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Method of Moments Evaluation of the
Two-Dimensional Quasi-Crystalline Approximation

Paul R. Siqueira and Kamal Sarabandi, Senior Member, IEEE

Abstract— The purpose of this paper is to characterize the
accuracy of the quasi-crystalline approximation and other as-
sociated methods of determining effective permittivity for two-
dimensional (2-D) random media. A numerical method based
on the method of moments is used as a gauge for comparison
with the theoretical methods. After deriving the 2-D quasi-
crystalline approximation and presenting the numerical method,
the behavior of the effective permittivity is analyzed for a range
of particle sizes, volume fractions and dielectric losses. From
this analysis, regions of validity for the theoretical methods are
determined. An investigation is also given which explores the
effect of particle arrangement methods on the pair distribution
function which, in turn, is shown to have a significant effect on
the imaginary component of the effective permittivity.

I. INTRODUCTION

N remote sensing, the propagation of electromagnetic fields

through random media is often of concern. We may wish to
characterize the effects of clouds or water droplets along the
line of sight between an airplane and a radar installation, or we
may be interested in using radars to probe the random medium
itself, such as in determining snow depth and particle size. In
all of these problems it is necessary to predict the propaga-
tion constant in the “random” medium. When the observing
wavelength is much larger than a typical dimension of the in-
homogeneities making up the medium, no significant scattering
occurs, and we can generally approximate the medium as being
electrically homogeneous. Methods which utilize this approx-
imation are termed mixing formulas, formulas that determine
the constant of propagation by combining the effect of small-
scale inhomogeneities through a simple algebraic equation.
The most common of these formulas is the Polder-Van Santen
(PVS) mixing formula [1956]. When the observing wavelength
and the inhomogeneities are similar in size, we must take
into account scattering from individual inhomogeneities. This
is typically done using a field approach based on Maxwell’s
equations, the most common of which are the effective field
approximation (EFA—also known as Foldy’s approximation)
for low-density media and the quasi-crystalline approximation
(QCA) or the quasi-crystalline approximation with coherent
potential (QCA-CP) for higher density media.

All of the aforementioned theoretical methods for determin-
ing the effective propagation constant make approximations in

Manuscript received June 2, 1995; revised December 27, 1995. This work
was supported by ARO Grant DAAH04-93-G-0156.

The authors are with the Radiation Laboratory, Electrical Engineering and
Computer Science Department, University of Michigan, Ann Arbor, MI 48109
USA.

Publisher Item Identifier S 0018-926X(96)04751-5.

their formulation to make the theory tractable. As the theory
becomes more complex, it becomes more difficult to test the
region of validity of these approximations and to test the
effects of the approximation employed in the method. The
validity of these models may be checked in one of three ways:
1) theoretically, 2) experimentally, or 3) numerically.

The field approaches may be checked via theoretical meth-
ods by taking the limiting case of the approach and comparing
it to more standard, well-accepted, theoretical results. Common
limiting cases use either zero or unity volume fraction, or
examine the problem in the low- or high-frequency limits.
While these limiting cases perform the important task of giving
a shortcut to provide a sanity check for a more complicated
theory, they may often zero-out important terms in the field-
approach theory. Thus, instead of testing the new theory, we
find ourselves simply checking that the coefficients for zero-
or first-order terms have been derived correctly.

The second method of checking the theories is to back
them up with experiments. This can be the true test of
any theory because it is the measurement in the end for
which the theory is to be applied. Experiments, however,
must be designed carefully so as to minimize experimental
errors and to accurately characterize physical parameters about
the random medium. For the application of the QCA and
QCA-CP it is necessary to determine the pair distribution
function of particle positions, a function that is very difficult
to measure experimentally. Alternatively, the pair distribution
function can be specified beforehand and particle positions in
a controlled experiment can be determined by a computer, as
was done by Mandt er al. [4]. Finally, an experiment may
be difficult and time consuming to perform over a controlled
range of variables (such as volume fraction and particle size).
For this reason, while an experiment may be used to test
validity of a theory for a particular application, it is much more
difficult to make generalizations based on this experiment.

