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Optimum Corner Reflectors for
Calibration of Imaging Radars
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Abstract— Trihedral corner reflectors are widely used as cal-
ibration targets or imaging radars because of their large radar
cross section (RCS) and extremely wide RCS pattern. An im-
portant source of uncertainty in the RCS of trihedral sitting
on a ground plane is the coherent interaction of the ground
plane with the trihedral. At UHF and low microwave frequencies
the large physical size of corner reflectors become a limiting
factor in regard to- difficulties in field deployment and devia-
tion of their RCS from the expected values. In this paper, a
general class of corner reflectors with high-aperture efficiency
referred to as self-illuminating corner reflectors, is introduced
whose coherent interaction with their surrounding terrain is
minimized and their total surface area is two-thirds of that of
a triangular corner reflector having the same maximum RCS.
Analytical expressions based on geometrical optics and a new
numerical solution based on near-field physical optics for the RCS
of two simple self-illuminating corner reflectors are presented
and compared with backscatter measurements. Also the panel
geometry for an optimum corner reflector which has the shortest
edge length among polygonal self-illuminating corner reflectors is
obtained. High-aperture efficiency is achieved at the expense of
azimuth and elevation beamwidth. It is shown that the 1-dB RCS
beamwidths of the optimal corner reflectors, both in azimuth and
elevation directions, are about 16°, which is sufficient for most
practical applications. RCS measurements of corner reflectors
in the presence of a ground plane show that the RCS of self-
illuminating corner reflectors are less affected by the coherent

- ground interaction.

1. INTRODUCTION

UANTITATIVE interpretation of images acquired by
Q synthetic aperture radars requires an external calibration
procedure. Generally, in calibration procedures the radar
return from individual pixels in the image is compared with
that of a pixel including the calibration target with known
scattering matrix [1], [2]. The success of an external calibration
procedure is directly influenced by five counteracting charac-
teristics of the calibration target. These include 1) large radar
cross section (RCS), 2) wide RCS pattern, 3) small physical
size, 4) stable RCS, and 5) insensitive RCS to the surrounding
environment. Noting that the calibration targets are deployed
over a surface with nonzero radar backscatter, it is required
that the RCS of the target are much larger than the direct
backscatter of the terrain and also the coherent interaction
of the target and the terrain be as small as possible. The
wide RCS pattern or insensitivity of target alignment to the
radar coordinate and the small physical size requirements are
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needed to assure the ease of target deployment under the field
conditions.

Trihedral corner reflectors have long been used as radar
reflectors and calibration targets [3]. With the advances in the
imaging radar technology and the need for quantitative data,
trihedral corner reflectors, having most of the above mentioned
characteristics, are being widely used as a calibration target
for imaging radars [2], [7]. However, at low frequencies such
as P and L band the physical size of the panels for the
required RCS becomes prohibitively large. In these cases, the
trihedral structure is susceptible to geometrical deformation
which would cause a departure from the theoretical RCS
of the target. In a recent cross-calibration study using the
JPL. AIRSAR and the University of Michigan, Ann Arbor,
polarimetric scatterometers it was shown that the coherent and
incoherent interaction of the ground surface with a trihedral
corner reflector can distort the expected scattering matrix of
the target significantly [8]. The uncertainties in the RCS and
the scattering matrix of the trihedrals exceed the maximum
tolerable errors required for most remote sensing applications.

Traditionally, the choice of panel geometry for corner
reflectors as been a triangular shape due, perhaps, to the
simplicity in the structural design and manufacturing. In this
paper, an optimum panel geometry or a corner reflector sought
so that the RCS of the reflector is least affected by the
coherent ground interaction and its RCS is maximized for
a given panel area while minimizing the edge length. As
will be shown later, the first two conditions are met if the
panels of the corner reflector are completely illuminated after
two reflections of the incoming wave from the other panels.
A general procedure for characterizing the panel geometry
of a self-illuminating corner reflector is outlined and it is
shown that the surface area of such corner reflector is 2/3
of the surface area of a trihedral corner reflector having
identical RCS at boresight illumination. Then the geometry
of an optimum reflector which has the shortest edge length
among the self-illuminating polygonal corner reflectors is
obtained. Two simple self-illuminating reflectors, namely, the
square and pentagonal corner reflectors are considered in this
paper. Analytical solutions for backscatter cross section of
these corner reflectors are derived and compared with the
backscatter measurements. In what follows, first the theoretical
analyses for the radar cross section based on the geometrical
optics (GO) and near-field physical optics (PO) approximation
are given, then experimental results for a pentagonal corner
reflector and a square corner reflector at X-band are presented
and compared with those obtained from their triangular corner-
reflector counterpart. Also the measured backscatter from the
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pentagonal and triangular corner reflectors in the presence of a
smooth perfectly conducting and lossy dielectric ground planes
are presented. It is also shown that the scattering matrix and
the RCS of self-illuminating corner reflectors are less affected
by the ground plane. '

