
However, the drawback of this method, which is called
the isolated-antenna calibration technique (IACT), is that
it does not account for cross-talk contamination in the an-
tenna. The isolated antenna assumption can lead to sig-
nificant errors in the cross-polarized terms when the ratio
of cross- to like-polarized terms is small and/or cross-talk
contamination is large.

To remove the drawback of the IACT while maintain-
ing insensitivity to orientation of the calibration targets,
we introduce in this paper a technique for calibrating sin-
gle-antenna radar systems using a four-port network ap-
proach. The antenna system and two orthogonal direc-
tions in free space are modeled as a four-port network,
and channel imbalances as well as the antenna cross-talk
contamination are determined by measuring the backscat-
ter from a single calibration target, namely, a conducting
sphere. This technique will henceforth be referred to as
STCT, or single-target calibration technique. Like IACT,
STCT is insensitive to target orientation, but it also ac-
counts for the antenna cross-talk contamination. If the an-
tenna cross-talk contamination is very small ( =0), the
STCT is not appropriate and the IACT should be used
instead.

The validity and accuracy of this technique were tested
using X-band and L-band scatterometers, both in an ane-
choic chamber and under field conditions. Cylinders and
spheres were used as test targets. Excellent agreement was
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obtained between the measured and theoretical values of
the test target. Also, the effective cross-polarization iso-
lation obtained in this method was on the order of 50 dB.

II. THEORETICAL FORMULATION

By defining a set of orthogonal directions in a plane
perpendicular to the direction of propagation, the field
components of the wave scattered by a given point target
can be related to the components of the incident plane
wave through the scattering matrix of the target s. The
antenna structure of a polarimetric radar system must be
designed in such a way that the transmit and receive po-
larizations are parallel to the specified orthogonal direc-
tions. In practice, however, it is not possible to construct
antennas that are totally free of polarization contamina-
tions; i.e., coupling between the orthogonal polarization
ports of the antenna. Polarization contamination (antenna
cross-talk) takes place in the orthogonal mode transducer
(OMT) and in the antenna structure itself.

Suppose the two orthogonal directions in free space are
viewed as two ports of a four-port passive device that in-
cludes the OMT and the antenna structure (see Fig. 1).
This four-port network can be characterized by a scatter-
ing matrix § which relates the incident wave vector vt
to the reflected wave vector V'~

V- =8V*
where

Sll S12 S13

(1)

Since the four-port device is passive, its scattering matrix
must be symmetric. Thus,

8;=8; ije{l 23,4}
If the reference plane of the nth port is translated outward

by distance /,, the new scattering matrix for the device
becomes [2]

$' =086 (2)
where the translation matrix © is given by
e 0 0 0
0 e 0 0
°=1 o 0 b 0 ©)
0 0 0 el

In (3), B, is the propagation constant of the nth port trans-
mission line. In this case, since ports 3 and 4 are two ports
in free space, 83 = B4 = ko, and the translation matrix
must be modified to account for spherical propagation. If
the target is located at a distance r from the radar system
and the reference planes at ports 3 and 4 are translated to
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Fig. 1. Antenna system and its equivalent circuit four-port representation.

the target location, then the translation matrix becomes
10 O 0]
01 0 0

—ikor
o=|00 ¢ 0
r
—jkor
00 o <

The scattering matrix, after translation of the reference
planes of ports 3 and 4 by distance r, takes the following
form:

[ —ikor —ikor ]
e [4
8 S 8 Sia
11 12 13 r r
e*ikcr —ikor
8 S S 84
. 21 22 23 r r
N —ikor ~ikor —2ikor —2ikor
e e e
S31 r S32 r 833 r2 834 r2
5 —ikor S e—zkor S e—2zk4)r s e—-21kor
41 42 43 44
L r r rz r2

(4)

Note that here we have ignored the gain and effective area
of the transmit and receive antennas which will be in-
cluded in the channel imbalances. The signal flow chart
of the antenna system and free space ports is shown in
Fig. 2. Suppose the radar is equipped with a space dis-
criminating filter (range gating filter) which is tuned at r.
The filtered scattering matrix (8 ") is then given by

0 0 853 Sy

0 0 8y Sy |ehr
83 8 0 0 ro
8 8,2 0 O
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Fig. 2. Signal flow chart of the antenna system, free space, and the target.