The third method of analyzing theoretical field approaches
of determining the constant of propagation is to do so nu-
merically. This method removes the need for theoretical sim-
plification or the problem of experimental uncertainty by
solving for the electromagnetic fields directly. Numerical
methods may be difficult to implement due to computational
limitations or our inability to model the problem accurately.
This problem has been partially addressed using a T-matrix
approach in three dimensions [3], [12]. In this work, -the
incoherent scattered field is calculated and related to the
extinction coefficient by a diffuse boundary approximation
[Sarabandi and Siqueira, in review], the result of which is

0018-926X/96$05.00 © 1996 IEEE



1068

compared to the theoretical calculations of QCA and QCA-
CP. Good agreement is shown for Rayleigh sized (ka = 0.2)
lossless particles with volume fractions extending up to 25%,
but this application is limited by the numerical solution’s
reliance on incoherent field calculations. Furthermore, the
incoherent approach described in these papers supplies only
the extinction coefficient and does not address the issue
of determining both the real and imaginary components of
complex permittivity. Thus, it has been necessary to develop
a method which addresses the effective permittivity problem
fully.

In answer to this need, a method has been developed for
determining the effective permittivity of a random medium
using a coherent approach [Sarabandi and Siqueira, in review].
In two dimensions, this approach has been tested and verified
over a wide range of volume fractions (ranging from 0-80%),
varying discontinuity size (ka = 0.2 to ka = 0.5) and
absorption loss. Given the flexibility and generality of the
coherent numerical method, it may be used as a tool to explore
two-dimensional (2-D) versions of the field theories and to
provide guidance for the three-dimensional (3-D) problem.

This paper addresses the 2-D quasi-crystalline approxima-
tion and its dependence on the pair distribution function.
Section II of this paper presents a derivation of 2-D QCA
based on the 3-D version found in Tsang er al. [13] and
gives the related results of 2-D EFA. Section III discusses
different methods of obtaining particle arrangements and their
associated pair distribution function. In the fourth section, we
review the coherent method for numerically determining the
effective permittivity of a 2-D random medium, and present 2-
D theoretical results for the Polder-Van Santen mixing formula.
In the fifth section of this paper, we compare the results of our
numerical analysis with that of QCA.

II. TWO-DIMENSIONAL QUASI-CRYSTALLINE
APPROXIMATION

The 2-D derivation of QCA follows closely the work
of Tsang et al. [13], where we begin with the multiple
scattering equation for plane-wave incidence using the T-
matrix approach. Consider N cylinders, whose centers are
denoted by 7; (I = 1,---, N), randomly distributed over an
area A. Expanding the fields in terms of cylindrical basis
functions, it can be shown that [13, p. 454]

N
V‘V(l) — Z g(km)ri\(ﬂw(ﬂ + eikliléinc 1))

j=1

L
where W is the vector of exciting field coefficients for the Ith
particle, a;n. is the vector of coefficients for the incident field,
o(k777;) is the translation matrix from a coordinate system
centered on the jth particle to one centered on the [th particle,

and TW) is the transition matrix which translates the exciting
field of the jth particle into the scattered field from the jth
particle. The basis functions for the field expansions are the
cylindrical functions [11, ¢, = HS" (k7s)ei™® and Rg, =
Jn(k7<)e™®, where 7 = larger(7,#') and 7. = lesser(7, )
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when 7 is the point of observation and 7 is the source point.
The incident field

q’inc(’r‘) - Z ainc:Rg d}n(kf) (2)
n=0

may represent either £, (TM polarization) or H, (TE polar-
ization). By determining the expected value of (1) with respect
to the /th particle, we arrive at

N
E[w] =>" B[ (krm)TO By [wD]] + e May,.
=
3
Under the conditions that the number of particles are large and
particle density is not very high, we make the approximation
fundamental to QCA that E;[w\W] =~ E;[w()] = w(7;)
whereby, (3) becomes

w(m) = (V - 1) / 5 (kr DO () (r; | 71)dr
A
+ e“_“t'flémc. 4)

If we normalize the conditional probability p(7; | 7;) to the
area, A, we have the pair distribution function, g(7) such that
p(7; | 71) = +g(7; | ) which has the asymptotic property of
approaching unity when 7; — 7; is large. For a large system
of particles, the fraction % is approximately the particle
density, ng. Letting A be the positive half-space z; > 0 [13,
n. 491]

w(7) =no/ g(7; | 7)o (k7)) T w (7, ) dr;
z; >0
+ R g 5)

To evaluate the integral in (5) we use a trial solution for
w(7;) = age'™™ such that it expresses a field traveling in
a medium with effective constant of propagation, . After
substituting the trial solution in (5) and making a simple
coordinate transform (7;77 = 7; — 7; = 7), the integral in
(5) becomes

w ||

= no@inzl / g(f);(kf)@zmcdf%éE
JS

+ / lg(7) - I]E(kf)emdf> Tap
s
— gt (i + Tz)’i‘éE (6)

where S is the positive half-space excluding the area occupied

by the [th particle. To evaluate il and iz, we use the Hankel
function addition theorem [1]

G| = B e )

where 7;7; is the translation vector between coordinate sys-
tems, ¢;; is the angle that the vector makes with the z-axis,
and m and n denote the harmonics in the jth and the Ith
coordinate systems, respectively.
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Fig. 1. Domain of integration. Shown are the three surfaces (Sg4, Se, and
Soo) and their inward pointing surface normals for the integral in (18).