II. THEORETICAL ANALYSIS

A. RCS Calculation

In this section, a brief discussion on the evaluation of RCS
for corner reflector with arbitrary panel geometry based on
the GO and a near-field PO approximations is given. Here,
the region of interest for calculation of RCS is confined to
the first quadrant containing the corner reflector’s boresight.
The literature concerning calculation of RCS pattern of corner
reflectors is limited to the GO solution or triangular and square
corner reflectors over a limited region around their boresight
[31-[5]. The GO solution for RCS pattern of square corner
reflectors is reported incorrectly [4]. Analytical expression
for the RCS pattern of triangular, square, and pentagonal
corner reflectors based on GO approximation are derived in
this section. These results are valid over a wide range of
incidence angles. More accurate approximate solutions such
as geometrical theory of diffraction (GTD), uniform theory
of diffraction (UTD), or physical theory of diffraction (PTD)
have been applied to dihedral corner reflectors [9], [12].
Although the application of UTD or PTD to simple geometries
is rather simple, for concave scatterers such as trihedral corner
reflectors the analysis becomes very complex. The difficulty
is in the computation of the diffracted wave contributions that
enter the corner reflector cavity. Besides, for the problem at
hand where the RCS is required only around the boresight,
and the dimensions of the panels are much larger than the
wavelength, the contribution from the edge diffraction can be
ignored. It should also be noted that exact numerical solutions,
such as the finite element and the method of moments, for
most practical corner reflectors (typical dimension >10)) are
not tractable.

Considering a right-angle corner reflector it can easily be
shown that for any incident ray entering the corner reflector
cavity, after triple reflection there exists a specular point in
the backscatter direction and, therefore, the GO solution can
be used for the RCS calculations. To outline a procedure for
the RCS calculation using the GO method, consider a corner
reflector with arbitrary panel geometry whose internal edges
form the axes of a Cartesian coordinate system (z, y, z), as
shown in Fig. 1(a). Let us denote the panels in z—y, y—z, and
z—x planes, respectively, by panel #1, #2, and #3. To compute
the backscatter contribution from each panel, the illuminated
area on each panel must be calculated. Panel #1 is illuminated
by two plane waves resulting from double reflections of the
incident wave from 1) panel #2, then panel #3 and 2) panel
#3, then panel #2. The propagation unit vector of the image
of the incident wave in panel #2 and its image in panel #3
are, respectively, given by
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where
k; = —sin 6 cos ¢Z — sin 6 sin ¢ — cos 63.

If panels #2 and #3 were infinite in extent, panel #1 would
entirely be illuminated. However, both panel #2 and panel
#3 are finite and, therefore, only a portion of panel #1 is
illuminated.. In this case, panel #2 can be viewed as window
for the image wave k;2 which partially illuminates panel #3, as
shown in Fig. 1(b) (indicated by S53). Similarly, the area So3
on panel #3 an be regarded as a window for the image wave
k;23 that partially illuminates panel #1. The area of this region
is denoted by A23. In a similar manner, the illuminated area on
panel #1 by the second image wave ki32) an be obtained and is
denoted by A32. It should be noted that these illuminated areas
on z—y plane may exceed the geometrical extent of panel #1.
In such cases, A% and A32 are the areas of the intersection of
the illuminated regions and panel #1. The two image waves
that illuminate panel #1 are parallel (k23 = kjs0), in-phase,
and copolarized. The expression representing the image wave
is found to be

