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A Scattering Model for Thin Dielectric Cylinders of
Arbitrary Cross Section and Electrical Length

James M. Stiles, Member, IEEE, and Kamal Sarabandi, Senior Member, IEEE

Abstract—A scattering solution for long, thin, dielectric cylin-
ders of arbitrary cross section and electrical length is pre-
sented. The infinite-cylinder scattering formulation is shown to
be an asymptotic solution for the finite-cylinder case, regardless
of cylinder electrical length or cross section. The generalized
Rayleigh-Gans (GRG) approximation for circular cylinders is
shown to be a specific case of this general formulation, and
therefore, the assertions of GRG are explicitly proven. A moment-
method (MM) solution for thin circular cylinders is likewise
presented and is used to examine and quantify the asymptotic
errors associated with this selution.

I. INTRODUCTION

N activities such as radar remote sensing, accurate scat-

tering models of elemental constituents are essential in
constructing robust scattering models of random media such
as vegetation. This challenge is often compounded by the
arbitrary and complex nature of these constituent elements. For
example, a type of element often encountered are long, thin
dielectric cylinders of arbitrary cross section, including grasses
and needle structures. In the microwave region, the radius of
these cylinders are usually very small compared to the incident
wavelength, whereas the electrical length may take any value.
This generality in structure precludes the implementation of
specific scattering solutions. The arbitrary value of electrical
length k¢ eliminates asymptotic solutions such as Rayleigh
(k¢ <« 1) or physical optics (k£ > 1), and the generally
noncanonical cross sections leave inapplicable solutions for
circular and elliptical structures. Thus, a scattering solution
is required which accurately comprehends these arbitrary
particles. .

One relevant analysis is that of Sarabandi and Senior [1],
who explicitly derived the scattering solution of an electri-
cally thin, but infinitely long, dielectric cylinder of arbitrary
cross section. This work provides a general solution for the
internal electric fields and demonstrates that the far-field
scattering can be expressed in terms of a dipole. moment
per unit length. Using the high-frequency approximation, the
scattering from a finite, but electrically long, (k¢ > 1)
cylinder can be approximated by truncating the solution of
the equivalent infinite length case. Although this solution
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is correct for arbitrary cross sections, its validity can ap-
parently be justified only for cylinders of-large electrical
length £4.

A solution which is often employed to model circular
cylinders of smaller £/ is the generalized Rayleigh~Gans ap-
proximation (GRG) introduced by Schiffer and Thielheim [2].
In this approximation, terms of the Borne (or Rayleigh—Gans)
approximation are modified by the Rayleigh solution of a long,
thin, spheroidal particle. The GRG approximation is said to
be valid for electrically small, circular dielectric cylinders,
provided that their normalized length £/q is very large. No
constraint is explicitly placed on electrical length k¢. The
GRG approximation was presented by first hypothesizing the
solution and then successfully comparing the results to the
asymptotic solutions known for both the Tong (k¢ < 1) and
short (k£ > 1) wavelength cases. On this basis, it was inferred
that GRG validity is independent of electrical length. Whereas
this presentation provides evidence as to the accuracy of the
GRG approximation, it does not prove its general validity;
the scattering from objects with dimensions on the order of a
wavelength is often quite different from either the short or long
wavelength cases. In addition, the analysis does not address
the issue of cylinder cross section, only circular cylinders were
considered. )

In this paper, a scattering solution for the general case
of an electrically-thin dielectric cylinder of arbitrary cross
section and electrical length will be presented. The solution
will be explicitly shown to be the unique asymptotic solution
to the scattering problem as the electrical radius ka converges
to zero. A moment-method (MM) solution will likewise be
implemented to quantify the convergence of this asymptotic
solution.

II. AN ANALYSIS OF THIN CYLINDER SCATTERING

Consider an infinite length dielectric cylinder lying along the
z-axis. This cylinder is illuminated by a uniform plane wave
E'(F) = ¢ ek 7 where é- k' = 0,8 = el ¢ +elj+elz, and
k' is the propagation direction vector, ki =-sinfBcos¢ T +
sin Bsin ¢ §+ cos G 2. As the electrical radius of the cylinder
approaches zero (ka — 0), the total electric field in the interior
of the cylinder is given by Sarabandi and Senior [1] as

E(F) = (—€}, V&,(p) — ¢}, VBy(p) + €} 2)e™o 0P (1)
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where ®(p) and ®5(p) are electrostatic potentials specified
as the solution to the following integral equations [1]

&:1(p)+x+b = /V’é( ") - Viln[p—7'| dy

B3(7) +y+ by = /V' #)-Vilnlp— 7| ).