To solve the integral I3, we note that y, = HY (kp)e~ir?
is a solution to the wave equation, as is e***. By applying
Green’s second identity to the combination of the two wave

equations consisting of these solutions, I; becomes a contour
integral

0,

7o ik KT el
= mL [6 Vyp - ypVe ] -dC (8)

(where p = n — m), as shown in Fig. 1. il may be written in
terms of the three components of the surface

= —-ng =
i = K2 — k2 (Ie

where inward pointing normals were used for convenience. By

F14+ 1) ©)

employing the far-field condition, io = 0, we are left with

an integration over the exclusion disc, ie and the half space
surface, I4. Explicitly, the integral I, may be written as

],

where

= [

Substituting (11) into (10) and evaluating at p = b we have

! a
= kpH,M (kp)Y, pH,S”(kp)a—pn (10)

—ipd giKkp cos Pdp = 27d? Jp(kp). an

(L], = 2mi? [kbH, " (kb)J,(rb) — kbHSD (kb)J) (rb)].
_ (12)
The surface integral I; over the planer surface z = —z; is
T KT d . IKT
(Ta],,, = € 5-Xp — iKe™ X, (13)
where
Xp = / Hél)(kp)cﬁipqﬁdy = :geik‘a“’l. (14)

Substituting (14) into (13) and evaluating at x = —z; gives

(L)), = 2ieith—mm [1 + %] (1s)
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For the second integral in (6), we have
, lo(r) = HD (kp)e™#Pe™™=dr - (16)

z>—my

where we note that I, is dependent on the propagation
constant x, the pair distribution function g(7), the particle
diameter, and the particle location x;. If we notice, however,
that [g(7) — 1] is nearly zero for |7| greater than a few particle
diameters, we can treat the integration as if it were over an

unbounded space, thus ignoring the boundary at z = —x;
(and particles near that boundary)
T = no/ / ‘ - 1 H(l)
—T
kp)e—-zpd) 1npcos¢>p dpdgb (17)

Furthermore, if we assume that the pair distribution function
is axially symmetric, (17) may be written as a single integral
which can be calculated numerically

[Tal,,, =200 [ lo() = 11 ko) Ty (so)odp. 19)

Depending on the particular problem, the appropriate form of
Iz given by (16), (17), or (18) may be used.

Referring back to (6), we can multiply 1, and 12 by eire
to get a new expression

5 = [S16 + 526 Tap 19
where the explicit dependence of (6) on the constant of
propagation (k or x) has been made clear. In (19) we have

Sim T+ T 0)
and
S, = 2mgk~ @1
k—k

Using (19) in (5), the multiple scattering equation may be

written
ape = [516““”’ + Egeikm’} Tag + e a;,.. (22)

If we balance the exponential terms of e**® and e®~®, we
then have two independent equations

(23)
24

0 = 55Tap + fine

ap =s;Tag

which comprise the Ewald-Oseen extinction theorem (23)
and the Lorentz—Lorenz law (24). To find the constant of
propagation, we solve (24) by noticing that the determinant
of the matrix

Q=[s:T-1]
must be equal to zero for the nontrivial solution. Thus, the

solution for QCA rests in minimizing the determinant of a
matrix whose elements are related to s; and the single particle

(25)
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Fig. 2. Simulation of a classical fluid for a volume fraction of 30%. Shown are results from Monte-Carlo numerical simulations and the PY equation

in two dimensions solved by Lado.

transition matrix, 'i‘ Only the transition matrix in (25) is
dependent on the field polarization. For a circularly symmetric
cylinder, the T-matrix is diagonal and is given by [8]

™ —kiTm(ka) ) (kia) + kJ), (ka) T (ko)

Tk HSY (ka)J! (kia) — KHAD (ka) T (ksa)

om (26)

for the TM polarization and
~—k,/€1Jm<ka).]7/n(kla) + k‘/E()J;n(ka) Jm(kza) 5
kife; HY (ka)J!, (kia) — k/eo H\D (ka) T (ksa)
27

TE _

mm

for TE polarization. In (26) and (27), k; and ¢; indicate the
propagation constant and permittivity of the inclusions. The
factor 6,, is equal to unity for m = 0 and two for m > 1.

