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Scattering by a Narrow Gap

THOMAS B. A. SENIOR, reLLow, IEEE, KAMAL SARABANDI, anD
JOHN R. NATZKE, STUDENT MEMBER, IEEE

Abstract—For a plane wave incident on a cavity-backed gap in a per-
fectly conducting plane, the coupled integral equations for the induced
currents have been solved numerically and the far-field scattering com-
puted. The results are compared with a quasi-analytic solution previ-
ously derived, and for a narrow gap the agreement is excellent for all
cavity geometries and for all material fillings that have been tested.

I. INTRODUCTION

TOPIC OF SOME concern in radar cross section stud-

ies is the scattering from the gap or crack that may exist
where two component parts of a target come together. Even
if the crack is wholly or partially filled with a material, it can
still provide a significant contribution to the overall scatter-
ing pattern of the target, and it is then necessary to develop
methods for predicting the scattering.

One method for doing this was described recently [1]. For
a plane wave of either principal polarization incident on a nar-
row (kw < 1) resistive strip insert in an otherwise perfectly
conducting plane, the low frequency approximations to the
integral equations for the currents induced in the strip were
solved in a quasi-analytic manner, leading to expressions for
the far zone scattered field that are accurate for almost any re-
sistivity R of the insert. If, instead, the insert is characterized
by a surface impedance 7, the results differ only in having R
replaced by 5/2 and the scattered field doubled; this suggests
that for a narrow gap backed by a cavity, the scattered field
can be obtained by identifying % with the impedance looking
into the cavity.

An alternative approach is to use the equivalence principle
[2] to develop coupled integral equations for the electric and
magnetic currents which exist on the walls of the cavity and
in the aperture, and this is the method employed here. For
an incident plane wave either H- or E-polarized, the integral
equations are derived for a cavity of arbitrary shape filled
with a homogeneous material. The equations are solved by
the moment method, and data for a variety of simple cavities
are presented. For gap widths that are electrically small, the
results are compared with those obtained using the orevious
method. The agreement is excellent, and confirms the utility
of the original method {1] as an accurate and simple design
tool.

II. FORMULATION

The problem considered is the two-dimensional one shown
in Fig. 1. The plane y = 0 is perfectly conducting apart
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Fig. 1.

Gap geometry.

from the aperture 4: —w /2 < x < w/2, which forms the en-
trance to a cavity whose walls S are also perfectly conducting.
The cavity is filled with a homogeneous dielectric material of
permittivity €; = €,¢ and permeability u; = u,u, where the
quantities without subscripts refer to free space. A plane wave
of either principal polarization is incident on the surface y =0
from above, and we choose
1__11" Ei — 2e-ik(x cos Po+y sin ¢g) (1)

for H- and E-polarizations, respectively, where £ is the prop-
agation constant in the free space region above the surface. A
time factor e /! is assumed and suppressed.

In the far zone of the gap the scattered field can be written
as

s 1 2 itkpex
H* =3[ o € 0Py, ¢0)

for H-polarization, with a similar result for E-polarization,
and the task is to determine the far-field amplitudes
Py £(¢, ¢o) with particular emphasis on the case of a narrow
gap (kw < 1).

A. H-Polarization

We consider first the free space region y >0. Using
Green’s theorem in conjunction with the half-space Green’s
function for a hard surface y = 0, the scattered field can be
attributed to a magnetic current J * = —p x E in the aperture,
and the total magnetic field is then

- kY
H,(x,y)=Hy(x, y) +H}(x, y) — >

w/2
/ / JIOHP (k/(x —x? +yhdx' (2)
J-w)2

—-w

0018-926X/90/0700-1102$01.00 © 1990 IEEE




SENIOR et al.: SCATTERING BY NARROW GAP

where
r __ —ik(x cos ¢o—y sin g¢g)
H,=e

is the reflected plane wave and Y(=1/Z) is the intrinsic ad-

mittance of free space. Hence,

w/2

Jx(xl)e—ikx’ cos ¢ dx’
z

kY
Py(¢, ¢0) = ——- 3

2 —w/2
and in the aperture
Hz(x 0) — ze—ikx cos ¢o __ ﬂ
’ 2

w/2

. / JIHH (klx —x"hdx'. (4
—w/2

We now turn to the region y < 0 occupied by the cavity.
In accordance with the equivalence principle [2] it is assumed
that the gap is closed with a perfect conductor, and that a
magnetic current —J * is placed just below, thereby ensuring
the continuity of the tangential electric field in the open gap.
The magnetic Hertz vector is therefore