Basically, short-range reflections from the antenna system
and multiple bounces between the antenna and the target
have been gated out. The incident and reflected waves at
each port can now be represented by two uncoupled ma-

trix equations as follows:
v e r 83 Sy ||V
{V‘j ZTLB sMHV*j
Vi e ™18y 8un|| V5
[V‘j_ r [su stﬁJ

On the other hand, the incident and reflected waves at
ports 3 and 4 are the scattered and incident waves, re-
spectively, of the target, which is represented by a two-

port network, and are thus related to each other by the
scattering matrix of the target s. That is,

I:V-g:| _ {sm' svh} |:V_3j|
Vi She Shh Va

Note that the scattering matrix used here is defined in the
backscattering alignment convention since the orthogonal
directions are specified independent of the incident and
scattering directions. After rearranging (5)-(7) in order to
relate the reflected waves to the incident waves at ports 1

and 2, in addition to employing the reciprocity property
of the four-port network, we get:

svhj|

Shh

Vo e 2 813 Sig | | S
[V_jz rt {823 Szj Lhu
S Sl LVl

Upon normalizing with respect to the like-polarized chan-
nels, (8) becomes

svhi|

Shh

Vil e[S, 0101 ¢ s
|:VE} - 71: 0 524j| [Cz 1 ] [Sm,
1 G][ss 071[vH
' [Cl 1} [ 0 szj [wj
where C;, = 8,,/8,3 and C, = 8§,3/8,, are the antenna
cross-talk factors.

So far, we have modeled the antenna system, free space
channel, and the target by a two-port network. To account
for the effects of active circuits on the performance of the
overall radar system, let us consider the block diagram
depicted in Fig. 3. The transmit (V,,, V,;) and receive

(5)

(6)

(7)

(8)

(9)
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Fig. 3. Simplified block diagram of a typical polarimetric radar.

(V.s, V,) voltages are the quantities measured by the ra-
dar. The channel imbalance quantities (7,, T,, R,, R;),
which relate the transmit/receive voltages to the incident/
reflected waves at port 1 and 2, account for variations (in
both amplitude and phase) of the active circuits and the
antenna gains. The transmit and receive channels of the
radar system are separated by a transmit-receive switch
(TR switch) or a circulator. These components can be as-
sumed ideal because any leakage that may occur will not
be sampled by the range gating process. Therefore the
transmit and receive voltages can be related to the inci-
dent and reflected voltages of ports 1 and 2 by

V., [R 0]V
= (10)
Vi 0 R,LVS
v T, O Vi
VY 0 Tl lVy.
Using (9) in (10) and (11) results in
[Vnril €_2ik0r [R9813 0 } { 1 C1:| |:smr svhj|
Ven - 0 RiSullCG 1Ullsw sm
1 G||T.85 0 Vo
: (12)
G 1 0 TSyl lVa
which may be written in matrix notation as
e—Zikor
V, = —— RCsC'TV,. (13)
r

The matrix M = RCsC'T represents the measured (un-
calibrated) scattering matrix of the target under observa-
tion. If the matrices C, R, and T are known, the actual
scattering matrix s can then be obtained. To determine C,
R, and T, we note that these matrices depend on the choice
of the orthogonal channels in free space. So far, we have
made no assumption on the direction of the orthogonal
channels (v and &) except that they are perpendicular to
the direction of propagation. Once the v and h directions
are specified, the scattering matrix of the target can, in
principle, be determined. A radar system with linear po-
larization configurations usually is oriented such that for
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a given polarization most of the transmitted energy falls
into the desired channel; i.e., an orientation for which the
antennas’ cross-talk factors ( C, and C,) are minimal. With
available design techniques, it is easy to achieve the con-
ditions | C;| < 0.1 and | C,| < 0.1, which correspond to
a polarization isolation level of 20 dB, but achieving much
greater isolation level is difficult. For accurate polarime-
tric measurements, the effective isolation level should be
on the order of 40 dB. Hence the factors C; and C, may
not be ignored, but should instead be determined by the
calibration technique.