@

The constants b; and b, are arbitrary, and A defines the area of
the cylinder cross section. Using the physical optics approxi-
mation, this solution can likewise be applied to finite cylinders,
provided its electrical length k£ is sufficiently large. From
this formulation, the scattering solution for a thin cylinder of
circular cross section can be determined

2e? 2et
E(F):( ‘a_py ¥

~ iz 1ko cos Bz 3
I €T+1y+622>6 N €))

This solution, derived from the infinite cylinder formulation,
is identical to that provided by the GRG approximation. Thus,
for a circular cylinder the two solutions resulting from each
formulation are in agreement. However, their general validity
regions are in conflict. The GRG approximation claims that the
above expression is valid for all electrical lengths k¢, whereas
the infinite cylinder approximation has only a high-frequency
justification of £¢ > 1. The requirement for the normalized
cylinder length (£/a > 1) is implied in the infinite cylinder
approximation (since ka < 1, then k¢/ka > 1), and explicitly
required by GRG.

If the assertions of the GRG approximation are correct,
it suggests that the validity limits placed on the truncated
infinite cylinder solution are too restrictive. That is, in addition
to the high-frequency limit (k¢ >> 1), the infinite-cylinder
solution could likewise be applied to finite cylinders with
electrical lengths in the resonance (k! =~ 1) and Rayleigh
(kl < 1) regions. However, given the heuristic nature of
the GRG approximation, this is strictly conjecture, particularly
with regard to noncircular cross sections. Thus, we seek to
determine under what conditions (1) and (2) define a valid
scattering solution for thin, finite dielectric cylinders. Are they
valid only for electrically-long cylinders, or does the validity

extend to cylinders of other k£? If so, is this true only for.

circular cylinders, or is the solution generally valid for all
cross sections?

If a formulation E(7) is a valid electromagnetic solution,
then it will uniquely satisfy the integral equation which
describes the scattering problem, E(7) = E'(7) + E*(7),
where the scattered field E*(T) is given as

B(F) = (12 + VY] /V (er = DEF )0l — 7)) d (&)

and go(|7—7|) is the free space Green’s function. For a given
type of scatterer (e.g., thin cylinders), a function E(7) may in
general satisfy the integral equation, or perhaps satisfy only
under specific conditions, such as a circular cross section or

infinite electrical length. Therefore, to determine the validity
of the truncated infinite-cylinder solution, (1) and (2) will be
inserted into the integral equation for a thin finite cylinder and
evaluated. The conditions under which the integral equation
is satisfied will then be determined, thus defining the validity
regions of this solution.

A. Transverse Components

Since (1) is a superposition of three terms, each proportional
to a single component of the incident electric field vector
(ez,ey, ¢'), each term must individually satisfy the integral

equation in order for the total solution to be valid. We first
examine the transverse term proportional to e}, given as

E(F) = —e, V@, (p)eko s pz, 5

Inserting (1) into (4), evaluating the integrals and making the
substitution kr = koF, the scattered field E*(T) is given as

L (6"‘—

/ e
ke [kr—&r|

. r— 1 . J—
eiﬁe—l/ i - Vi@ (Ep [ko)
% kC

/ ezkz' cos ﬂezlﬁ—ﬁ;ll
: . —
ke |kr—kr|?

(er—1>/ 7'+ Via®1 (kp' ko)
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The electrical length k£ is finite but otherwise arbitrary, kc
defines the outer contour of the arbitrary cylinder cross section,
and kA similarly defines cross section area. However, since
the inserted solution (1) is valid in the limit as electrical
radius ka approaches zero, this constraint must likewise be
placed on the above equation. Therefore, we seek to eval-
uate the above integral in the limit as ke approaches zero
(hmka—>0 Es(k’l“/k:o))

Each of the three terms in (6) contain an explicit integral
of k2', but none can be directly evaluated. However, since
the integration is over a finite region k¢, the exponential term
can be approximated in the region ~k£/2 <kz < k{/2 as its
Taylor series expansion

B (ko) = / Vi1 (57 /o)

1k’ cosﬁez|kr iy |

dkz' dk?

(kr — kr') dkz' dkd

k2’ cos @ez\kr—kﬂ‘ | — ; ’
(kr — kr') dkz' dkc'.

©)

(fr — &' |3

(1kr — &7 | + k2’ cos B)™
n!

