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Technique for Measuring the Dielectric Constant of
Thin Materials

KAMAL SARABANDI anp FAWWAZ T. ULABY, FELLOW, IEEE

Abstract—A practical technique for measuring the dielectric con-
stant of vegetation leaves and similarly thin materials is presented. A
rectangular section of the leaf is placed in the transverse plane in a
rectangular waveguide, and the magnitude and phase of the reflection
coefficient are measured over the desired frequency band using a vec-
tor network analyzer. By treating the leaf as an infinitesimally thin
resistive sheet, an explicit expression for its dielectric constant is ob-
tained in terms of the reflection coefficient. Because of the thin-sheet
approximation, however, this approach is valid only at frequencies be-
low 1.5 GHz. To extend the technique to higher frequencies, higher
order approximations are derived and their accuracies are comliared
to the exact dielectric-slab solution. For a material whose thickness is
0.5 mm or less, the proposed technique was found to provide accurate
values of its dielectric constant up to frequencies of 12 GHz or higher.
The technique was used to measure the 8-12-GHz dielectric spectrum
for vegetation leaves, Teflon®, and rock samples.

[. INTRODUCTION

OMPTED BY THE need for a practical technique
for measuring the microwave dielectric constant of
vegetation leaves, solutions were sought for the voltage
reflection coefficient measured at the input of a rectan-
gular waveguide containing a thin slab placed in a plane
orthogonal to the propagation direction (Fig. 1). The slab
is modeled in Section II as a resistive-current-sheet [1],
[2], which has proved to be an excellent approach for
characterizing the radar-cross-section of a vegetation leaf
over a wide range of moisture conditions (and a corre-
spondingly wide range of the relative dielectric constant
€).

To evaluate the accuracy of the technique for measuring
the real and imaginary parts of e from measurements of
the complex reflection coefficient I', an exact solution for
I" of the slab will be obtained in Section III and then used
to simulate the measurement process for given values of
€. The evaluation is performed in Section IV by compar-
ing the true value of e with that predicted by the resistive-
current-sheet expression. It turns out that the resistive-
current-sheet solution is identical with the zeroth-order
approximation of the exact solution for I'. One of the at-
tractive features of the zeroth-order solution is that it pro-
vides an explicit expression for € in terms of T'.

The evaluation shows that the zeroth-order solution
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Fig. 1. Rectangular waveguide with thin resistive sheet of thickness 7 at
z=0.

provides an excellent estimate for the real part of the di-
electric constant, €', if the slab thickness 7 is sufficiently
small to satisfy the condition 7 < 0.05A \/|—e_i , where A\
is the free-space wavelength. For a typical leaf-thickness
of 0.3 mm, this condition is satisfied for any moisture
condition if the frequency f < 15 GHz. A much more
stringent condition on 7 is required in order for the zeroth-
order solution to give accurate values for ¢”; namely 7 <
0.01AoV[e| and €” /¢’ = 0.1, or equivalently, f < 1.5
GHz for vegetation leaves. To relax this limitation, alter-
nate solutions for I' are obtained in Section III by invok-
ing approximations that lead to first- and second-order so-
lutions whose forms are invertible to explicit expressions
for €. Use of the second-order solution is found to extend
the frequency range from 1.5-12 GHz for a leaf with a
high moisture content and to higher frequencies for drier
leaves.

Section V presents 8-12-GHz spectra of the dielectric
constant e for vegetation leaves, Teflon and rock slices,
all measured using the technique developed in this paper.
Where possible, the results are compared with measure-
ments made by other techniques.

II. MODEL FOR A THIN RESISTIVE SHEET

Consider the rectangular waveguide diagrammed in Fig.
1. The guide is terminated with a matched load, has di-
mensions a X b, and contains a thin resistive sheet of
thickness 7 at z = 0. The waveguide dimensions are such
that only the TE,, mode can propagate in the guide.

We seek a relationship between the input voltage re-
flection coefficient I' and the relative complex dielectric
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constant of the sheet material €. To this end, we shall
develop expressions for the electric and magnetic fields in
Regions I and II and then apply the appropriate boundary
conditions. If ¥y and yy; are the electric potentials in Re-
gions I and II, respectively, solutions of the scalar Helm-
holtz equation

(V2 + kz)‘I’l,u =0 (1)
for the TE,; mode leads to [4]

cos <%>{Cle”‘“ + Cze’ikzz], 220 (2)

¥

Y = cos <7;x> Cye™*,  7<0 (3)

where a time factor e’ was assumed and suppressed. The
constants C; and C, represent the magnitudes of the in-
cident and reflected waves in Region I, C; represents the
magnitude of the wave traveling towards the matched load
in Region II, and

f \/4a (4)