To demonstrate how the choice of the coordinate frame
affects the antennas’ cross-talk factors, we obtain a rela-
tionship for the cross-talk factors when the coordinate
frame is rotated by an angle . Suppose s represents the
scattering matrix of a target for a particular coordinate
frame, and s’ denotes the scattering matrix of the same
target when the coordinate frame is rotated around the in-
cidence direction by an angle . It is a trivial matter to

show that
——sindz]s[ cos ¥ sinxp}' (14)
cos ¥ —siny cos ¢

. [cos ¥
s =
sin ¥

Let us indicate the imbalance and cross-talk matrices in
the rotated coordinate system by a prime sign. Since the
relative orientation of the antenna system and target have
not been changed, the measured scattering matrices for
two coordinate systems are identical. That is, M' = M.
Therefore,

M= RCsC'T=R'C's'C'"'T". (15)
Using (14) in (15) results in
M = R'PsP'T' (16)

where
cos ¥y + C/sin —sin ¥ + C/cos ¥
P:[wlw ¢1.}(17)
sin ¢ + G cos ¢ cos Yy — C'sin ¢

Again, by normalizing the diagonal elements of the ma-
trix P to 1 and then comparing the resultant matrices to
C, R, and T, it can easily be inferred that

—siny + Cicos ¢
cos Yy + C| sin ¢

C = (18)

c _siny 4+ Cjcos ¥
z—cosyb—Cﬁsinwlz

Si13 = (cos ¥ + Cisiny)8i;

Sy = (cos ¢y — Cy sin )84

(19)

If it is required that maximum energy falls into the v
channel when port 1 (v port of the OMT) is energized,

Sy + 2Cs, + C?s,
M _ R I: h hh
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the condition C; = 0 should be enforced, which is equiv-
alent to setting ¥ = arctan Cj. This condition, however,
does not maximize the energy transfer into the s channel
when the h port of the OMT is energized. Moreover, the
cross-talk terms usually are complex quantities, and the
above condition may not be achievable. In order to max-
imize the energy transfer for both channels and simplify
the calibration procedure, we look for a rotation angle
such that C, = G, << 1; i.e.,

—sin¢z+C{cos¢_sin¢+C§cos¢
cos ¢ + Cisiny cos Y + Cjsin ¢

which requires that

Ci—C;
1+ CiCy

This can be accomplished if both C| and Cj are real quan-
tities. It is relatively easy to design the antenna such that
C} = Cj to begin with, and then by adjusting the rotation
angle using (20), the cross-talk factors can be made even
more similar. Therefore, from here on, we shall assume
that the antennas’ cross-talk factors are identical, and the
error associated with this assumption is on the order of
the difference in the imaginary parts of the cross-talk fac-
tors. In view of this approximation, the measured scatter-
ing matrix is given by

1 C 1 C
mmale e
Cc 1 C 1

III. CALIBRATION PROCEDURE

1
V= Earctan (20)

(21)

The relationship between the measured scattering ma-
trix M and the actual scattering matrix of an unknown
target is given by (21). If the elements of the imbalance
and cross-talk matrices are known, the scattering matrix
of the target can be obtained from

s=C 'R'MT'C™".

The matrices R and T are diagonal, and C is symmetric
with known diagonal elements; therefore there is a total
of five unknowns that need to be determined. The stan-
dard approach is to measure targets with known scattering
matrices to establish a set of equations for the unknown
elements of the R, T, and C matrices. By measuring each
calibration target, four nonlinear equations are obtained,
so it seems that at least two targets are needed to find all
the five unknowns. But, as will be shown, a sphere or a
target with similar scattering matrix (such as a trihedral)
is sufficient to characterize the scattering matrix of the
unknown target. In fact, it is not required to find all the
five unknowns to obtain the scattering matrix of the un-
known target.

Upon expanding (21), and noting that for backscatter-
ing the scattering matrix is symmetric (s,; = $5;), we get

(1 + CZ)Szvh + C(Sm‘ + Shh)i\ T (22)

(1 + CZ)SI,;, + C(SW‘ + S},h) Shh + 2CSl,h + Czs,,,,
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For the sake of simplicity, the diagonal elements of Rand by

T will be denoted by R; and T; (i = 1, 2), respectively.
Measuring a sphere with radar cross section ¢° = 47 |s°|?,
(22) provides the following set of equations:

RT(1+C* = — (23)
2R, T,C = ”;'2 (24)
2R, T,C = '2‘2 (25)
R,Ty(1 + C?) = @ (26)