)

o N
ez|kr—kr’|+1kz' cosf3 § :

n=0

where N is arbitrarily large. Inserting this series into the
k2’ integrals, the order of integration and summation can be
interchanged, since both N and k/ are finite. The integration of
each term can now be directly evaluated, resulting in a series
whose coefficients are in terms of [Ep—&p |. For example, the
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kz' integral from the first term of (6) can be approximated as

J.

el Fr=Fr' | +1kz’ cos §
(kr —&r'|.
al (o] er — F/| +1kz' cos B)" dkz’
B Z_:_o ke n!kr — & |
~ e B (Rifucy (k1/2 — k2)]
"+ Eifsco(kl/2 + k2)] — 2(y + 47 /2)
~2lusin Blkp —%7'|/2]) + O(fko — p) ()
where 7y is Euler’s constant, ¢; = 1+éos B,co = 1—cos B and

Ei[z] is the exponential integral function defined as Eifz] =
— [ (e7t/t) dt. Discarding the higher order elements of

O(lkp — E/—JII), (8) provides an accurate approximation to the
integral, providing 1 > ka > |kp — E’| Fig. 1 graphically
displays this, showing both the approximation and a numerical
solution to a representative integral. .

Similar approximations can be determined for the remaining
two kz’ integrals. Inserting these into (6), the scattered field
expression can now be evaluated in the limit as electrical
radius ka approaches zero. The first two terms of (6) vanish,
but the third terms remains nonzero, and the scattered field
reduces to

kliglo E*(kr/ko)

— *6; (67’ - 1) ezkzcosﬁ/ Y
47 ke

2(kp —Fp) .
V@1 (kg /k)lkp_ = dkc'
i (er—1)

_ _pt N T zkozcosﬂv VP, (5
Cx o € t/A t 1(P)
Vilnlp -7 dy.

dkz’

&)

The task remaining is to therefore evaluate the integral over
dA. Recall that the potential ®1(p) is not arbitrary, but is
the unique solution to the integral (2). Notice the integral
appearing in both (2) and (9) are identical, and from (2) is
given as

/V@

This condition is now enforced by replacing the integral in (9)
with equation (10). The scattered field reduces to
E*(7) = el Vi(®1(p) + 5 + by )ehozcosP
. _ei(vt@l (ﬁ) + f;)@lkﬂz cos B

Vilnlp-7|dy = (@1(P) + = +b1).

10)

2
(er — 1)

an
and the original integral equation is therefore

E(r) = E'(T) + E°*(T)
. —61 6zkozcosﬂA

=—€,Vi01(7)

i (Vt@‘l(ﬁ) + .’i‘)ezkoz cos 3

= E(7). (12)

Insertion of the second transverse term —e? V<I>2( ) leads to
an identical evaluation and result. Thus, the transverse terms
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Fig. 1. The real part of (8), both the exact numerical evaluation and the

analytic approximation (ka = 0.1, k¢ = 2m, ¢, = 10):

of (1) and (2) asymptotically satisfy the integral equation as
ka approaches zero.

B. Axial Solution

The remaining component of (1) is the axial, z-directed term
given as

E(T) _ 261 elk}o Cos,@z

(13)

Again, inserting this equation into (4), the scattered electric
field can be expressed as

E (kr/ ko)
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i zcos,B(er—l)/ /klﬂ
k2A J—ke/2
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The integrals involving kz’ are the same as those encountered
for the transverse case, therefore, their approximations can
again be implemented in (14)." As in the previous section,
the limit for each term of (14) is determined as ka —
0. However, we find that for the axial case, every term-
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vanishes, not a single nonzero term remains. The scattered field
is, therefore, approximately zero, and the integral equation
reduces to E(7) = E(7). Since both E(7) and E'(7) are
equal to e et*o <0382 3 this equation is satisfied.

Thus, it has been explicitly demonstrated that the formula-
tion of (1) and (2) obtained from the infinite cylinder solution,
asymptotically satisfy the scattering-integral equation for a
finite-dielectric cylinder as ka — 0. It should be noted that
nowhere in the preceding analysis was any specific condition
or constraint required to satisfy the integral equation. No
restriction or assumption was placed on cross section or
electrical length. Thus, the infinite cylinder formulation is a
valid scattering solution for electrically thin, finite-dielectric
cylinders of all cross sections and electrical lengths. However,
the solution is only asymptotically valid as the electrical radius
approaches zero. Since k[ is a fixed constant, as ka — O,
the ratio ka/kl = a/l likewise approaches zero. Therefore,
ka must not only be numerically small (ka < 1), but small
compared to the electrical length, as well ka < k£. To satisfy
this last constraint, the normalized length ¢/a is required to
be large.