The components of E and H may be obtained from (2)
and (3) by applying the relations [4]

- 1
E=-Vx (y£) H= —iwe(y2) + @ UV . (¥2).
(5)
The resistive sheet model [1] treats the sheet in the plane
z = 0 as infinitesimally thin carrying an induced tangen-
tial electric current J that is related to E by

AXAXE= —RJ (6)
where 7 is the surface normal of the sheet (72 = % in Re-
gion I and 72 = —Z in Region II) and R is the sheet resis-
tivity

—ing
R = ohms per square meter.  (7)

kr(e — 1)

In the above expression, k = 27 /Ny, 7 is the sheet thick-
ness, 1o is the free-space intrinsic impedance, and

e=¢ — ie" (8)

is its relative complex dielectric constant. The condition
for continuity of the tangential electric field from Region
I'to Region II and the boundary condition for the magnetic
field requires that

EX(E—E) =0 Zx(H-H)=1J (9)
The unknown coeflicients C, C,, C; can be obtained by
applying the boundary conditions given by (6) and (9).
The complex voltage reflection coefficient is then found
to be
_C Kr(e — 1)
¢ Kr(e— 1) — 2ik,

(10)

from which an explicit expression for ¢ is obtained

A
. G — N
l<21ra> “
+ .

7(1 + 1/T)

2ikI
Kr(1 +T)

e=1

(11)

Thus by measuring the complex reflection coefficient T
and the sheet thickness 7 we can compute e directly. This
technique can be very useful for measuring the dielectric
constant of vegetation leaves and other similarly thin
slabs. Its success, however, depends on two factors: a)
the ability to measure both the magnitude and phase of T’
accurately, which now is possible with the HP-8510 vec-
tor network analyzer, and b) the validity of the thin-sheet
assumption underlying the derivation that led to (11). To
examine the range of validity of this assumption and to
quantify it in the form of specific limits, we shall first
derive the expression for the reflection coefficient when a
dielectric slab of arbitrary thickness is placed in the wave-
guide, and then compare the exact solution with the so-
lution given by (10) and (11).

III. MODEL FOR A SLAB OF ARBITRARY THICKNESS

The waveguide section shown in Fig. 2 is terminated in
a matched load and contains a dielectric slab extending
from z = 0 to z = —7. The electric potentials in Regions
I, I, and IIT are

¥, = cos <%x>{cle”‘zz + Cze_ikzz}, z=0 (12)

¥ = cos <1;£>[C3e”‘:21 + C4e_ik:22J, 0=z= -1

(13)

¥ = cos <7;x> Cse™?, -7 =7 (14)
where k_ is given by (4) and k,, is given by

k, = }\—7; dea’ — N (15)

Upon using the relations given by (5) to obtain E and
H in each of the three regions, and then applying the con-
tinuity conditions of the tangential E and H fields at the

boundaries z = 0 and z = —7, we obtain the following
expression for the reflection coefficient:
C
r=2
G

_i[(kZZ/kz)z - 1] sin (k:ZT) )
2<’;ﬁ> cos (kor) + i[(kp/k.) + 1] sin (k.,7)

(16)

We shall refer to (16) as the exact solution for I'.
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matched load

dielectric

Fig. 2. Rectangular waveguide with a dielectric slab occupying region II
(betweenz = 0and z = —7).

A. Second-Order Solution
If ko7 is small and we use the approximations

sin ko7 = kot (17a)

cos kot = 1 = Y(kar)’, (17b)

The expressions given by (16) can be simplified to give

—(e - 1)
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C. Zeroth-Order Solution
If € >> 1, we may use the approximation
(1-3())
e+ (1 —=|-
2 \a
=1 (21)
e — 1
because —1 = 1 — $(A/a)* < 1. Equation (20) then
leads to
_ 2ik.T"
CTO=STTIAT 4 )
i(N/2ra)N4a* — N
_ . i(\/2ma) ()
(1 + 1/T)

which is identical with the resistive-sheet approximation
given by (11).

IV. SENSITIVITY ANALYSIS

The second-order solution for I', given by (18), was
based on assuming that k,;7 << 1 and on retaining terms
up to and including power of 2 in the series expressions
for sin k,,7 and cos k_,7, as indicated by (17). In the first-

the second-order solution

' =
Lt
(13

from which we obtain the following explicit expression
for the second-order solution of the relative dielectric
constant:

€ = 6

1 /A 2 ) A\ . 2}
Sl =) —im (D) - 2k T
1 ‘1 5 <a> lTkw<2a> 2ik,/ 7k

1+ (1 + itk )T

n

(19)

B. First-Order Solution

If, instead of the approximation given by (17b), we
were to set cos k.7 = 1 in (16) (i.e., ignoring second-
and higher order powers of (k.,7)), we would obtain the
result

T =

<§>2 - irk5<%>2 - 2ikz/rk2> + (1 + itk.)e

(18)

order solution, only the zeroth- and first-order terms were
retained. The purpose of these derivations is to use them
for computing e from measured values of the complex re-
flection coefficient I'. The accuracies of the approximate
expressions given by (19) and (21), corresponding to the
second- and first-order solutions for ¢, respectively, de-
pends on the magnitude of k,7. For a standard waveguide
operated in the TE;; mode, the dimension a is on the or-
der of 3\ /4. Hence,

kot = krNe — (N/2a)

If we require that k7 Ve be small,
still.