Y w2 T N\EFD 2 2 '
— J*(xNHy (ky/(x —x")? +y?)dx
—-w/2

(5)
where J* = 2J}, and k, = k /& ur is the propagation con-
stant. The electric current J = /i x H on the cavity wails S
and in the (closed) aperture A also implies an electric Hertz

vector

= zZ
n(x’ y) = —m
r

- / FHHO (kX =X+ —y)Dds', (6)
S+A

where the tangential unit vector § is such that 7, §, Z form a
right-handed system with 7 directed into the cavity. Clearly,
J(s) = §J5(s), and in the aperture § = X. The total magnetic
field is given by (5) and (6):

_ kY
H(x,y)=zTer

—w

w/2 :
. / JIHP k(= x? + yD)dx' + %
/2

» VH (kiy/(x = x'P +(y =y
x J(syds’, @)
and by allowing the observation point to approach the bound-
ary of the closed cavity, we can construct an integral equation
for the currents, namely

kY

Js(s) = 7 €r

w/2 ;
/ JINHP (ki /(= x) + yhydx’ + ’—';—'
—w/2

: / Jo(s) sin Y H Gy /(e —x02 £ (7 — y)D)ds’
S+A

®

1103

where
=X -V
Vix =x?+ =y
valid at all points of S and A.
The only remaining task is to enforce the continuity of H,

through the aperture. For an observation point in the aperture,
(7) becomes

)

siny' =% -

w/2

kY
H,(x,0) = —4—6,/ JEHY (ke — x| dx’
—w/2

1 ik

+ 5058+

/ Js(s"y sin y'H " (k| \/(x —x")? + y)ds’,
S+A

(10)

and when this is equated to the expression (4) for H(x, 0)
on the outside of the gap, we obtain

w/2
ky J1xNHY (klx —x'|) dx’
w2
ky ",
JrTf'/ /2‘]2()‘ )HB')(kl‘x—x'DdX’

ze—ikx cos $o _

1 ik N o1
+—Js(x>+’—'/ Js(s") sin y
2 4 Jsia

H{" (ki /(x —x"? + yhyds’ (1

valid for —w /2 < x < w /2. Since (8) is also valid in A, it can
be used to simplify (11) by eliminating two of the integrals.
The result is

J:(X) — 2e—ikx cos ¢p _ ]1
2

w/2
: / JINHP (kx —x'dx' (12)
—w/2
valid for x in A, and (8) and (12) constitute a pair of coupled
integral equations for J;(x) and Js(s). These are the equations
that will be used, and we note the similarity of (12) and (4).
When the maximum dimension of the cavity is electrically
small, the Hankel function HE,” can be replaced by its loga-
rithmic approximation, and though this does not significantly
simplify the numerical solution of (8) and (12), the fact that
e~fkx cos & can also be replaced by unity shows that J(x)
and J(s) are aspect independent. The same approximation to
(3) then leads to a far-field amplitude which is independent of
¢ and ¢y, and this is a feature of the low frequency situation.

B. E-Polarization

The procedure is similar to that given above. For the re-
gion y > 0 Green’s theorem in conjunction with the Green’s
function for a soft surface y =0 gives

i r l 8
Be =Bt Bt 2 5y
w/2
/ JEOHP (k/(x = x"Y? + y?)dx’
—-w/2
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where J* = %J} is the assumed magnetic current in the gap

and

El = 7e—ik(x cos ¢g—y sin ¢g)
2

is the reflected plane wave. Hence

w/2 y
J;(xl)e—zkx cos qsdx/’ (13)

k .
Pe(o, ¢o) = —7 sin ¢
—w/2

and since H, = —(iY /k) (OE, /0y), the tangential component
of the magnetic field in the aperture is

H,(x,0) = —2Y sin ¢ge ¥ s %
‘ 2 U
2 k? ox?

