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Low-Frequency Scattering From Cylindrical
Structures at Oblique Incidence

KAMAL SARABANDI anp THOMAS B. A. SENIOR, FELLOW, IEEE

Abstract—Classical Rayleigh scattering theory is extended to the case
of a homogeneous dielectric cylinder of arbitrary cross section whose
transverse dimensions are much smaller than the wavelength. By as-
suming that the surface fields can be approximated by these of the in-
finite cylinder, the far zone scattered field is expressed in terms of po-
larizability tensors whose properties are discussed. Numerical results
are presented for circular, semicircular, triangular, and square cyl-
inders.

I. INTRODUCTION

KNOWLEDGE of the electromagnetic scattering

properties of dielectric bodies is important in many
areas of physics and engineering. For the remote sensing
of terrain and vegetation, the scattering from a single leaf
or twig is a key ingredient for most scattering models, and
if the lateral dimensions of, for example, a leaf are large
compared to the incident wavelength A, it may be ade-
quate to model it as a dielectric plate to which the physical
optics approximation is applied [5]. At much lower fre-
quencies and/or for smaller leaves whose dimensions are
all small compared to A, Rayleigh scattering theory is
applicable [8]. The far zone scattered field is then attrib-
utable to induced electric and magnetic dipoles, and for
plane wave incidence, the dependence on the direction
and polarization of the incident field can be made explicit
by introducing the electric and magnetic polarizability
tensors [2]. The tensor elements are functions only of the
geometry and material of the scatterer, and are express-
ible as weighted surface integrals of certain potentials
which can be obtained from the solutions of elementary
integral equations.

An intermediate situation is provided by a pine needle
whose transverse dimensions are small compared to the
wavelength, but whose length is much greater than \,,.
This is the case which is treated here. For a plane wave
incident obliquely on a homogeneous dielectric cylinder
of infinite length, it is shown that the field at any point
outside the cylinder can be written as the sum of contri-
butions from line dipoles whose moments per unit length
are expressible in terms of polarizability tensors. Integral
equations are derived from which to determine the tensor
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elements, and results are presented for a variety of cyl-
inders and material constants. The generalization to a cyl-
inder of finite length is now trivial. In accordance with
the physical optics approximation, it is assumed that the
surface field is the same as that on the infinite cylinder,
leading immediately to an expression for the far field in
terms of the same polarizability tensors. The results are
applicable to the remote sensing of twigs, stalks, and veg-
etation needles at centimeter and millimeter wavelengths.

II. INFINITE CYLINDERS

A homogeneous dielectric cylinder of arbitrary cross
section is oriented with its generators parallel to the z axis
of a cartesian coordinate system x, y, z (see Fig. 1). The
relative permittivity and permeability of the dielectric are
€ and p, respectively, and the cylinder is illuminated by
the linearly polarized plane wave

E = deik()k"r Hi = Yob eikok"r

propagating in the direction

(1)

(2)

The unit vectors @ and b specifying the directions of the
incident electric and magnetic fields are such that

axb=k, k-a=k-b=0

and ko and Y, (= 1/Z,) are the propagation constant and
intrinsic admittance, respectively, of the surrounding free
space medium. A time factor e ~™’ has been assumed and
suppressed.

Since the cylinder is uniform in the z direction, the scat-
tered field must have the same z dependence as the inci-
dent field, namely ¢*%¢°**f_If, for brevity, this factor is
omitted, the electric and magnetic Hertz vectors defining
the scattered field can be written as

e -Z (4 ’ ’
H(X,y)=KOOSSJ(x,y)

I}i=)ﬁsinﬁcos¢0+ysinﬂsin¢0+écosB.

. Hé”(ko sin (3 \/(x - x’)2 + (y — y’)z)
Cdx' dy’ (3)

_YOS me g '
Ty RASCES D

" (x, y)

. HB”(kO sin B\/(x - x')2 + (y - y’)z)
dx’ dy’ (4)
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Fig. 1. Geometry of the infinite cylinder in the x, y, z coordinate system.

where J¢ and J™ are the induced electric and magnetic
currents, H(()l) is the Hankel function of the first kind of
zeroth order, and the integration is over the cross section
§ of the cylinder. In terms of the Hertz vectors, the scat-
tered fields are [7, p. 31}

ES = VV - II° + k3¢ + ikyZyV X II™
H = VV - II"™ + kJII™ + iky Y,V x II°

and we note that

(5)

V =V, + iky cos B2 (6)

where V, is the transverse operator which, in cartesian co-
ordinates, is

If d is a typical transverse dimension of the cylinder and
kod, ko|N|d << 1 where N = (ep)'/? is the refractive
index, the currents and the Hertz vectors can be approx-
imated by the lowest order terms in their representations
for small &, (see (13)), whereas for the Hankel function,
the leading term involves In ky. When these are substi-
tuted into (3) and (4), and hence (5), the scattered field in
the near field of the cylinder can be written as

E'=VV, -1° + O(k)

H =V, - 0" + O(ky) (7)

implying
E; = H; = 0.