Thus, to implement QCA, the matrix (:2 is constructed from
either ~of (26) or (27) from above and (20), s1 which employs

(12), I., and (18), I,. The effective constant of propagation
of the random medium is

Keff = m}jn[det QJ. (28)
The user defined variables in (28) are: 1) the pair distribution
function, ¢(7), 2) the particle density, ng, 3) the particle
diameter, b, and 4) the maximum order of the cylindrical wave
expansion, pmay such that p € {0, pmax]. From a practical point
of view, the pair distribution function is the most difficult of
these variables to determine.

As a basis of comparison, we may use the single scattering
field approach of the effective field approximation (EFA) also
known as Foldy’s approximation. In two dimensions, the

effective permittivity for circular inclusions determined by
EFA is

TTM or TE

Ceff — 1-— o5 mm (29)

m

III. PAIR DISTRIBUTION FUNCTION

In the previous section, we developed the theory for the 2-D
quasi-crystalline approximation. After developing the theory it
was noted that the pair distribution function was the unknown
which was most difficult to characterize. In reality the pair
may be estimated in one of three ways: 1) experimentally,
2) theoretically, or 3) numerically. Experimental estimation of

the pair is extremely difficult due to the fact that it entails
a detailed study of the particle structure for each random
medium being considered. A theoretical approach may be used
to model the physical distribution of particles in a medium
but we may be limited to only a certain class of media which
may be described by the mathematical model. Alternatively,
a numerical approach may be used to directly model the
arrangements of particles via Monte Carlo simulations based
on a computer model the particle deposition. The numerical
model, has the advantage of increased flexibility in addressing
a variety of physical methods of particle deposition and
interaction.

We present here a set of four distinct pair distribution
functions, each has been given a simple label (in parentheses)
that will be used for reference in the remainder of the paper.

Hole Correction (HC): The hole correction formula is the
simplest of the theoretical pair distribution functions and can
be used to model an ideal gas consisting of monosized particles

of diameter b
_JO p<d

HC has the effect of eliminating the I, term in (20) and, thus,
it is possible to use QCA-HC as a measure to gauge the effect
of the pair distribution function on the QCA formulation.
Classical Fluid Medium (PY): Of the theoretical pair dis-
tribution functions, the most common is given by Percus
and Yevick [1958] which can be used to model particle
positions in a classical fluid of hard spheres. 3-D closed-form
solutions of PY can be found in Wertheim [1963] and have
been shown to agree closely with numerical simulations of
particle arrangements {2]. In two dimensions, the PY equations
have been solved numerically by Lado [1968] (Fig. 2). The
assumptions of hard-sphere PY are 1) there are no external
forces acting on the particles and 2) the potential energy
between particles is infinite when they overlap and zero when
their centers are separated by a distance greater than one
particle diameter. The first assumption allows the system
energy to be directly related to the particle arrangement and
the second assumption creates a basis from which this energy
may be calculated. These assumptions are the physical parallel
of placing particles randomly within a confining volume until
a given volume fraction or particle density has been reached.

(30)
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Fig. 3.
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Particle arrangement simulation using particle extraction from a near perfect lattice for a volume fraction of 30%. Shown is the average pair distribution

function over all angles and the pair distribution function from the vertical and horizontal directions which accentuate the azimuthal asymmetry. Because the
basic structure of the lattice remains unchanged for different volume fractions, the pair distribution function does not change with particle number density.
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Fig. 4. Simulation of a 2-D snow-type medium for a volume fraction of 30%. Shown is the average pair distribution function over all angles and the pair
distribution function from the vertical and horizontal directions which accentuate the azimuthal asymmetry.

In performing 2-D numerical simulations, it was found
that volume fractions from zero to approximately 48% were
attainable without resorting to arrangement initialization tech-
niques (such as given by Metropolis et al. [5]). Initialization
techniques allow high particle densities to be reached by
initializing particle positions to a totally packed crystalline
array. Individual realizations are performed by perturbing
particles from their original positions by a random vector.
It should be noted that by resorting to this method, we can
no longer guarantee an axially symmetric pair distribution
function and for this reason, only volume fractions below 45%
are generally used for the analysis component of this paper.
It may be, however, that it is possible to determine a mean
pair distribution function which calculates probable particle
locations based on radial distance only and ignores the angular
dependence by averaging over all angles. While this violates
the assumption made in determining (18), we can examine the
effects of the approximation here.