w/2
: / JEH (k|x —x"))dx’.  (14)
—-w/2

In the region y < 0 occupied by the cavity, the field can
be attributed to the magnetic Hertz vector (5) with J* = %J,
and the electric Hertz vector (6) with J * = ZJ ;. The magnetic
field is therefore

H(x,y) =V xV x

4k,

w/2
/ J*(xHHP (ky/(x —xN2 + y?)dx’
2

w

i
+ —/ VHG (k1 /(X =3+ (v = 7))
4 S+A
x J(s")ds’,
and by allowing the observation point to approach the bound-
ary of the closed cavity, we obtain the integral equation

Y .9
T = g (D) o
w/2
/ / TEOHY ki =X 5 52 dx’
—w/2
+ % Jo(s") siny
S+A

H G x = xR+ =y Pds' (19
where
AP AP
siny=4%- XX+ -y o
Vi —x)? +(y - y)?
valid at all points of S and A.
When the observation point is in the aperture,

(16)

kY 1 8°
Hox,0) = e, [1+— 2
(%, 0) 4‘(+k1{-ax2>

w2 * gD ’ ’
. JY(xXDHy (ky|x —x'|)dx
—w/2
ik,

1
+§Jz(x)+7

. / J2(s") sin yH\ (k1 /(x —x")2 ¥ y2)ds’.
S+4
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On equating this to the expression (14) for the magnetic field
on the outside of the gap, and using (15) to simplify, the result
is

kY

[ 1o
2 k* Ox?

w/2
/ JEHHY (klx —x'dx’ (17)
P

—w

J2(x) = =2V sin gge ~Hk¥ s 0

for x in A in accordance with (14), and (15) and (17) consti-
tute a pair of coupled integral equations for J;(x) and J,(s).

There is a third integral equation that can be developed and
this has some advantages for numerical purposes. In the region
y < 0 the electric field produced by the electric and magnetic
Hertz vectors is

E(x, y)

kZp,
4

: / JASHH (ki \/(x —xN +(y —y'))ds'z
S+A

: w/2
L 3/ JEDH (ky/(x —x)2 + yydx'z,

4 ay —w/2

and when the boundary condition on the perfectly conducting
surface is applied, we find

; w/2 o
Ji(x) = %/ / J;(x’)(@H{)”(kl Vix = x)2 +y)dx’
2

Zp, ’
KZu / TAsHHS (ke /(x =x)2 + (7 — 3P ds
2 S+A

(18)

valid on S + A. Of course, J}(x) is nonzero only in A, and
(17) and (18) are the pair of integral equations used to compute
Ji(x) and J,(s).

III. QUASI-ANALYTICAL SOLUTION

An alternative approach was proposed by Senior and
Volakis [1]. In effect, the problem which they considered is a
uniform impedance insert in an otherwise perfectly conduct-
ing plane. If % is the surface impedance, the integral equa-
tions for H- and E-polarizations are identical to (4) and (14)
respectively, with

H(x, 0>:%J;(x>, Hx(x,0>:—%f;(x> (19)

at the insert. Atlow frequencies for which kw < 1 the integral
equations can be simplified, and for H-polarization it is found
that

1/ '
;/112<r’>ln|§’~§|d§’=1+an(§) (20)
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for —1<¢<1with

20 Z
= — —. 21
a kw 7q @b
J2({) is a modified current in terms of which
1 -1
P =i -
(P, $o) =im {A + KH(a)} (22)
with
1 1
K@=~ / 1) dg 23)
-1
and

kw T
A=In— —i—
n 3 +y —i 2
where v = 0.5772157 - - - is Euler’s constant. We observe that
P (6, ¢o) is independent of ¢ and ¢, and since K g(a) is
real if a is

|Pr(d, do)| <2 (24)

for real a.
Similarly, for E-polarization the low frequency approxima-
tion to the integral equation is

62 1 ! I I !
Sy [ P glds =1 bl @9
for —1 < ¢ <1 with
b:_lk_wg (26)
2 9

where the modified current J3({) is such that J3( £ 1) = 0.
In terms of J3({)

Pr(, do) = —’z" (kw)? sin ¢ sin oK £(b)  (27)

with

1

ke = ¢ [ 1o, (28)
and the angle dependence is explicit in the expression for
Pg(é, ¢o).