Thus, at low frequencies, the electric and magnetic fields
decouple, with the scattered electric field determined by
the electric current (and hence, permittivity) alone, and
the magnetic field by the magnetic current (and perme-
ability). Since the solution for the magnetic field can be
deduced from that for the electric field by replacing € and
a by p and Yob, respectively, it is now sufficient to take
p = 1 corresponding to a nonmagnetic dielectric.

To determine the static field, the Hankel function in (3)
is replaced by its small argument expansion:

Ho" (ko sin 8|5 — 5'])
=1 +£7+£1n(kosin6|7)—ﬁ’|)
™ ™

where p is the two-dimensional position vector and v =
0.5772157 - - - is Euler’s constant. On inserting this into
(7) and noting that

V,In(kysinBlp—p'|)=V,In|p - 5|

independent of kj, the lowest order scattered field be-
comes

ES(E) = _—ng

with

iz,

2ak, SSJ,(p ) V.In|[p -5 IdS}

Ji(p) =J(p)x + J5(0) 3.
Since (i /w) Jf = P is simply the dipole moment per unit
area [7, p. 184], it follows that
E' = -V,%'(p) (8)

where

iz,

2wk

is the two-dimensional electrostatic potential.
To the zeroth order in kg, the incident electric field, is

(5 =22 | Jz) - wm|5 -5 a4 (9)

E'=a=a%+a+as
which can be written as
E'=-V,%" + a2 (10)
with

(11)

where ¢y, ¢, are arbitrary constants. The total potential is
then

d' = —a(x +¢) - a,(y + ¢)

b =& + &°
and the dependence on @ can be made explicit by writing
¢ =q% +ad (12)

with a similar decomposition for &' and &°.
In terms of the total field, the polarization current is

J(p) = —ikyYo(e — 1) (E' + E) (13)
and since E; = 0,
Ji(p) = —ikgYo(e — 1)a, (14)

in agreement with the result of Van Bladel [9]. Also,
J{(5) = —ikYo(e = 1) (ak + 4, — V,3°)
that is,
Jf(ﬁ) = ikoYo(E - 1) V,(axél + ayéz) (15)

and the derivation and solution of integral equations for
®, and P, are discussed in Section IV.
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III. PoLARIZABILITY TENSORS

At large distances p >> kyd’ from the cylinder, the
Hankel function in the expressions (3), (4) for I1¢, I
can be replaced by its large argument expansion. Thus,

2z, 2

o~ -=0 =
4k0 7I'k0p sin B

- exp <ik0(p sin 8 + z cos B) — z%)

N sy as

b2
"~ 4\ wkop sin B

- exp <ik0(p sin 8 + z cos B) — z%) (e —1)

' SS {-Vy(a,y@) + ayQZ) + azf} ds’ (16)

in which the z dependence has been restored, and since

S Vi®(p')ds' = 5 ®(p' )’ de’
S C

where 7 is the outward unit vector normal to the boundary
Cof S,

me_i 2
4 \ wkyp sin 3

- exp <ik0(p sin 8 + z cos B) — 1%) (e=1)

. {_ SC (a;®; + a,®,)A" de’ + Aazz”z (17)

where 4 is the cross-sectional area of the cylinder.
Similarly, if ¥ is the total magnetostatic potential such
that

H= -YV¥ + Yybst
with
¥ = bx\I,] + by‘I,Z

we have

m_i/ 2
I T4 koo sin 8

* exp <ik0(p sin 8 + zcos B) — i%)(u -1)

: {—SC (b, ¥ + b,¥,)A" dc' + Ablz‘} (18)

and from the z dependence in (17) and (18), it is evident

2

that the scattering is confined to the forward cone &° - 2
= cos . In the far zone, V = ikyk®, and hence,

E’ = %2.
wkop sin 3

- exp <iko(p sin B + z cos B) — 1§> S
with

k2 (...
S=—l4—0{k5><k5><(e—1)