N

where mj; denotes the ijth elements of the measured scat-
tering matrix of the sphere. The cross-talk term can be
obtained by multiplying (23) by (26), and (24) by (25),
and then eliminating the term R, T, R, T, from the resultant
equations. Thus,

4¢C?
(1+ ¢
which is a biquadratic equation with four possible solu-
tions given by

o o
UYL TN
o () -

myymy;

a

Requiring C to be a small number, two of these solutions
can be discarded (note that |a| << 1); therefore,
(1 = ~1 - a).

c=+-L (27)

Ja

To meet the condition |C| < 1, the branch cut for
V1 — a is chosen such that Re [v1 — a] > 0. There-
fore, Cis determined from the sphere measurement within
a + sign.

By denoting the measured scattering matrix elements of
the unknown target by m}; and using (23)-(26) to find the
products of R; T;, we obtain

m”

Sow + C(Spy + 8p) + Clsyy = (1 + C?)s° (28)

C?s,p + Clsyp + Shp) + Spp = % (1 4+ C?*s° (29)
2

Clsuw + 5s) + sy + Cls, = 2 (30)
Clsuw +50) + 500 + Csg = "L 20 (31)
21

Solving these equations simultaneously, the unknown
scattering matrix elements can be obtained and are given

S = —— [—2c (m” + @>
(1-c% mi,  my

+(1+¢Y ("’” + C? @ﬂ s° (32)

mf, my
1 { 2<m|2 m21>
Spp = —— | —=2C + —
" (1 - C2)2 my,  m3
+(1+ ¢ <’"22 c? '"“)} 5% (33)
my miy
C u u
Soh = L3 {2 m;z + 2C2 m—il
(1-0cC% my; my
- (1+ ¢ <m“ mizﬂ 5 (34)
mf| my;
C i u
Shy = " {2 mil =+ 2C2 mlz
(1-0C9) 21 mi
—(1+¢C? <m + ’"?ﬂ 5° (35)
my my

It should be pointed out that there is no ambiguity in s,
and §,, since the branch of V1 — a is defined, but there
is a 180° phase ambiguity in s, and s,,. Expressions (32)-
(35) give the elements of the scattering matrix when the
calibration and the unknown targets are at the same range
from the radar. If the range of the calibration target (r;)
is different from the range of the unknown target (r,),
(32)-(35) must be modified by a multiplying factor
(ru/ro)le—Zika("O - ru).

The complex quantity C is an inherent characteristic of
the antenna system and does not change with variations
in the performance of the active devices in the radar sys-
tem, and therefore is less affected by environmental
changes. The ambiguity in the sign of C for an antenna
system may be easily resolved once by measuring a target
with a known phase relationship between the elements of
its scattering matrix (such as a tilted cylinder).

To investigate the accuracy of the measurement of C,
we use the fact that {a| << 1, and therefore (27) becomes
C = 3 va. If the uncertainty in measurement of a is rep-
resented by A and |A| << |a]|, then

C+6C=%«/a+A \/—<1+—a>

from which we get
6C

oc _1
c 2
It is concluded that the uncertainty in C is about 50% of
the uncertainty in measuring a.

Using a sphere as the calibration target not only sim-
plifies calculation of the unknowns significantly, but also

A
a
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Fig. 4. Magnitude of the diagonal elements of the scattering matrix of a 6-in sphere.
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Fig. 5. Phase difference between the diagonal elements of the scattering matrix of a 6-in sphere.

offers two more advantages. One advantage is that the
scattering matrix of a sphere is insensitive to orientation,
and therefore no error will be incurred because of target
orientation. The second advantage stems from the fact that
spheres are the only three-dimensional structures for
which an exact theoretical scattering matrix is known.

IV. COMPARISON TO MEASURED DATA

The validity of the STCT is now examined by measur-
ing scattering matrices of cylinders and spheres as test

targets employing a polarimetric X-band scatterometer.
The results based on the IACT are also included for com-
parison. The measurements were performed in a 13-m-
long anechoic chamber, and the target orientation was fa-
cilitated by a very-fine-tuned azimuth over elevation step-
per motor positioner. Detailed description of the scatter-
ometer and measurement setup is given in [3].