Computer programs were written to solve (20) and (25) by
the moment method and, hence, compute K (@) and Kg(b)
for all complex @ and b. From an examination of the results
it was found that K (@) can be approximated as

Kp(a) = —

1105

valid for all b not in the immediate vicinity of the negative
real axis. For positive real b, Kg(b) < 1/2 and hence

IPE($, 60)| < & (kw)” sin 6 sin do. (32)
In their regions of validity, the estimated accuracy of (29)-(31)
is about three percent.

To use these results to predict the scattering from a narrow
gap, it was proposed that 5 be identified with the impedance
looking into the gap, with 5 calculated using a simple trans-
mission line (or other) model that takes into account the geom-
etry and material filling of the gap. To show how this is done,
consider a crack such as those illustrated in Fig. 2. For H-
polarization the cavity supports a variety of transverse electric
modes, but since the width w is small, the only mode which
is not evanescent is the transverse electromagnetic mode, and
this is the main contributor to the field in the gap. Under the
assumption that this is the only mode that must be considered,
the effective surface impedance 5 can be deduced from the in-
put impedance Z,, of a parallel plate transmission line. The
voltage across the gap is

w/2

V:/ E.(x)dx ~wE,
—w/2

and since the current [ is proportional to the tangential mag-

netic field,

_E. YV Zy
TTH, T wT  w
For a parallel plate transmission line whose plate separation is
w, the inductance and capacitance per unit length and width
are L = pou,w and C = ege, /w, respectively, and the char-
acteristic impedance is Z, = Zyw with Z; =Z\/u, /e,.

The L-shaped gap in Fig. 2(b) can be viewed as two cas-
caded lines. The first line has length d; and characteristic
impedance Z., whereas the second (of length wy) has char-
acteristic impedance Z, = Zd> and is shorted. As a load its
impedance is

(33)

Z; = —iZétank.wz. (34)

The junction of these lines can be modeled as a lumped pa-
rameter pi-network whose reactance and susceptance elements

(@ +0.15)(a +0.29)

(% +In 2) (a +0.15)(a +0.29) +0.10a(a + 0.20)

for all @ apart from those in the immediate vicinity of the portion —1.1 < a < 0.3 of the real axis in the complex a plane. In

this region an empirical expression for Kx(a) is

Kp(a) = —

"7"+1n2+0.1

(30)

and since, for other a, (30) differs from (29) by no more than 3%, it is sufficient to use (30) for all a. Similarly, for

E-polarization the approximation is

0.62
Ke(b) =

(b +4.08)(b + 7.26)(b + 10.37)(b + 13.43)(b + 16.46)

b+ 1.15 (b +4.27)(b + 7.37)(b + 10.45)(b + 13.49)(b + 16.50)"

€D
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Fig. 2. Gap and cavity configurations. The cavity is filled with

perme;
are [3]
X=k|ZIWd2
kq d, 2
B =1 1- 2]
! Z] (d2 +W)( T n2>
k[ w 2
=zt - Zm2).
B2 (&) (- 3m2)

The input impedance of the first line cascaded with the pi-
network and the second line is then

Z, —iZ tank,d,

Z, —z7. 2L tecdlfith
ln ¢ Z,. —iZitank;(ﬁ 33)
where
Z; —iX(1 —iB,Z
/ L —IX(1 —iByZ;) 36)

Z, = .
L™ (1-BX)1—iByZ,) —iB\Z;

Similarly, the T-shaped gap in Fig. 2(c) can be treated as a
transmission line loaded with two shorted lines in series. For
the shorted lines of lengths w; and w3, the load impedance is

"_

Z; = IZé {tank1W2 +tank.w;}. 37)

The junction is modeled with a shunt susceptance and a series
reactance in series with Z; :

X3 :kIZ]Wdz
kl dz
By =L ,
} Z, <d2+w)07822

where the constant was determined empirically, and the input
impedance Z, is then given by (35) with

B Z] —iXs
1 —iBy(Z] —iX3)

The rectangular gap is the special case d, = 0 of either of the
above structures, and for this

7

L (38)

Z\n = —iZ tank d,. (39

Finally, for the V-shaped gap in Fig. 2(d), the inductance
and capacitance per unit length of the line are functions of
position, but when the coupled differential equations for the
voltage and current are solved, we obtain

Ji(kdy)
Jo(kydy)'

AR iZ. (40)

—>|
. A
S B g B &

a homogeneous dielectric having relative permittivity ¢, and relative
ability u,.

where Jo and J, are Bessel functions. For a gap of arbitrary
shape, the input impedance can be determined using cascaded
transmission lines of varying width, and this was verified in
the case of the V-shaped gap.