Particle Extraction Method (Extract): Particles are ar-
ranged together in a near crystalline fashion using a packing
algorithm (PA) described in Siqueira et al. [10]. Particles are
removed one by one without disturbing the lattice until the
desired volume fraction is achieved (Fig. 3). Because of the
effect of gravity, the pair distribution function is not axially
symmetric. The pair distribution function is shown in the
vertical direction (o), the horizontal direction (x ), and for the
azimuthal average (solid line).

Snow-Type Medium (Snow): This 2-D simulation utilizes
PA to simulate the process of falling snow (Fig. 4). In this
simulation, deposited particles are made to stick near their ini-
tial starting points after which the volume fraction is adjusted
using the extraction method. Particles are not allowed to find
their state of minimum potential energy. This stacking process
is reflected in the pair distribution function which illustrates
an ordered array in the vertical direction (o) and a disordered
one in the horizontal direction (x).

In this section, we have discussed four different methods of
arranging particles in a volume or area. Each of the different
methods were presented to illustrate the variety of pair distri-
bution functions that can be achieved by altering the method
of particle deposition in the simulations. The presentation
accentuated the fact that the pair distribution functions are
not necessarily axially symmetric nor similar, effects that will
be further explored in the paper. The resulting pair distribution
functions can be used directly in the QCA theory developed in
the previous section to analyze the sensitivity of QCA to the
pair distribution function g(7) or we can extend our evaluation
one step farther by using the particle position simulations to
directly determine the effective constant of propagations for a
random medium.

IV. INDEPENDENT DETERMINATION OF €

This section provides a brief review of a numerical method
(NUM) of determining the effective permittivity of a 2-D
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Fig. 5. Model for numerical determining €. for a random medium.
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TE Polarization

0 0.5 1
Volume Fraction

Fig. 6. Effective permittivity e.g versus volume fraction for a TM-polarized field incident upon a random medium. Shown are results from the numerical
method for different particle sizes along with those obtained by the Polder-Van Santen mixing formula [9]. The volume fraction was adjusted by

particle extraction.

random medium [9]. Given a method of arranging particles in a
volume, it is possible to directly determine e.q using a numer-
ical solution to Maxwell’s equations. In the paper describing
this method, it has been shown that the technique agrees well
with the low-frequency mixing formula of Polder and Van
Santen [1956] when dielectric losses are more significant than
scattering losses. This method has also been demonstrated to
show appropriate behavior in the low-frequency region as well
as for both sparse and very dense concentrations of particles.

The numerical method compares the average scattered field
from a random collection of particles confined within an
imaginary boundary with that of a homogeneous dielectric
body whose shape is the same as the imaginary boundary
(Fig. 5). By varying the permittivity of the homogeneous body,
we may minimize the difference between the scattered fields
of the two bodies. One such example is given in Fig. 6 for
both the TM and TE polarizations for three different particle
sizes using the particle extraction method of adjusting volume
fraction. Shown also in the figures is the 2-D PVS mixing
formula given by

(D)
(32)

et = €n + fl&s — €n)
2

€ + €p

et = €n + fei — €n)

for the TM and TE polarizations, respectively. It can be
seen that for the small particle sizes that there is excellent
agreement between the two methods at low-volume fractions.
Furthermore, the increased losses shown for larger particles
is consistent with physical expectations. What remains to be
done is to include results from the 2-D QCA theory developed
in Section II and to compare those results with the results from

this section for the four different methods of generating particle
arrangements (HC, PY, extract, and snow).

V. EVALUATION OF THE TWO-DIMENSIONAL
QUASI-CRYSTALLINE APPROXIMATION

In this section, the behavior of QCA as a function of particle
size, polarization, volume fraction, scattering/dielectric losses
and particle arrangement method is explored. To begin, we
present three sets of six plots (Figs. 7-9) which demonstrate
the theoretical and numerical methods dependence on particle
size, volume fraction, polarization, and dielectric loss. Fig. 7
(TM polarization) and Fig. 8 (TE polarization) demonstrate
real and imaginary e.g performance for particles with a modest
amount of dielectric loss (¢, = 3.6 +i0.1), while Fig. 9
gives the imaginary component of e.¢ for particles with
low dielectric loss (¢; = 3.6 +170.01) for both TM and TE
polarizations. The real component of e.g is not included in
Fig. 9 because it was found that the behavior of Re(e.q) did
not change appreciably from the examples given in Figs. 7 and
8. In all three figures, a classical fluid (PY) was used to model
particle positions for both QCA and the numerical method.
The particle diameters used in each of the demonstrations
range from \;/10(kd = 0.33), 2X;/10 (kd = 0.67) to 3X,/10
(kd = 1.0) as the plots go from left to right (k is the
wavenumber of the included particles).