- S (a,®) + a,®,)’ d' + Abzz‘}
C

+E X (p—-1)

—S (bW + b¥,) A" de' + Abzi}}. (19)
C

The scattering is attributable to electric and magnetic
line dipoles along the z axis. The electric dipole moment
per unit length is

P =¢le — 1) {— S (a;®, + a,9,)A" dc’' + Abzf}
c

(20)
and if
P = 60P . d, (21)
the elements of the polarizability tensor P are
P,=—(e—1) S o4 - £dc’
c
Py=—(e—1) S &, - £dc’
c
P=—-(e 1) S ®,i" - ydc’
c
Py=—(e—1) S ®,7" - ¥ dc’
c
P, = (6 - I)A
P,=P,=P,=P,=0. (22)

The elements are functions only of the geometry and per-
mittivity of the cylinder and are real if e is. Using reci-
procity, it can be shown that the tensor is symmetric, i.e.,
Py, = P,, and if the cylinder is symmetric about either
the x or y axis, the tensor is diagonal (Py, =P,,=0)in
the given coordinate system.

Similarly, the magnetic dipole moment per unit length

is

m=Y(u—-1) {—SC (bo¥, + by¥,) i de' + Abzz‘}
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and if'

m = Y[)M . B
the magnetic polarizability tensor M differs from P only
in having ¢ and ¥ in place of ¢ and ®. Clearly, for a
nonmagnetic dielectric, m = 0. In terms of the tensors,

2
S=—l]fTO{IQSxI}sx[P-&]+12‘x[M-I3]}

(23)

and since P and M are accurate to the zeroth order in kg,
the terms omitted from the expression for § are O(ké,
k$In ko). Equation (23) makes explicit the dependence on
the incident and scattered field directions.

IV. TENSOR ELEMENTS

To compute the tensor elements, it is necessary to de-
termine the potential on the boundary C, and one way to
do this is using integral equations. For brevity, we shall
confine attention to the electrostatic potential &,.

From (9) and (15), the scattered field potential is

e — 1
27

$i(p) = SSV/%(E’) “V/In|p —p'|ds
and since
Vid(p') - V/In|p — 5’|
=V, - (2 In|p -5

- &)V Inlp - 7|

we have
2(5) = S S Vi %.(5')
p) = 2 ¢ r P
ad € 1
. Inlp —p'|dc — A
on' t lp P I ¢ 27
where
A= S @ (5" )V’ In |p — p'| ds’.
s

When the observation point is on the boundary, the
boundary condition gives

= d Hx 4t

and for a piecewise smooth surface, A = «®,(p) where
« is equal to the angle subtended by the surface at the
point p. Thus for a smooth surface, & = 7, and an integral

'M differs in sign from the magnetic polarizability tensor usually defined
(scc. for example, Keller e al. [1]).

equation for &, on C is then

e+ 1 _
< 2 >‘I’1 (P)
_1 ’
- <6 > S 4’1(5’)_00570_,‘15 =X TG
27 C Ip—p|

(24)

where 0’ is shown in Fig. 2.

One of the few geometries for which an analytical so-
lution of (24) is possible is a circular cylinder. If the ra-
dius is r,

cos 6’ 1

independent of position on C. The integral on the left-
hand side of (24) is therefore independent of p, which
forces ®,(p’) to be a linear function of x independent of
y. By simple substitution, it is found that

_ 2x
@(p') =~ e

and hence,

P PH € — 1

=== 25

A A e+ 1 (25)
with

== — |, (26)

These are consistent with the eigenfunction expansion for
a homogeneous cylinder at oblique incidence [4] when
only two terms in the series are retained, and are identical
to the tensor elements for a long thin spheroid when nor-
malized to the volume [6]. Fore = ¢’ + ie”, the real and
imaginary parts of P, /A [see (25)] are plotted as func-
tions of ¢’ for a variety of ¢” in Figs. 3 and 4, respec-
tively.

With other geometries, it is a trivial matter to solve the
integral equation numerically, and a moment method code
has been developed for this purpose. The contour is di-
vided into N segments smail enough to treat the potential
as constant over each, and point matching is then em-
ployed to convert the equation into a set of N linear equa-
tions of the form:

ZX =Y (27)
where Z is the impedance matrix, X is the potential (un-
known) vector, and Y is the excitation (known) vector.
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Fig. 2. Geometry of an arbitrary cylinder in the transverse plane.
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Fig. 3. Real part of normalized polarizability tensor element P, /A for a
circular cylinder.
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Fig. 4. Imaginary part of the normalized polarizability tensor element
P,/ A for a circular cylinder.