For E-polarization all of the modes are evanescent, but if
we again assume that the first mode dominates in the gap,
simple formulas for the surface impedance can be found. In
a parallel plate waveguide of width w

1 JE,
T ikZp, 0y’

and for the lowest order mode the propagation constant is ikp

where
A2 12
p:{( ) } .

Since E,/H, is independent of position, a transmission line
analogy can be made. The characteristic impedance of the line
is —iZp, /p, which is also the impedance looking into the gap,
and the results previously obtained for H-polarization are now
applicable if k, is replaced by ikp and Z, by —iZu, /p. Thus,
for a rectangular gap

41

Zin = —i 2P tanhkpd, 42)
p
and for a triangular gap
w I(kpd
Zu = i Zurw Ii(kpdy) 43)

p Iokpd)’

where Z,, and 7 are related via (33) and I and 7, are modi-
fied Bessel functions [4]. Formulas for L- and T-shaped cracks
can be deduced in a similar manner, but since the modes are
evanescent, the shape of the lower cavity has little or no effect
on the impedance.

IV. NuMEericAL REsuLTs

The integral equation pairs (8), (12) and (17), (18) for H-
and E-polarizations, respectively, were programmed for so-
lution by the moment method, using pulse basis and point
matching functions. In the case of (17), the derivative was
applied to the kernel, and because of the order of the result-
ing singularity, the contributions from two cells on either side
of the self-cell were evaluated analytically, in addition to the
contribution of the self-cell itself. Comparison with the results
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Fig. 5. Argument of the far-field amplitude Py for a rectangular gap of
varying depth d, = d with ¢ = ¢o = /2 and w/\ =0.15: ® exact, —

Modulus of the far-field amplitude Py with respect to aspect ¢p

Fig. 3.
for a rectangular gap with ¢ = 7/2 and d/N = 02: m w/\ = 0.15, O
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Fig. 4. Modulus of the far-field amplitude Py for a rectangular gap of

[ .
Gap depth d/A

y = 0 for a rectangular gap with ¢ = ¢ = 7/2, w/XN = 0.15, and
d/\ =0.2: m exact, — analytical.

varying depth d; = d with ¢ = ¢ = 7/2 and w/\ = 0.15: ® exact, —
then sufficient to take ¢ = ¢9 = w/2 corresponding to normal

analytical.
of a finite element method [5] for H-polarization showed ex-

cellent agreement, and for purposes of comparison with the

incidence backscatter.
quasi-analytic solution, the moment method data will be re- In Figs. 4 and 5 the amplitude and phase of the far field

amplitude Py (w/2, 7/2) are shown as a function of depth for
a rectangular air-filled gap of width w/\ = 0.15. We observe
the cyclical behavior with zeros at d/N = 0, 0.5, 1.0,---,
resulting from the periodicity of the impedance looking into
the gap. From (39) and (21) the corresponding a are real
and vary from —oo to oo over each cycle. Over the entire
range of d/\ the agreement between the quasi-analytic and

garded as exact.
Considering first the results for H-polarization, Fig. 3
shows the backscattering from a rectangular air-filled gap as

a function of aspect for three gap widths. The aspect varia-
tion decreases with w. It is less than 4% for w /N = 0.15, and

since aspect independence is a feature of the quasi-analytic so-
lution, we will henceforth confine attention to this case. It is



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION. VOL. 38. NO. 7. JULY 1990

1108
2.5 2.5
2]
1.5 ;‘&‘i?
1Pyl 1Pyl
1
0.6
0 T T T T
0.0 0.1 0.2 0.3 04 0.5
Gap depth d/A

Fig. 7. Modulus of the far-field amplitude Py for a material-filled rectan-
gular gap of varying depth d| = d with ¢ = ¢ = /2, w/\ = 0.15,
and pu, = 1: ¢, =2+l m exact, — analytical; ¢, =3 +i0.5 ® exact,
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Fig. 8. Modulus of the far-field amplitude Py for an air-filled L-shaped
gap of varying depth d\ +d, = d with ¢ = ¢ = 7/2, w/A = 0.15,
w2 /N =0.15, and d) /d, = 3: m exact, — analytical.