Referring to Figs. 7-9, the following observations are in
order.

Re(eest) TM Polarization: The real part of the effective
permittivity is practically the same for the theoretical methods
of PVS, EFA, QCA-PY, QCA-HC, and NUM-PY for all
volume fractions, particle size, and both values of particle
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Fig. 8.
(see caption of Fig. 7 for details).

dielectric loss [Fig. 7(a)—(c)]. The performance of EFA and
PVS degrades as particle size increases, an effect of an increase
in scattering by the larger particles. Both QCA-PY and QCA-
HC track the behavior of the numerical method well in this
aspect because of the inclusion of multiple scattering terms
in the QCA formulation. Note that PVS may be used as a

O ®

Comparison between five methods (QCA-PY, QCA-HC, EFA, PVS and NUM-PY) of determining effective permittivity for a TE-polarized field

reference as particle size varies because particle size is, in
general, not a factor in mixing formulas. Therefore, we may
notice, via PVS, that QCA-PY, QCA-HC, and NUM-PY agree
that phase velocity decreases with increasing particle size. The
similarities between the results of Re(e.g) for both low-loss
and moderate-loss inclusions indicate that dielectric loss in the
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Fig. 9. Comparison between five methods (QCA-PY, QCA-HC, EFA, PVS, and NUM-PY) of determining the effective permittivity for TM- and TE-polarized

fields. The permittivity of the included particles is €; = 3.6 +40.01. The rea
when ¢; = 3.6 4140.1. See the caption in Fig. 7 for details.

particles does not appreciably effect the phase velocity. This
may also highlight the effect that only near particle interactions
effect the real part of e.g.

Im(eesr), TM Polarization: The imaginary part of the ef-
fective permittivity displays a more complex behavior than
the real part as a function of volume fraction and particle
size. The theoretical and numerical methods agree well at low-
volume fractions with the exception of small particle sizes for
moderately lossy inclusions [Fig. 7(d)]. In this respect, while
it is known in the low-frequency limit that all the methods
agree, the losses indicated by NUM-PY are significantly larger
than results given by the theoretical methods of QCA-HC and
QCA-PY. We believe that these differences may be caused
by an overestimation of absorption losses with respect to
the multiple scattering losses for the methods of QCA-PY
and QCA-HC. That is, numerically, we detect more multiple
scattering than QCA does for moderately lossy particles with
sizes that are relatively small with respect to wavelength.

We may also note that QCA-PY does an excellent job
of tracking the losses predicted by NUM-PY for the larger
particle sizes shown in Fig. 7(e) and (f). At a volume fraction
of approximately 20% the methods of QCA-PY and QCA-HC
diverge significantly with a trend reversal seen in QCA-PY
due to the contribution from the pair distribution function. In
both cases, for the larger particles we also see a significant
difference between EFA, QCA-PY, QCA-HC, NUM-PY, and
that of PVS, an effect that is expected because of the scattering
losses incurred by the larger particles are not accounted for by
the mixing formula.

The change in Im(e.s) is considerably more noticeable
between Fig. 7(d)—(f) and Fig. 9(a)-(c). Proportional to the
PVS mixing formula, the losses are significantly larger for

1 component (not shown) is essentially unchanged from the previous example

€ = 3.6 +40.01 than for ¢; = 3.6 +0.1, indicating that
multiple scattering is a much more dominant factor in the low
loss case. The multiple scattering however does not translate
into greater losses overall as we can see that the numerical
method predicts lower losses, in general, than the losses
predicted for particles with higher dielectric loss. What this
means is that although the field in the ¢; = 3.6 +¢0.01 case
interacts with more particles, the field does not suffer enough
additional absorption losses due to the multiple interactions
to make up for the absorption losses incurred with the lossier
€; = 3.6 +10.1 particles. We also make a final note that QCA
does a comparably well job at predicting Im(e.) in this case,
as it did in the previous TM case when ¢; — 3.6 +40.1.