E, = [—E() + 2(5 . Eo)é]eikokizg T

which can be used to find the backscatter from panel #1. The
following expression for the scattered field from panel #1 can
be obtained [10]

Ea= E—A—i cos OFE, )]
Ao
where A; = A% + A32. This process must be repeated to
find the backscatter contribution of panel #2 (E,5) and panel
#3 (Es3) from which the overall RCS can be computed: from
begin '
2

3
o =4r Z E,;| . 2)
j=1

The GO solution for estimation of the RCS is simple
and widely used, but its accuracy degrades when a typical
dimension of the scatterer becomes comparable with the
wavelength. A more accurate estimation of RCS can be
obtained using the PO solution. The PO solution for flat plates
cannot be used directly for corner reflectors. The difficulty is
in the calculation of the PO currents generated by the reflected
fields. Basically, the panels are in the near-field region of each
other and the reflected fields can no longer be assumed to be
plane waves. In this case, the PO current in panel #2 induced
by the primary PO current on panel #1 (J;) must be computed
from

Jig =28 x Hi,
where
HfQZ/ J1(r')\V x G(r, r') dr. 3
Noting that [13] '

1 etholT=T"] , —
— x I
|r—'r’|>47rlr—'r’|2(r ™)

V x G(r, 1) = (iko -
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Fig. 1.
incident wave from panel #2 and then panel #I.
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Finally, to find the induced current on panel #3 (J123), J12
must be used in an integral similar to (4). Unfortunately,
closed-form expression for (4) cannot be obtained, and costly
numerical integrations must be performed. Basically, to find
the scattered field, a six-folded integration is required which
makes the RCS evaluation numerically very inefficient. To
make the RCS evaluation more efficient without compromising
the accuracy too much, a hybrid GO-PO solution is considered
[9]. In this approach, for the first reflection, the GO solution
and/or the two following reflections the PO solution are used.
This method will be referred to as the GO-PO-PO solution.
The GO-PO-PO solution requires four-folded numerical in-
tegration, and its validity can be justified by noting that the
majority of the reflection points on the third panel are far
enough from the reflection points on the first panel; thus, the
GO solution can be used for the first reflection. It should be
mentioned here that the RCS calculations for corner reflectors
based on a GO—-GO-PO method is not, in any significant way,
different from the GO solution and, therefore, it is not pursued
in this paper.

(3) can be reduced to
iZ = /(’I‘—’I‘/) X Jl(’l'/) (’Lko —

8iko |

dr'.
dr|r —7'|? 4

B. Triangular Corner Reflector

The radar cross section of triangular comer reflectors has
been characterized and studied thoroughly [4], [6], [11].
Backscatter RCS measurements indicate that the GO solution
can accurately predict the RCS of triangular corner reflectors
near boresight. An approximate expression for the backscatter
RCS of triangular corner reflectors based on GO solution is
given by [4]

o8, ¢) ~ il\—;r -1* - {cos 6 + sin O(sin ¢ + cos ¢)
— 2 - [cos 6 +sin §(sin ¢ + cos ¢)] "1} (5)

where [ is the trihedral height, as shown in Fig. 3. This
approximation is valid when [ > A and @ and ¢ are near
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(a) A corner reflector with arbitrary panel geometry illuminated by a plane wave. (b) The lit area on panel #1 after two reflections of the

boresight. A more accurate GO solution which is valid over
a wide range of 6 and ¢ is given in Appendix A. To
examine whether the GO-PO-PO method produces a more
accurate RCS estimation or not, the RCS pattern of a triangular
corner reflector with [ = 10X at 9.5 GHz was measured and
compared with the GO and GO-PO-PO solutions. Fig. 2(a)
and (b) shows the horizontal and elevation RCS patterns of
the trihedral as measured by a polarimetric radar and predicted
by the GO and GO-PO-PO methods. It should be noted that
the elevation pattern is defined as the ¢ = 45° plane and the
elevation angle is 54.73° — 6. In practice, the elevation pattern
can be measured easily. However, this is not the case for
the azimuth pattern where § = 54.73° must be kept constant
(conical surface). Instead, the pattern in the horizontal plane is
measured. The horizontal plane is defined as the plane which
contains the trihedral boresight and is parallel to the lower
panel edge. If the incident direction in the horizontal plane as
measured from the boresight direction is denoted by «, then

4= tan~" V2 cos a++3sin a
V2 cos o — /3 sin al’
cosa] ’

V3

Fig. 2(a) and (b) shows that the GO and GO—PO—PO solutions
agree very well with the measured ‘data and, hence, the GO
solution is accurate enough in this case. The small ripple in the
measured data is caused by the direct backscatter contribution
of single and double bounce reflections which are not included
in our GO and GO-PO-PO solutions.

