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A Novel Bistatic Scattering Matrix Measurement
Technique Using a Monostatic Radar
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Abstract—In this paper, we present a new technique for mea-
suring the bistatic scattering matrix of point targets using a
monostatic radar. In this technique, the complexity of the tra-
ditional bistatic measurement setup and difficulties in retaining
the phase coherence between the transmitter and the receiver are
circamvented completely. The bistatic measurement is performed
using a wideband, polarimetric, monostatic radar in conjunction
with a rotatable ground plane positioned behind the target.
Assuming that the distance between the target and the ground
plane is larger than the radar resolution, the desired bistatic
response (image contribution) can be isolated from the unwanted
backscatter. Noting that the radar operates in the backscatter
mode and using the reciprocity theorem, it is shown that the
measured cross-polarized responses (o, and op,) cannot be
determined uniquely. To rectify this problem, additional inde-
pendent measurements are required. Additional equations for
characterizing the cross-polarized components are obtained by
placing an anisotropic lossless slab over the perfectly conduct-
ing flat surface. The validity and accuracy of the new bistatic
measurement technique is demonstrated by measuring a number
of point targets with known theoretical bistatic responses. Also,
a new approach for determining the effective dielectric constant
of dense random media based on the new bistatic measurement
technique is developed.

I. INTRODUCTION

RADITIONALLY, polarimetric bistatic radar cross sec-

tion (RCS) measurements of point targets have been
conducted using two disjoint dual-polarized antennas [1]. In
this method, the transmitter and the target are often kept fixed
and the receiver is moved on the surface of a sphere, having
the target at its center, to measure the bistatic RCS at different
bistatic angles (see Fig. 1). The difficulties associated with the
traditional bistatic measurement technique can be categorized
into three groups: 1) A complicated experimental setup is
required in which the scattered wave from the supporting
structure must be minimized, 2) phase coherence between
the transmitter and the receiver must be maintained as the
microwave cables move with the receiving antenna, and 3) a
complicated calibration procedure is needed to keep track of
the orientation of the antennas with respect to the target.

The measurement technique considered in this paper has a
significant impact on the modeling of electromagnetic scat-
tering from random media. Existing theoretical models for
random media may be categorized into two modeling ap-
proaches: 1) Continuous, such as the Born approximation,
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Fig. 1. Experimental sctupl for the traditional bistatic scattering matrix
measurement technique.
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Fig. 2. Experimental setup for the new bistatic scattering matrix measure-
ment technique.

and 2) discrete, such as radiative transfer. In either of these
two approaches, the characterization of both the effective
propagation constant of the mean field and the incoherent
scattered power in the random medium are of great impor-
tance. For example, for tenuous random media, where the
radiative transfer theory has been widely used, knowledge of
the bistatic scattering characteristics of individual scatterers
comprising the medium are essential for estimating the ex-
tinction and phase function of that medium directly. Also,
bistatic scattering measurements can be used to verify the
proposed theoretical models for individual scatterers [2]-[3].
For dense random media—analytical models, such as the
effective field approximation (EFA) and the quasicrystalline
approximation with coherent potential (QCA-CP) [4]—are
widely used to compute the effective propagation constant.

0018-926X/96$05.00 © 1996 IEEE



42 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 44, NO. 1, JANUARY 1996

Ground Plane

Axis of rotation

¢

(N

Ground Plane

ENE A

V Monostatic Radar

(@)
Fig. 3.

Image Wave

Multiple
Scattering

s/

. Target

s(Y.Y,) multiple scattering ?
Tlncide at Wave ‘Absorber
S04 M) = BYLY)
®) (©)

Scattering configuration in the prescence of a ground plane, the new experimental setup illustrating (a) top view of the measurement setup, (b)

the interactions of the image waves with the target and its image, and (c) application of a radar absorber to minimize the effect of multiple: scattering

between the target and its image.

Accurate measurements of the effective propagation constant
(K) can be used for establishing the range of validity of
the existing analytical models. Direct measurements can also
be used in the developement of empirical models for the
effective propagation constant. Motivated by the need for an
experimental procedure for the measurement of the effective
propagation constant of dense random media, the development
of a convenient technique for measuring the bistatic scattering
matrix of point targets is considered. Basically, the bistatic
scattering from a cluster of constituent particles of a random
medium confined in a spherical or cylindrical volume will
be measured. The coherent and incoherent components of
the scattered fields can be separated using many independent
measurements of the cluster for given incident and bistatic
directions. Independent radar measurements are obtained by
rotating the cluster of particles around its axis of symmetry,
perpendicular to the direction of propagation, and/or random-
izing the particles within the confining volume. The coherent
scattered wave (mean field) is proportional to the effective
dielectric constant (or equivalently, the effective propagation
constant) of the medium, and the incoherent scattered power
is proportional to the phase function of the random medium.
In the following section, a new approach for measuring the
bistatic scattering matrix of point targets is described. In this
technique, a polarimetric monostatic radar in conjunction with
a ground plane are used for the bistatic measurements and it is
shown that the new technique circumvents the drawbacks of
the traditional measurement technique. In Section III, a system
distortion model and an appropriate calibration procedure
are developed for the proposed measurement setup. To fully
characterize the bistatic scattering matrix, that is, to resolve
the cross-polarized components, radar measurements must be
repeated after loading the ground plane with an anisotropic
layer. Two methods for designing the anisotropic dielectric
layer required for loading the ground plane are discussed in

Section IV. In Section V, experimental data for canonical
targets are presented to verify the accuracy of the new bistatic
scattering matrix measurement technique. Also, the effective
dielectric constant of a dense random medium - (sand: with
a volume fraction of 0.6) is estimated to demonstrate the
feasibility of the proposed technique in characterizing the
fundamental scattering properties of random media.