Finally, since this formulation is independent of kf, it
is valid for Rayleigh cylinders where k¢ < 1. Thus, the
electrostatic solutions ®(7), derived for infinite cylinders, are
likewise the asymptotic solutions for a Rayleigh cylinder as
£/a — co. The GRG approximation which considers circular
cylinders is, therefore, a specific case of the more general
approximation defined by (1) and (2). As such, the validity
regions of the GRG approximation, being identical to the
requirements stated above (ke < 1,ka < kf for all kf),
have been explicitly proven by the analysis of this section.

III. ASYMPTOTIC ERROR EVALUATION

As this solution is asymptotic, it will exhibit a finite error
which becomes diminishingly small as ke — 0. To evaluate
the asymptotic error of (1) and (2), a moment-method (MM)
solution was constructed to evaluate the scattering from a thin,
circular, dielectric cylinder. It was assumed that the electric
field in the cylinder is dependent on axial position z only;
that is, the fields are constant with respect to the transverse
dimension p. The interior field is therefore described as

2f(2) ., 214()

ET)=e, o 1)96 + ey o+ 1)

g+ f.(2)2 (15)
where the expressions f,(z), fy(2), and f,(z) are unknown
complex scalar functions. Comparing the above equation with
(3), the values of f,(z)(w € {z,y,z}) predicted by the
asymptotic scattering solution are f,,(z) = e**0 %82 5o that
|fw(z)| = 1.0 for all ko, 3, and z.

The ability of the MM solution to accurately reflect the
exact scattering solution depends on the general validity of
(15). To test this accuracy, the moment method code was
applied to a circular Rayleigh cylinder (k¢ >> 1) at a variety
of dielectrics and normalized lengths £/a. The results were
used to determine the polarizability tensor elements for each
cylinder, and were then compared to the known values for
circular cylinders [5]. These results are presented in Fig. 2.
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Fig. 2. (a) The axial and (b) transverse polarizability tensor elements of a
circular cylinder, both the exact values and those determined using the MM
model.

The MM solution matches the Rayleigh values well over
all dielectrics and normalized lengths £/a, thus providing
evidence as to the accuracy of (15).

The MM solution was first used to evaluate the scattering
from a thin cylinder with a large normalized length {/a =
200. The magnitude of f(z) was determined at each point z
along the cylinder for various electrical lengths. The results
are given by Fig. 3, and show that the asymptotic solution
(|fw(2)] = 1.0) is valid at all points along the cylinder except
for small regions near the cylinder ends. As expected, this is
true regardless of electrical length k¢. The error at the cylinder
ends is likewise independent of k¢, but is more pronounced
for the axial component f,(z).

The analysis was then reversed, fixing the electrical length
k¢ = w/2 and evaluating the MM solution at various nor-
malized lengths £/a. In contrast to k£, the scattering solution
exhibits a strong dependence as a function of ¢/a (Fig. 4).
The result is a confirmation of the requirement that the
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Fig. 3. (a) The axial and (b) transverse magnitude of the internal

electric field in a thin circular cylinder for varicus electrical lengths
(£/a = 200,er = 5.0, = ©/2).

normalized length £/a be large (i.e., ka < kl) to ensure
a valid approximation. As the normalized length becomes
smaller, the MM solution greatly diverges from the asymptotic
approximation of |f(z)| = 1. The error at the cylinder end
expands as £/a is reduced, occupying an increasingly greater
portion of total cylinder length. Eventually, the formulation of
(1) and (2) no longer provide an accurate approximation to
the actual electric field E(7). Conversely, as £/a increases,
the error region will become diminishingly small.

To further examine its performance, the accuracy of the
solution is examined as a function of both incidence angle and
dielectric constant. Fig. 5 displays the MM solution calculated
for an oblique incidence angle (# = =/8). Although the
solution f(z) is dependent on incidence angle 3, almost no
sensitivity to this parameter was detected in regard to approx-
imation accuracy; the error regions at the ends of the cylinder
remain constant regardless of incidence angle. Conversely,
accuracy is greatly influenced by dielectric constant ¢,. Fig. 6
displays the MM solution for various dielectric constants.
It is quite evident that as the value of ¢, is increased, so
too does the region of significant error. This sensitivity to
dielectric constant is observed almost entirely for the axial
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Fig. 4. (a) The axial and (b) transverse magnitude of the internal
electric field in a thin circular cylinder for various normalized lengths
(k¢ = 7/2,er = 5.0,8 = 7/2).
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Fig. 5. The axial magnitude of the internal electric field in a thin
circular cylinder for an oblique incidence angle (B = 22.5). Both
the MM model and the infinite cylinder approximation are plotted
(kf = m,4/a = 200,¢, = 5.0).

component f,{z); the transverse components display only
minor sensitivity to €.