0 = cos™! [

C. Pentagonal and Square-Corner Reflectors

For a triangular corner reflector at boresight incidence,
only a portion of each panel is illuminated, as shown in
Fig..3(a). Appendix A gives the expressions for the area
of the lit regions as a function of incidence angle for a
triangular corner reflector. In characterization of the lit regions
or a triangular corner reflector, it is noticed that at boresight
incidence ¢ = 45°, § = 54.7° where the RCS is maximized
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Fig. 2. RCS patterns of a triangular corner reflector as function of (a)
horizontal and (b) elevation angles. I = 10X at 9.5 GHz.

only two-thirds of the area on each panel is lit and gives
rise to the maximum RCS (¢ = 4mi*/3)\?). The geometry
of the lit area in each panel is a pentagon, as shown in
Fig. 3. This fact has been known for a long time [11], [12],
but no formal analysis or discussion on the performance of
a corner reflector with pentagonal panel geometry can be
found. One obvious advantage of a corner reflector with
pentagonal panels which will be referred to as a pentagonal
corner reflector, is the reduction in the surface area (weight)
by 1/3 without reducing the maximum RCS. An important
feature of corner reflector when considered as a calibration
target for imaging radars is its interaction with the ground
plane. Since the reflected rays from the tips of the trihedral
corner reflectors are not captured by the other panels, they
may interact with the scatterers on the ground plane and give
rise to some unknown backscatter contribution [see Fig. 3(b)].
For high angles of incidence where the lower panel is almost
parallel with the ground plane the specular reflection from
the ground plane illuminates the upper tip of the corner
reflector which, again, can increase its RCS. For the pentagonal
corner reflector, on the other hand, all the rays that enter the
reflector’s cavity experience the triple reflection and return
to the radar. Therefore, its interaction with the ground plane
is expected to be minimal. It can be shown that a corner
reflector with square-panel geometry has the same property
(self-illuminating).
~ The RCS pattern for these reflectors can be obtained using
the GO method in a rather straightforward manner. Ana-
lytical expressions for the RCS of the square and pentag-
onal comer reflectors are given in Appendixes B and C,
respectively. Although square corner reflectors have long
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Fig. 3. (a) The geometry of lit region on a triangular corner reflector. (b)
The interaction of a triangular corner reflector with the round plane.

been used, their maximum RCS and their RCS patterns have
been reported incorrectly. For example, the expression for
the RCS pattern reported by Ruck et al.. [4] is incorrect.
In this section, the GO-PO-PO method is also used in the
RCS calculation. It will be shown that the GO method can-
not accurately predict the RCS of a self-illuminating corner
reflector at boresight unless the dimensions of the corner
reflector are extremely large compared to the wavelength.
Figs. 4 and 5 show, respectively, the RCS patterns of a
square and pentagonal corner reflectors having a panel area
of 100)\2/3 at 9.5 GHz. In these figures, both the GO and
GO-PO-PO predictions are shown. It is also shown that the
GO solution is overestimating the RCS at boresight and the
derivative of the RCS pattern is discontinuous there. The
discontinuity of the slope of the RCS pattern (nonphysi-
cal) stems from the fact that the illuminated area abruptly
changes away from the boresight illumination. The numeri-
cal GO-PO-PO solution which include the near-field effects
predicts the accurate results, as will be shown in Section IIL
To make the simple GO solution or self-illuminating cor-
ner reflectors useful, the difference between the RCS cal-
culations is predicted by the GO, and GO-PO-PO meth-
ods is plotted in Fig. 6 as a function of normalized di-
mension \/X/ A. Fig. 6 shows that the discrepancy between
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Fig. 4. RCS patterns of a square corner refiector as function of (a) horizontal
and (b) elevation angles. Panel area is 100A%/3 at 9.5 GHz.
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Fig. 5. RCS patterns of a pentagonal corner reflector. as function of (a)
horizontal and (b) elevation angles. Panel area is 1002\ /3 at 9.5 GHz.