Re(eer) TE Polarization: The real parts of co.g for all
methods and particle sizes agree well at the low-volume
fractions but begin to deviate at a volume fraction of about
20% [Fig. 8(a)—(c)]. This effect is expected because of the
necessary nonlinear contribution from electrical dipoles to
the total field for the TE polarization. The trends of EFA,
QCA-PY, and QCA-HC all follow that of the PVS model
relatively well despite an even poorer performance for the
theoretical methods in the prediction of scattering losses
(discussed below). We note that NUM displays the physically
expected trend of e.g approaching e; as volume fraction
increases toward unity.

Im(eeqr) TE Polarization: We may first note that all meth-
ods agree well, with respect to losses, at very low-volume
fractions irrespective of particle size. In the 0%—20% volume
fraction range it is evident that QCA-PY and QCA-HC reflect
the correct trend of increased scattering loss for increased
particle size. However, for this polarization, the dominant term
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in (20) is I. (the particle exclusion integral) and not I, (the
integral dependent on the pair - distribution function). Thus,
Im(eqq) becomes unphysically negative as can be seen through
the effect of QCA-PY following QCA-HC into the nonphysical
domain of negative Im(eqg). QCA-PY and QCA-HC do not
adequately describe the multiple scattering losses at fractional
volumes greater than 5% and, in fact, the scattering losses
under-predicted by QCA-PY and QCA-HC significantly fall
below the lower limit given by the PVS mixing formula.

In Fig. 9(d)—(f) we illustrate the behavior of Im(e.g) for
low-loss particles whose permittivity is ¢; = 3.6 +:0.01.
Without the additional support of dielectric losses, QCA gives
realistic values for Im(e.g) for only the smallest of volume
fractions. As with the TM case, the losses predicted by NUM-
PY are larger in proportion to the losses predicted by PVS but
are smaller overall than the losses shown in Fig. 8(d)—(f).

It may be disturbing to see the poor performance of QCA
in its ability to predict losses for TE-polarized fields (Figs. 8
and 9). To answer questions related to this effect, it is useful
to examine the low frequency behavior of QCA (or more
specifically QCA-HC) for both the TM and TE polarizations
(Fig. 10). Only the hole correction formula with QCA is
used in this demonstration to examine the effect of the
exclusion integral, 1., term in (20). The results of QCA-
HC are compared with the PVS mixing formula (which is
essentially the low-frequency limit of EFA) so that a single
curve can be used as a reference for different particle sizes.
The real component of e.g for both polarizations follows that
of PVS very closely for all particle sizes and, therefore, is
not shown. Only for particle diameters of A;/20 and larger
does Im(eeqr) deviate significantly from PVS for the two
polarizations, but the deviation for the TM polarization is much
milder than that shown for a TE-polarized field in which e
actually becomes negative. We attribute these differences to
the higher order singularity found in the Green’s function for a
TE polarized field (i.e., dipole interactions instead of monopole
interactions as is the case for TM polarization). The negative
trend seen for the TE-polarized field is much more difficult

for the I, term in (20) to overcome and it is for this reason
that we see the degraded performance of the TE-polarization
results shown in Figs. 8 and 9.

Given the extensive analysis presented so far with respect
to the performance of QCA, EFA, PVS, and NUM, it is
convenient to present the results in a more compact form.
To this end, we present Fig. 11 which graphically illustrates
the differences between the three theoretical method’s (QCA,
EFA, and PVS) and the numerical method’s (NUM) estimation
of €. in terms of validity regions. The differences used to
determine the validity regions were computed in terms of
errors with respect to the numerical method given by

th — NUM
o - theory

NOM x 100%.

(33)

The numerical method is used as a reference because there
are no current exact formulations to determine c.g¢ in the
regions under consideration and the numerical method is the
only method presented thus far that displays the expected
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Fig. 10. Performance of QCA-HC at very low frequencies. Shown is
Im(eqy) for particles with diameter A;/800, A;/80, A;/20, and A;/10
for both TM and TE polarizations (¢; = 3.6 +:0.1).

behavior of e.g as a function of volume fraction, particle
size, and polarization. The validity regions were drawn to
enclose areas where differences between the numerical and
theoretical methods were less than 20%. The validity regions
shown are based on a grid of numerical simulations that varied
the volume fraction from 5%-45% in 5% steps and varied
particle sizes from kd = 0.33 to kd = 1.0 in steps of one third.
It should be noted that because NUM is used as a reference,
errors in NUM will manifest themselves as a systematic offset
in the presented validity regions of QCA, EFA, and PVS.
Additional regions of validity have also been drawn for the
limiting cases of low-frequency and low-fractional volume
where all of the different methods employed are known to
converge. Because of computational limitations, it was not
possible to test the high-frequency limits of the theoretical
methods.