STILES AND SARABANDI: SCATTERING MODEL FOR THIN DIELECTRIC CYLINDERS 265

1.00
0.80

0.60 fi:

If @)1

040 §

020 b _ 4

0.00 1 i ¢ {
-0.5 -0.3 -0.1 0.1 0.3 0.5

normalized position (z/1)

Fig. 6. The axial magnitude of the internal electric field in a thin circular
cylinder for various dielectric values (k¢ = 7/2,¢/a = 200, 3 = 7 /2).

Using the MM solution as a standard, the validity limits of
the asymptotic solution can be inferred. From the numerical
~ results, we conclude that the accuracy of (1) and (2) are
dependent mainly on normalized length £/a and dielectric ..
The MM solution likewise demonstrates that for all conditions
the axial component 2 exhibits significantly greater error than
the transverse component. Therefore, the axial solution will be
used to define limits on £/a and .

The far-field scattering is a function of the internal field
E(7) and the free-space Green’s function integrated over
the cylinder length. Therefore, the metric selected to define
accuracy is proportional to the average magnitude of the
internal electric field, defined by integrating |f,(z)| over
cylinder length £

1 1
m=g [ ip@ldcy [ BE]
/2 /2

(16)
The asymptotic solution yields a value of m = 1.0 for all
cases. As the solution breaks down, the actual value of m
(as determined from the MM code) will decrease from this
value. Placing an arbitrary error limit of 5% (m > 0.95), we
determine from the numeric solution the following criteria for
the validity of (1) and (2).

¢/a>201/]e].

In addition to the above requirement, the electrical radius ka
must likewise be small. The upper bound on ka is determined
by the error of the Rayleigh approximation, a topic which has
been addressed previously and, therefore, will not be examined
here [4, pp. 92-101].

a7

IV. FAR-FIELD SCATTERING FROM THIN CYLINDERS

The far-field scattering from a long, thin, dielectric cylinder
can be determined by using the familiar far-field scattering
cquation [4, p. 55]

E* = —RK2k° x k* x II(F) (18)

where the Hertz potential II°(7) in the far field is given as

kot _ PO
HE(F) - _6 - (€r47r 1) /‘/E(F/)eﬁzkok . 19)

Since the cylinder is electrically thin, the phase kernel
exp(ukok® - 7) is approximated as exp(skSz'). Inserting (1)
and integrating over the cross section A, the electric Hertz
potential can be succinctly written as

ezkgr

() =

/P &e—zko(zz“"i—cosﬂ)z’ d2 (20)
dwr J,
where P is defined as the polarizability tensor per unit length,
whose elements can be determined from ®(p) using the
formulation of Sarabandi and Senior [1].

Finally, integrating over the cylinder length £, the electric
Hertz vector potential is given as

ezko'r
LP -
A7y @

= l_f;_é(és -2 —cosf).

sinU

(7)) = where

@n

Therefore, the far-field scattering for a long, thin, dielectric
cylinder of arbitrary cross section and electrical length is
expressed as

ezkg'r‘

K2R x b x 4P a]}S“(l]U.

E =-— (22)

drr

V. CONCLUSION

This paper has addressed the scattering from long,
electrically-thin dielectric cylinders of arbitrary electrical
length and cross section. As such, it provides a solution
which eliminates the additional constraints required by
methods which might otherwise be used on these thin cylinder
structures. For example, the Rayleigh approximation is limited
to small k¢ [5], physical optics to large k¢ [1], the Borne
approximation to small ¢, [3], and generalized Rayleigh—Gans
to circular cross sections [2].

Equations (1) and (2) are the scattering solution for an
infinite cylinder (kl = o) as ka — 0. Yet, this paper has
demonstrated that they also satisfy the integral equation defin-
ing the scattering from a finite-length cylinder with arbitrary
kf, again as ka approaches zero. By definition, (1) and (2) are
therefore the asymptotic solution to this scattering problem as
ka — 0. The MM solution was constructed merely to evaluate
the asymptotic error associated with nonzero ka. Section II
alone provides the general proof of this paper’s hypothesis.
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