the GO and GO-PO-PO prediction decreases as v/A/\ in-
creases. '

D. The Self-Illuminating Corner Reflectors

In the previous section, it was shown that every point on
the surface of a pentagonal corner reflector contributes to the
RCS at boresight. Using the area of the lit region (4, = [2/3)
in (5), the maximum RCS of a pentagonal corner reflector can
be obtained from

2
o e = 127 - (%) .

b
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Fig. 6. The ratio of RCS predictions using the GO-PO—PO and GO methods
for self-illuminating corner reflectors (square and pentagonal) at boresight
illumination.

z=2y

(b)

Fig. 7. (a) Mapping of a general curve C from y—z plane to z—y plane
after two reflections and (b) the panel geometry of a general self-illuminating
hexagonal corner reflector,

However, the maximum RCS for a triangular corner reflector
in terms of its panel area A, is

g 1om (A
max T 3 A

which is smaller than that of a pentagonal corner reflector
having the same panel area by a factor of 4/9 (—3.5 dB). It was
also shown that the lit region (at boresight) after two reflections
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has exactly the same geometry as that of the panel (self-
illuminated) and, therefore, reflected rays from the ground
plane are not captured by the corner reflector cavity. In this
section, we seek a class of geometries for the panels of corner
reflectors that are self-illuminating at boresight incidence. For
these reflectors, every point on the panels will contribute to the
backscatter and a maximum RCS of oy = 127 - (A,/A)2
is achievable independent of panel geometry.

It is required that each panel be illuminated completely
at boresight. The self-illuminating requirement imposes a
symmetry condition on the acceptable geometries for the
panels. That is, the three panels of the corner reflector have
to be identical so that the corner reflector becomes self-
illuminating at boresight. Suppose the internal edges of a
self-illuminating corner reflector coincide with the axes of
a Cartesian coordinate system (z, y, z). Let us also denote
the tip of each edge along 2, x, and y axis by A4, B, and
C, respectively, as shown in Fig. 7. The incident wave at
boresight propagates along

- 1 1 1

A ~ A

k; = 7 Z 7 g 7 2.

After two reflections, it can be shown that points A4, B, and
C are imaged on z—y, y—z, and z—z planes which are denoted
by A’, B’, and C’, respectively. Representing the internal edge
length of the corner reflector by I, coordinates of A’, B’, and
C’ are given by (I, I, 0), (0, I, {), and (I, 0, 1), respectively.
It can also be shown that the region z > y in y—z plane is
imaged after the first reflection on the first quadrant of z—z
plane which in turn is imaged (after the second reflection) on
the region = > y in x—y plane. Suppose that the boundary of
the self-illuminating corner reflector between points A and
B’ is specified by a curve denoted by C. Considering the
symmetry properties of the panel geometry, a similar curve
specifies the boundary between points C and B’ (mirror image
with respect to z = y plane). Therefore, characterization of
curve C would completely specify the geometry of the self-
illuminating corner reflector. Assume curve C is represented
by a parametric equation

C(ry =10, f(7), g(7)],

where the following constraints f(0) =0, f(¢) =1, g(0) =1,
and g(t) = [ are imposed to ensure that C would pass through
A and B'.

After two reflections, a point p on C is mapped to p’ on z—y
plane whose coordinates in terms of p are given by

T €10, {]

Tp' = Z2p
Yp' = 2p — Yp- ©6)
The mapping is a linear transformation which is one-to-one

and onto. This transformation maps C(7) to a plane curve
C’(1) on z—y lane given by

C'(r) = lg(r), g(r) = f(7), 0],

As T goes from zero to ¢, C and C’ trace from A to B’ and
A’ to B, respectively. Noting that the mapped curve in z—y

T € [0, .
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lane must be identical to the curve in y—z plane, there is a
parameter t = ¢, corresponding to points ¢ and ¢/, so that
Tq =24
Yo' =Yq- O
Using (7) in (6), it can be shown that

2q =2y,
.Z'q/ = 2'yql .