]

0.0 O:i

moment method results is excellent, but in spite of this the
computed aperture impedances do not agree. This is evident
from Fig. 6 where |E,/H,| is plotted as a function of x for
w/N = 0.15 and d/N = 0.20. The U-shaped behavior is
in accordance with the edge condition at x +w/2, and
the data fit the curve C{1 — (2x/w)*}'/2 with C = 860 0.
The average value is therefore #C /2 = 1350 2, compared
with (36) which gives || = 1160 Q. A similar discrepancy
was found with all gap geometries. Nevertheless, the quasi-

2
-f\\
[ =
[
T
1.5 / \\
/ -
/ \
/ .\ |
o AN
11 / N
/ n [
Lo
N S
0.6 .>\ /
-
}i\
%
¥ : O‘IZ 0.‘3 o .I4 0.6

0.0 0.1
Gap depth d/A

Modulus of the far-field amplitude Py for an air-filled T-shaped

Fig. 9.
gap of varying depth d, + d> = d with ¢ = ¢9 = 7/2, w/\ = 0.15,
wa/N = w3 /X =0075, and d, /d, = 3: m exact, — analytical.

2.6
-
2 " ..
7 e
¢oN
/ ki
1.6 i‘ ‘!X
Pul \.
N .
0.6 #
0 r T T
0.0 0.1 0.2 0.3 0.4 0.5
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Fig. 10. Modulus of the far-field amplitude Py for an air-filled V-shaped
gap of varying depth di = d with ¢ = ¢9 = 7/2 and w/A = 0.15: m

exact, — analytical.

analytic solution provides an excellent approximation to the
far field, and this is illustrated in Figs. 7-10 showing |Py|
for a material-filled rectangular gap and for air-filled L-, T-,
and V-shaped gaps.

Turning now to E-polarization, Fig. 11 shows the amplitude
and phase of Pg(w/2, 7/2) as functions of w/\ for a rectan-
gular air-filled gap having d /A = 0.1. The quasi-analytic and
exact data diverge with increasing w/\, but the difference is
less than 4% in amplitude and 5° in phase for w/\ < 0.20.

For a rectangular gap with w/\ = 0.15, the quasi-analytic
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Fig. 12.  Modulus of the far-field amplitude Pg for the air-filled rectangular
and V-shaped gaps of varying depth d; = d with ¢ = ¢o = 7/2 and
w/N = 0.15: rectangular ®m exact, — analytical, V-shaped ® exact,
—————— analytical.

and exact results for |Pg(w/2, w/2)]| as a function of d /A are
presented in Fig. 12. The agreement is excellent, and as a
consequence of the mode attenuation, the scattering is inde-
pendent of the depth for d/A > 0.15. A similar comparison
for a triangular gap is also given in Fig. 12.

V. ConcLusION

The quasi-analytic method described in [1] is based on the
low frequency solution of the integral equations for a con-
stant impedance insert in a perfectly conducting plane, and

when used in conjunction with an estimate of the impedance
looking into a gap, it provides a simple approximation to the
far field scattering from the gap. To determine its accuracy,
we have analyzed the problem of a plane wave incident on a
gap backed by a cavity of arbitrary shape. The equivalence
principle was used to develop coupled integral equations for
the induced electric and magnetic currents, and the equations
were then solved by the moment method. When the impedance
looking into the cavity was determined using a transmission
line model, it was found that for gap widths w /N <0.15 the



1110

quasi-analytic and moment method results for the scattered
field were in excellent agreement for both polarizations and
for all gap configurations tested. The same agreement is ex-
pected for arbitrary shaped gaps. It therefore appears that the
quasi-analytic method is an efficient and effective tool for pre-
dicting the scattering from the junction where two component
parts of a target come together.
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