Fig. 11 illustrates well the behavior of the theoretical meth-
ods as a function of volume fraction, particle size and po-
larization. QCA-PY for the TM polarization does well with
the exception of kd = 0.33-sized particles (a region which
was discussed earlier) and the region of volume fractions
extending between 30% and 40%. In this latter region, the
reduced performance of QCA is most likely due to an en-
hanced component of multiple scattering with respect to the
other volume fractions. This behavior has been observed both
numerically and experimentally [6].

As a final analysis of QCA, we compare the numerical
method’s evaluation of e.g with that of QCA for the array
of different particle arrangement methods presented earlier
(Fig. 12). To simplify the treatment, only the angular averaged
pair distribution functions were used. At a volume fraction of
30% and ¢; = 3.6 + 0.01 we expect multiple scattering to play
an important role in determining e.g. It can be noticed that the
exact form of the pair distribution function has little effect on
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the performance of QCA or NUM for Re(eq) for both the
TM and TE polarizations, with the possible exception of the
snow simulation.

More interesting however is the behavior of Im(e.g) to
the different methods of particle arrangement. By examining
Figs. 2—4, it can be seen that the PY simulation yields a loose
collection of scatterers whereas the extraction technique gen-
erally yields sets of compact groups. The snow-type medium
simulation falls somewhere between these two extremes. The
enhancement of scattering losses when particles are clumped
together is reflected in the results given by NUM; Im(eeg) is
least for PY and greatest for the extraction method. Physically,
this makes sense, the grouping together of particles acts
as a coherent collection of scatterers whose cross section
is greater than what it would be for all of the scatterers
acting independently. The implications of this result argues
strongly against the use of the Percus—Yevick pair distribution

function (which models a classic fluid) in the determination of
extinction for granular media deposited under the influence of
gravity. Snow, sand, and soils are good examples of the type
of media which fall into this category.

VI. CONCLUSION

In this paper, we have made a complete analysis of the
subject of determining effective permittivity for dense random
media in two dimensions. The popular method of the quasi-
crystalline approximation was derived and associated results
for the effective field approximation and the mixing formula
for both TM and TE polarizations were presented. Because
QCA depends on the form of pair distribution function used,
a variety of different particle arrangement methods were
presented. We then discussed a numerical method based on
the method of moments which may also be used to determine
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effective permittivity and has been shown to follow expected
trends from low to high density and from low to high fre-
quency. The behavior of the methods and the general behavior
of effective permittivity were then studied for a variety of
different situations, from which it was possible to determine
regions of validity for the theoretical methods based on the
presented numerical method. Finally, a comparison was made
between the effective permittivities found by the numerical
method and the quasi-crystalline approximation as a function
of particle arrangement method. From this analysis, we have
made the following conclusions.

1) The real component of effective permittivity is essen-
tially the same for all methods up to a value of kd ~
1. The TM polarization, in this respect, is valid for all
volume fractions and the TE polarization is valid up to
a volume fraction of 20%.

2) Given 20% error bounds, the losses predicted by QCA
for the TM polarization agree quite well with the numer-
ical method [Fig. 11(a) and (b)]. It is important however
to use the correct form of pair distribution function
[Fig. 12(a)].

3) The losses predicted by QCA for the TE polarization
agree very poorly with the numerical method [Fig. 11(c)
and (d)]. At volume fractions greater than 15% it is
not uncommon for Im(ee) to become unphysically
negative. We believe this poor behavior is due to the
strong singularity found in the Green’s function for this
polarization.

4) The effect of decreasing absorption losses of the in-
clusions has the expected effect of increasing multiple
scattering but this does not translate into higher total
losses.

5) The pair distribution function (or similarly, the particle
arrangement method) does play an important role in
determining extinction (Fig. 12). It is believed that this
is due to the effect of two neighboring particles acting
together as a single larger particle. Thus, it is inappro-
priate to use the Percus—Yevick pair distribution when
analyzing a random medium whose particle locations do
not resemble a classical fluid.

The work presented in the paper opens up a number of
avenues for future work. In two dimensions, the effect of
the angular asymmetry in the pair distribution function on
QCA can be explored by carrying out the 2-D integration
in (17). It would also be informative to analyze the effect of
varying Re(e;) on e and to determine an empirical method of
determining the effective permittivity based on a combination
of QCA and generalized results found by NUM. The most
important and useful future work, however, will be to bring
the presented analysis and methods into three dimensions. In
this sense, the study presented here offers an important set
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of methods and background that can be used to conduct that
investigation.
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