= kre — 4/9.

then k_, will be smaller

-1

which can then be solved to obtain the expression
1 —[1 = (N/2a%) — 2ik./7k*|T
- (1+71)

1=

€

(21)

€

for the first-order estimate of e.

{e + <1 - % <2>2>V(6 — 1) = 2ik [(k¥e — 1))

(20)

The zeroth-order solution (22) is only applicable if € is
sufficiently large to allow the approximation given by (21)
to be used in (20). Hence, for € large, the first- and zeroth-
order solutions should yield comparable results.



634 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 37, NO. 4, DECEMBER 1988

2.10 T T T T T T T T T
2.08F 1
2061 ]
204 1

e
>2021 =

3

= 200 v

E - o ——————F

3 ;

o 198f & 3
196+ 3
194 3

£=2-j0.01

1925 f =10GHz 3
190 ) 1 L ) 1 L | L

Y00 01 02 03 04 05 06 07 08 09 10

Thickness (mm)
(a)
0.025 T T T T T T T T T
€%

0.020[ 1

S

B

o

frid

o

9

So.015- .

L €]

3

o

K]

[=]

0.010)

£ =2-j0.01

f =10 GHz &
0.005 1 L 1 L 1 1 1 1 L

0.0 0.1 02 03 04 05 06 07 08 09 10
Thickness (mm)

(b)
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To evaluate these approximate expressions for e, we
conducted the following sensitivity analysis. We selected
specific values of the waveguide width a, the wavelength
A, and the relative complex dielectric constant of the slab,
€. We then computed T" using the exact solution (16). The
computed value of I" was then used in (22), (21), and (19)
to compute the zeroth-, first-, and second-order estimates
of €. We denote these ¢, €;, and ¢,.

Our first example of this procedure is Fig. 3 where we
show plots of ¢, ¢, and €, at 10 GHz as a function of 7
for a slab with true dielectric constant ¢ = 2 — {0.01. We
observe that €, €[, and ¢; in Fig. 3(a) each provide values
that are within 1 percent of ¢’ for 7 < 1 mm. Among the
three approximations, ¢{ is the most accurate, in spite of
the fact that the left-hand side of (21) is equal to 2, rather
than approximately equal to 1 as required by (21). This
insensitivity of I' to the first term in the denominator of
(20) is because this term is much smaller than the second
term in the denominator of (20), thereby exercising a mi-
nor influence on the final expression for ¢’.

Measuring €' of a material usually is not a difficult
problem, but measuring €” of a low-loss material can be.
The errors associated with using the approximations lead-
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Fig. 4. Relative (a) permittivities €}, €], and ¢3, and (b) dielectric loss fac-
tors.

ing to ¢g, €], €5 are shown in Fig. 3(b) in the form of
deviations from the true value ¢” = 0.01. For 7 < 1 mm,
the relative error is 20 percent for e}, 50 percent for €/,
and the estimate provided by ¢§ is grossly inaccurate.
Hence, in spite of the result that ey provides a good esti-
mate of €', the zeroth-order solution is inadequate for es-
timating e”.

Fig. 4 shows results for a material with ¢ = 20 — {10.
Again ¢; provides an adequate estimate of ¢’ over a wide
range of the thickness 7. For the imaginary part, however,
€; consistently provides more accurate estimates of ¢” than
those provided by either €f or e} .

A summary of the relative accuracies of the three ap-
proximations €, €, and ¢,, is presented in Table I for slab
thicknesses 7 equal to 1 and 5 percent of \y/ \/|—e—| . The
entries in the table are the maximum relative errors in per-

cent. For ¢;, for example, the maximum relative error is
defined as

’

€) = max X 100

where ¢ is the value provided by (22) and €’ is the true
value of the slab permittivity.
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TABLE 1 }
MAXIMUM RELATIVE ERRORS ASSOCIATED WITH THE EXPRESSIONS FOR ¢,
€,, AND €,; THE QUANTITY ¢, Is DEFINED AS: ¢ = max |’ — ¢j/€e| X
100 AND SIMILAR DEFINITIONS APPLY FOR THE REMAINING ERROR