The analysis given in Section II does not take into ac-
count the effect of noise and disturbances. In reality, the
measured scattering matrix includes an additive noise fac-
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tor, and therefore (21) becomes

M = RCsCT + N (36)
where N is a matrix representation of disturbances. In or-
der to measure s accurately, all the elements of N must
be much smaller than the elements of M. The disturbances
for a typical radar system may include thermal and back-
ground noise. Thermal noise is a zero-mean random pro-

cess with power proportional to the product of the system
bandwidth and noise temperature. This effect can be min-
imized using an averaging process. The background noise
includes the signal returns from objects at ranges com-
parable to that of the test target or the short-range multiple
reflections within the system. This problem can be elim-
inated using background subtraction from the target and
background response. Another source of error in the mea-
surement of s is the interaction of the target with its sup-
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Fig. 9. Magnitude of the off-diagonal element (s,,) of the scattering matrix of the vertical cylinder compared to s,.,..

port structure (pedestal). This interaction is not linear and
hence cannot be subtracted out.

A 12-in-diameter sphere was used as the calibration tar-
get, and test targets included a 6-in sphere, an 8-in sphere,
and a conducting cylinder with a diameter of 0.8 cm and
length of 27.2 cm observed at three different orientations
(vertical, horizontal, and 45°). The calibrated elements
of the scattering matrix were then compared to the theo-
retical values computed using the exact Mie-series solu-

tion for the spheres and using a semiexact solution for the
cylinder. The semiexact solution is based on the assump-
tion that the current induced on the surface of the cylinder
is identical to that of an infinite cylinder with the same
radius. This solution is accurate in the specular direction
and when the cylinder length is much larger than the
wavelength.

Using averaging and background subtraction, a signal-
to-noise ratio of better than 40 dB was achieved in mea-
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Fig. 11. Magnitude of the diagonal element (s,,.) of the scattering matrix of the 45° tilted cylinder.

suring the elements of M. For targets with S12 = 0 (such
as sphere and vertical cylinder), the signal-to-noise ratio
for the off-diagonal elements of M was better than 25 dB.

Figs. 4-6 compare the theoretical and measured scat-
tering matrix elements of the 6-in sphere. The error in the
like-polarized terms is less than 0.3 dB, and the results
based on the IACT and STCT are exactly identical. It is
also shown that the error in the phase is less than 2°. Fig.
6 shows the cross-polarized component of the sphere (the-

oretical value = —oo in dB scale) where there is a signif-
icant disagreement between STCT and IACT. An effec-
tive polarization isolation of 50 dB is obtained using
STCT. It should be pointed out that the minimum noise-
equivalent cross section of the radar system is —65 dBsm.
Therefore, the cross-polarization isolation is limited by
the system noise in this case. Similar results were also
obtained for the 8-in sphere. Figs. 7-10 depict the results
for the vertical cylinder, and excellent agreement between
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Fig. 12. Magnitude of the diagonal element (s,,) of the scattering matrix of the 45° tilted cylinder.
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Fig. 13. Magnitude of the off-diagonal element (s,,) of the scattering matrix of the 45° tilted cylinder.

the measured data and theory is achieved. As shown in
Fig. 9, the measured effective polarization isolation for
the vertical cylinder is —50 dB. Results for the 45° tilted
cylinder are shown in Figs. 11-15, where the accuracy of
the STCT is within +0.4 dB in magnitude and +5° in
phase. These plots demonstrate the superiority of the
STCT over the IACT.

V. CONCLUDING REMARKS

A convenient calibration technique for single-antenna
polarimetric radar system with range-gating capability has
been developed. The radar cross-talk contamination and
channel imbalances are obtained by measuring the back-
scatter from a single calibration target whose scattering
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Fig. 15. Phase difference between the diagonal and the off-diagonal elements of the scattering matrix of the 45° tilted cylinder.

matrix is diagonal with equal diagonal entries. The insen-
sitivity to alignment of calibration target offered by this
technique makes it particularly useful for field operation.

Using a four-port network approach, it is shown that
the cross-talk contamination factor is a feature of the an-
tenna system only, and hence is not affected by instability
of active devices in the radar system. Excellent agreement
between measurements and theory was obtained when a
sphere was used as the calibration target, and cylinders

and other spheres were used as test targets. A minimum
effective polarization isolation of 50 dB was achieved
using this technique.
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