That is, the similar points ¢ and ¢’ on lines z = 2y in y—2
plane) and x = 2y (in z—y plane) are reached at the same time.
This fact suggests the following procedure for the construction
of C(7). Consider an arbitrary point g on the line z = 2y and
an arbitrary curve Ci(7) = [0, fi(7), g1(7)] between points

‘A and ¢. This curve is mapped in z—y plane to

Ci(7) = g1(1), g1(7) = fu(7), 0],

which spans A’ to ¢'. -Since the curve between B’ and g (Cz)
must be identical to the curve between A’ and ¢'(C{), then

Co(7) = [0, 91(7), 9a2(7) = fu(7)];

The combination of C; and C; uniquely specify the continuous
curve C. It can easily be shown that C; is mapped to

Co(7) = lg1(7), fur), 0, 7 €0, ]

which is identical to C; as expected.
Referring to (1) and (2), it can easily be shown that the
RCS of all self-illuminating corner reflectors at boresight can

be obtained from
2
Omax = 127 - (é) 3

where A is the surface area of a panel. An expression for the
surface area in terms of the parametric equation of C; can be
obtained easily and is given by '

T €10, 1]

T €10, 4.

t N
A=2. / (figr — g1.f1) dr. 9)
0

The geometrical optics expression for RCS given by (8)
is valid when all dimensions of the panel are very large
compared to the wavelength. As the wavelength increases,
contribution from higher order scattering mechanisms, such
as edge diffraction, become comparable to GO. contribution
and, therefore, the accuracy of (8) decreases. Contribution
from edge diffraction is proportional to the edge length and,
therefore, it is desirable to minimize the length of the corner
reflector edges. Moreover, the edge length minimization would
minimize the largest dimension of the reflector. The edge
length of a self-illuminating corner reflector can be obtained
from

T .
p=2- [ {1 ap e =g a o a0

The optimum corner reflector is a self-illuminating corner
reflector whose edge length is minimized. That is, for a
given RCS, the optimum corner reflector has the smallest
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surface area and the shortest edge length. Mathematically
speaking, fi(r) and g¢1(7) must be chosen so that they
would minimized functional (10) subject to constraint ).
This problem resembles the isoperimetric problem in the
variational calculus except for a boundary condition which is
not imposed on f3(7) and g1 (7). Therefore, the conditions for
the fundamental lemma of the calculus of variations [15] are
not met and the solution of the isoperimetric problem cannot
be used here. Since no analytical procedure can be formulated
for the problem at hand, an iterative solution is considered.

First, we confine our search to linear functions and obtain an
optimum polygonal geometry and use that as an initial guess
for the next higher order functions, and so on.

The simplest curve that can be chosen for C; is a straight
line. Under linear transformation, a line segment is mapped
into another line segment and, therefore, the geometry of the
panel becomes a general hexagon. This hexagon can easily
be generated by choosing an arbitrary point ¢ on z = 2y
line, finding its mirror image point with respect to z = y
plane (s), and finally connecting points A4, g, B’, s, and C, as
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shown in Fig. 5(b). The square and pentagonal corner reflec-
tors are two special cases of the hexagonal self-illuminating
corner reflectors. Basically, points ¢, = (0, {/2, 1) and ¢, =
(0, 21/3, 41/3) generate a square and a pentagonal corner
reflector, respectively. Using (9) and (10) for a linear function,
and after a tedious algebraic manipulation, equation of the
optimum line describing C; is found to be

z = 0.2066y + 0.9468 VA (11)

whereas before, A was the surface area of the panel. The edge
length of the optimum hexagonal corner reflector is found to be
1.944 /A whereas the edge length of the square and pentago-
nal corner reflectors are 2v/A and 2.1 /A, respectively. Fig. 8
shows the panel geometry of a square, pentagonal, and the
optimum hexagonal corner reflectors having the same surface
areas. Higher order curves can be obtained by perturbing (11)
which would result in a very complex minimization problem
and is not pursued here. The RCS patterns of the square and
pentagonal corner reflectors, as shown in Figs. 4 and 5, are
very much similar and, therefore, it is expected that the RCS
pattern of the optimum corner reflector be similar to those as
well.