QUANTITIES
Wflel /2 =0.01 wllel /2 =0.0s
Maximum ¢ b
Error, % P I
€ /e e /e
102 107 1 10 10+ 1
o 0114 0341 2920 | 3.107 2672  17.05
(]
o, 1828 1835 1445 | 9340 9670 1011
8 0127 0124 0060 | 3293 3216 1916
e: 043 0267 0018 | 33.06 863 277
[ 71 0063 0062 0.029 1538 1506 0.866
6, 0215 0432  0.091 | 1511 3.926 2.8
V. DIELECTRIC MEASUREMENTS

A. Measurement System

A HP-8510A vector network analyzer was used in con-
junction with a HP-8511 parameter test set and a HP-9000
computer (Fig. 5) to measure the amplitude and phase of
the reflection coefficient T' of dielectric slabs placed in a
waveguide sample-holder. The arrangement shown in Fig.
5 consists of a waveguide section connected to the HP-
8511 through a coax-to-waveguide adapter on one end and
to a waveguide section terminated in a matched load on
the other end. A thin piece of styrofoam is placed in the
sample-holder section at a distance 7 from the waveguide
opening (junction between the two waveguide sections)
where 7 is equal to the thickness of the dielectric sample.
Another thin piece of styrofoam is placed on the other side
of the sample (in the empty waveguide section) to keep
the sample in place.

After placing the sample in the waveguide, the network
analyzer is used to measure the complex reflection coef-
ficient over the frequency range of interest. In the present
setup, the frequency coverage is from 8 to 12 GHz.

B. Measurement Accuracy

The accuracy of the dielectric-constant measurement is
critically based upon the accuracy with which the reflec-
tion coefficient T' can be measured. The measurement of
I' may contain some random, nonrepeatable errors caused
by system noise and environmental variations as well as
certain systematic errors that are repeatable and, there-
fore, correctable. To correct the systematic errors, the
measurement system is calibrated using three independent
standards whose reflection coefficients are known over the
frequency range under consideration. These include a
short-circuited load. a matched load, and an offset short.

635
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Fig. 5. Measurement system.
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C. Sample Measurements

The technique described in the previous sections was
used to measure the 8-12-GHz dielectric spectra of three
types of rock materials (each cut in the shape of a thin
slab with a cross-section equal to that of the waveguide’s)
and a thin leaf of vegetation material with a gravimetric
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Fig. 7. Measured relative dielectric constant of a vegetation leaf.

moisture content of 90 percent. In addition, a thin slab of
Teflon with ¢ = 2.0 — j0.005 was measured also. The
results are given in Figs. 6 and 7. The results for Teflon
were found to be in excellent agreement with those mea-
sured for a thick sample for both ¢’ and ¢”. The measured
permittivities of the rock samples are essentially constant
over the 8-12-GHz band (Fig. 6(a)), and for two of the
samples (rhyolite and rhyodlacite) the measured permit-
tivity compares very well with values measured by a
coaxial probe using an approximate reflection technique
[5].

The plots of Fig. 6(b) display ¢”, the relative dielectric
loss factor for Teflon, and the three rock samples. We
have no reason to expect e of rocks to exhibit a dispersive
behavior in the 8-12-GHz frequency region, and there-
fore, we suspect that the observed variability, particularly
in the 8-9-GHz range, is an artifact of the measurement
system.

The example shown in Fig. 7 is for a leaf vegetation.
Its gravimetric moisture was 0.9 and its thickness 0.23
mm. The continuous curves represent the values of ¢’ and
¢” measured with the waveguide technique and the circles
represent values calculated using a model [3] with an ac-
curacy of +20 percent. Within this range of accuracy,
both the data and model are in good agreement.

VI. CONCLUSIONS

The technique presented in this paper for measuring the
dielectric constant of thin slabs is based on measuring the
complex reflection coefficient of the input of a waveguide
section with the slab placed in the transverse plane of the

waveguide. The dielectric constant of the leaf is then cal-
culated from the measured reflection coefficient.

An explicit expression for the dielectric constant is ob-
tained in terms of the reflection coefficient by simplifying
the exact solution for reflection from a dielectric slab using
a thin-sheet approximation. The technique is found to
provide accurate measurements of the complex dielectric
constant for natural materials, including vegetation leaves
and rocks, up to 12 GHz if the thickness is 0.55 mm or
less.

It is worth mentioning that the technique can be ex-
tended to measure the relative permeability by modifying
(12)-(14). Because such a modification results in having
four unknowns, it will be necessary to measure the reflec-
tion coefficient corresponding to two different sample
thicknesses in order to determine both ¢ and p. Alterna-
tively, one can measure the reflection and transmission
coeflicients of one sample to realize the same objective.
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