The elements of the impedance matrix are

f e A, cos 6,

1 2w 2 3

| \/(xm - xn) + (.YM - )’n)
Zun = m#n

[

i’e+l m=n

L2

(28)
where A, is the length of the nth segment.
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Fig. 5. Geometry of the cross section of circular, semicircular, triangular,
and square cylinders.
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Fig. 6. Real part of the normalized polarizability tensor element P, , /A for
a semicircular cylinder.

The tensor elements have been computed for cylinders
whose cross sections are the semicircle, equilateral tri-
angle, and square shown in Fig. 5, and in each case, sym-
metry about the y axis diagonalizes the tensor. In Figs.
6-9, the real and imaginary parts of P,,/A and P,,/A for
the semicircular cylinder are plotted as functions of €’.
Qualitatively, the curves are similar to those for the cir-
cular cylinder, and this prompted a search for simple an-
alytical formulas. Since the scattering vanishes if ¢ = 1
and the integral equation (25) shows that the potential is

infinite if e = —1, it was assumed that (for example)
P e—1 e+ ¢
= = .
A e+l e+ ¢

where ¢y, ¢, and ¢, are constants, and after a few trials,
an excellent fit to the data was obtained with the empirical
formulas

P e—1 €+ 1.05
- =300—" ——"= 29
A Oe+1 e + 2.20 (29)
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Fig. 7. lmaginary part of the normalized polarizability tensor element
P, /A for a semicircular cylinder.
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Fig. 8. Real part of the normalized polarizability tensor element P, /4 for
a semicircular cylinder.

Im(Pyy/A)

Fig. 9. Imaginary part of the normalized polarizability tensor element
P../A for a semicircular cylinder.

P, -1 + 2.
A e+ 1 e+ 200

The error is less than 2%. The analogous results for the
triangular and square cylinders are

(30)
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e—l‘e+4.l7

P, P
R (31)
A A e+ 1 €+ 595

and
P.. Py, -1 + 3.38
Dor 200 & 2220 (32)
A A e+ 1 €+ 3.76

respectively, and the latter agree with the values reported
by Mei and Van Bladel [3].

V. FiniTE CYLINDER

For a cylinder of finite length / >> X, a method that
is widely used to compute the scattered field is the phys-
ical optics approximation [4]. This assumes that the sur-
face fields are those of the infinite cylinder, and although
the conditions for its validity are difficult to determine,
comparison to numerical data has shown that at least the
dominant features of the scattering patterns are accurately
reproduced. To determine the far field, the three-dimen-
sional Green’s function is employed in place of the Han-
kel function. The scattering is no longer confined to the
forward cone, and if, as before, the scattering direction is
k*, the integration with respect to z can be carried out
immediately and gives (/ sin U )/ U where

U=k(7)[(f<“~2~c056).
The far-field amplitude, defined as the coefficient of
re ™7 ES in the far zone, is then

(33)

k3 (o -
S=——3k"xXk>x[IP-a
47r{ [ al
N ~.y sin U
+ k' X [IM-b
- b1}

where P and M are the tensors previously defined. As ex-
pected, for large k[ the scattering decreases rapidly away
from the forward cone k* - £ = cos 3.

V1. CONCLUDING REMARKS

The preceding analysis provides an extension of Ray-
leigh scattering theory to cylindrical dielectric bodies
whose transverse dimensions are small compared to the
wavelength, but whose length is much greater than A,.
The results are strikingly similar to those for bodies all of
whose dimensions are much less than A\, [2], and for a
circular cylinder of infinite length, the polarization tensor
elements normalized to the cross section area A4 are iden-
tical to the elements for a thin prolate spheroid (or “‘rod’’)
when normalized to the volume V. Of course, for a cyl-
inder of finite length, V = [A, and apart from the factor
sin U/ U, the same formulas are applicable for [ >> Ag
and [ << A,

Qualitatively, the variation of P, /A and P, /A as
functions of ¢’ for fixed €” is similar for all four cylinder
cross sections considered, but there are significant quan-
titative differences. For a semicircle, for example, the
normalized elements differ by almost a factor 2 from those
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for a circle, and such shape dependence is greater than
that typical of a small body in the Rayleigh region. It
would appear that accurate modeling of the cross section
is more important when | >> \,, and for remote sensin g
applications, we note that many pine needles are almost
semicircular.
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