E. Sensitivity to Corner Angle

One last issue of practical importance is the sensitivity of
the corner reflector RCS to deviations of corner angles from
90°. It is quite obvious that any manufacturing error in the
corner angle will reduce the nominal RCS value of a corner
reflector. In fact, from the GO point of view, the scattered
rays after the third reflection are not parallel to the incident ray
and, therefore, the RCS predicted by GO for nonperpendicular
panels is zero. In reality, the scattered wave from each panel
has a finite beamwidth and the PO can be used to predict the
RCS. 1t is reported that the RCS of square corner reflectors
are twice as sensitive to errors in the corner angles than that
of triangular corner reflectors [3]. In this section, using our
GO-PO-PO model, the sensitivity of RCS of triangular and
optimal corner reflectors to errors in corner angles is examined.
There is more than one way of distorting the corner angles.
In this study we modify the corner angles in a symmetrical
fashion, that is, increase or decrease all three corner angles
simultaneously by the same amount. We also keep the interior
edge length of corner reflector constant (same as those of
the undistorted ones). Using the GO-PO-PO method, RCS
of a triangular, a pentagonal, and a square corner reflector at
boresight are computed as a function of the corner angle. Fig. 9
shows the RCS of distorted corner reflectors normalized to that
of undistorted ones (4; = 50A\% or A, = A, = 100A%/3 at
9.5 GHz) as a function of the corner angle. It is shown that the
sensitivity in corner angle errors for all these corner reflectors
is almost on the same order. RCS calculation of metallic
plates based on PO approximation is accurate in the mainlobe
around the specular direction. Therefore, the accuracy of the
GO-PO-PO solution in predicting the RCS of corner reflectors
as a function of comer angle deviations is limited to small
angles (few degrees from 90°).
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III. EXPERIMENTAL RESULTS

In this section, the measured RCS patterns of a triangular, a
pentagonal, and a square corner reflector over a wide range of
incidence angles at 9.5 GHz are presented and compared with
the GO and GO-PO-PO predications. The corner reflectors
are designed to have the same geometrical optics RCS of 15.9
dBsm (A = 332.4 cm?). The GO-PO-PO method predicts
an RCS of 15.9, 14.8, and 14.7 dBsm for the triangular,
square and pentagonal corner reflectors, respectively. Also, the
effect of a perfectly conducting ground plane on the RCS is
demonstrated experimentally. The backscatter measurements
were performed polarimetrically using an HP-8753 network-
analyzer-based scatterometer operating in a linear chirped
mode. A chirp frequency of 9—10 GHz was used which allowed
for a range gating with a spatial resolution of about 15 cm.
The measurements were conducted in a 15-m long anechoic
chamber where the targets were mounted on a styrofoam
pedestal attached to a stepper motor positioner. The effect
of the distortion parameters of the radar system, such as the
channel imbalances and the antenna cross-talk factors, on the
measured scattering matrices were removed using the single
target calibration technique (STCT) [14].

Fig. 2 shows the RCS patterns of the triangular corner
reflector in the azimuth and elevation planes. Comparison of
the measured co-polarized backscatters (o, onn) show an
excellent agreement with the GO and GO-PO-PO prediction.
The measured results indicate a co- to cross-polarized ratio
(0wu/0ony) of better than 35 dB over the range of incidence
angle —10° < o < 410°. Similar agreement was obtained
for the elevation pattern (¢ = 45°). In the elevation plane the
cross-polarized RCS remains very low (0yy/0hy > 35 dB)
over a much wider angular range (—30° < 6 < +30°). The
1-dB RCS beamwidths in the horizontal and elevation planes
for a triangular corner reflector were found to be 24°. Figs. 10
and 11 show the measured and estimated polarimetric RCS
patterns of the square and the pentagonal corner reflectors, in
the horizontal and elevation planes. Similar agreement with
the GO-PO-PO method was obtained in these two cases. The
measured 1-dB RCS beamwidths in the azimuth and elevation
planes for the two self-illuminating corner reflector were found
to be around 16°.

Next, the effect of the ground plane on the RCS of corner
reflectors is examined. First, backscatter cross sections of
these three corner reflectors sitting on a large, flat, perfectly
conducting ground plane, as shown in Fig. 4(b), were mea-
sured. This configuration corresponds to positioning a corner
reflector for a SAR at incidence angle (54.74° — (). Fig. 12
shows the measured RCS of the triangular and pentagonal
corner reflectors on the ground plane corresponding to § =
0°. The measured RCS’s are compared with the theoretical
RCS predictions of isolated corner reflectors (GO-PO-PO).
As mentioned previously the triangular corner reflector can
illuminate the ground plane (or receive the reflected ray
from the ground plane), hence its RCS is increased whereas
the RCS of the self-illuminating reflector is unchanged. For
low SAR incidence angles, the lower panel of the reflectors
are tilted upward. Fig. 13 shows, respectively, the measured
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 and theoretical RCS of the triangular and pentagonal corner
reflectors above the ground plane with 8 = 10°. At boresight,
the triangular corner reflector shows more serious reduction in
RCS while the RCS of the self-illuminating corner reflector
is less affected. The reason for such a drastic change in the
RCS is the backscatter contribution of the wave which is
trapped between the lower panel and the ground plane. This
fact was verified experimentally. By placing an absorber under
the lower panel, the scattering contribution from the ground
plane and the lower panel was suppressed. The RCS of the
triangular corner reflector is affected more because of its larger
panel size. ’

The perfectly conducting ground plane enhances the effect
of the ground plane on the RCS. In practice corner reflectors
are placed above a soil surface. Fig. 14 shows the RCS of the
“triangular corner reflector and the pentagonal corner reflector
above a smooth soil surface with § = 10°. Again, it can be
seen that the RCS of the triangular corner is influenced more
drastically than that of the pentagonal corner reflector in the
presence of the ground plane.

IV. ConNcLUsION

In this paper, the theoretical and experimental aspects of
scattering from comner reflectors are considered. A new class

of self-illuminating corner reflectors is introduced which re-
quires the minimum panel area for a given RCS value. The
self-illuminating corner reflectors are proposed as calibration
targets for imaging radar systems. Also the geometry of
the optimum corner reflector which has the- shortest edge
length among polygonal self-illuminating corner reflectors is
obtained. Prototype triangular, pentagonal, and square corner
reflectors were constructed and measured at X-band. It was
shown that the self-illuminating corner reflectors offer two
major improvements over the widely used triangular corner
reflectors: 1) the uncertainty in the RCS of self-illuminating
corner reflectors, caused by the interaction of the ground plane
with the comer reflector, is significantly smaller than that of
the triangular corner reflectors and 2) for a specified RCS, the
panel area is two-thirds of that of the triangular one. The 1-dB
RCS beamwidths of the pentagonal and square corner reflector
in azimuth and elevation planes were found to be around 16°.

APPENDIX A

In this appendix, analytical expressions for t]gf@ tea of the
lit region on panel #1 of a triangular corner 'refléctor as a
function of azimuth and elevation angles (6, ¢) are given. The
same expressions can be used to find the area of the lit regions
on panels #2 and #3 using the following change of variable
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¢"= tan ( cos 6 ) In this appendix (similar to Appendix A), the area of the lit

region on panel #1 of a square corner reflector is given.

Depending on the incidence angles, the lit area for a triangular >4 1<T. <2 andT, > 1

corner reflector can- obtain from equations shown below in
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APPENDIX C

In this appendix (similar to Appendix A), the area of the
lit region on panel #1 of a pentagonal corner reflector is
given. Separate expressions for A2% and A3? are derived. The
expressions for A?3 are given by

e Te < 05, Te > 2,T. - Ts > 1,Ts — T, > 2 or

5Ty — 21, < 1:
a) AF> = 0. This is an approximation which corre-
sponds to the incidence angles far way from the
boresight.

« ¢ < tan~1(0.5);
a) 2T, - T, < 1

A%“’:zZ.TC-%Tl—S).
by 1 <27, - T, < 2
A%‘"’:lz-{ 2, + Ty — 2
42T, — T, + 2)
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