II. BISTATIC SCATTERING MEASUREMENT TECHNIQUE

In this technique, a wideband, polarimetric, monostatic
radar, in conjunction with a rotatable perfectly: conducting
plane, is used to measure the bistatic scattering matrix of
a target. The simplified bistatic RCS measurement setup is
shown in Fig 2. In this measurement configuration, the bistatic
measurement can be performed in one scattering plane at a
time. To change the scattering plane, the orientation of the
target, with respect to the radar system, can be adjusted appro-
priately. In this method, the role of the ground plane is to excite
the image wave (see Fig. 3) whose interactions with the target
and its image produce the desired bistatic term. Primarily, there
are three major scattering components ‘that contribute to the
signal received by the radar. However, their responses arrive at
the antenna at different times. The first component is due to the
direct backscatter from the target which arrives at the antenna
with a delay time of 2r; /¢, where ¢ is the speed of light [see
Fig. 3(a)]. The second component, which in turn is comprised
of two subcomponents, is due to the bistatic scattering from the
target being illuminated by the image wave [the long-dotted
line in Fig. 3(b)] and its complementary which is the bistatic
scattering from the image target illuminated by the image wave
[the short-dotted line in Fig. 3(b)]. These two subcomponents
arrive at the antenna with a delay time of (r1 + ro + r3)/c
[see Fig. 3(a)]. The third component is due to the reflected
backscattering of the image wave from the target through the
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Fig. 4. A time-domain response of a target in the presence of a ground
plane (a) the three major components of the measured signal and (b) the
gated bistatic component.

ground plane, which arrives at the antenna with a delay time
of 2(r2 +73)/c. There are many higher order scattering terms
which are the result of multiple scattering between the target
and its image. The contribution of these terms to the overall
backscattered signal is negligible if the distance between the
target and the ground plane is much larger than the wavelength
[5]. Experimentally, the effect of these terms can be reduced
even further by placing an absorber on the ground plane
between the target and its image, as illustrated in Fig. 3(c).
By choosing the distance between the target and the ground
plane to be larger than the radar resolution, all components
of the measured backscattered signal can be resolved and
collected separately. For example, the magnitude of the total
backscattered response from a sphere, measured in an anechoic
chamber using a network analyzer-based monostatic radar,
is plotted as a function of time and shown in Fig. 4(a). To
eliminate the undesired backscatter from the edges of the
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Fig. 5. The two complementary subcomponents of the bistatic response.

ground plane, the backscatter response of the ground plane
alone (without the target) was subtracted coherently from the
backscatter response of the ground plane and the target. The
first peak in Fig. 4(a) corresponds to the direct backscatter
component (DB), while the second peak corresponds to the
total bistatic component (BIS) (the two complementary sub-
components), and the third peak corresponds to the indirect
backscatter component (IB). Since the three components of the
backscatter response arrive at the antenna at different times,
the BIS component can be isolated from the others using the
range gating capability of the network analyzer. The gated
bistatic response is shown in Fig. 4(b).

The second component of the scattered signal contains the
desired bistatic scattering response of the target. By defining a
set of orthogonal directions (7, fL) in a plane perpendicular to
the direction of propagation, the bistatic scattered signal Eb
can be related to the incident signal through the total measured
bistatic scattering matrix, i.e.,

6—zkoro —

Sy E; (1)

Ey = -
where k, is the free space propagation constant and §b is
the total measured bistatic scattering matrix. The total bistatic
scattering matrix is a function of the desired scattering matrices
of the two complementary subcomponents, S(¥;,T5) and
S(¥,,¥), and the reflectivity matrix of the ground plane
(T'(m — ¥y)), as shown in Fig. 5. Here, ¥1and ¥, are the
bistatic angles defining the incident and scattering directions.
In the most general case corresponding to an anisotropic
surface, I'(m — ¥;) is a 2 x 2 matrix whose entries are
the reflection coefficients of the ground plane. Since the
two subcomponents (bistatic terms) arrive at the same time,
they cannot be resolved in the time domain and the target’s
bistatic scattering matrices g(llll, ¥s) and S(¥,,¥;) cannot
be uniquely determined. The reciprocity theorem mandates that

=T = =T
S(\Ifh‘lfg) =5 (KIJQ,\Ifl) and F(ﬂ' - \1/1) =T (7‘( - \Ifl)
Thus, the total measured bistatic scattering matrix given by

5, = e_;km’ (T(r - U1)5(Wy, Uy)
+ [T — 01)5(W,, )| T) @

is symmetric. This poses a difficulty in characterizing the
desired bistatic scattering matrix § in that there are only
three independent equations for the four unknown elements
of the bistatic scattering matrix S. To resolve this ambiguity,
an additional measurement is needed in which the target’s
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orientation and position remain the same, while the reflective
property of the ground plane is changed. This is achieved
by placing an anisotropic lossless layer over the perfectly
conducting plane.

In summary, the measurement procedure involves three
steps, starting with positioning the point target in front of
the ground plane at an appropriate distance. Then the ground
plane is rotated to the desired bistatic angle and the second
component of the backscattered signal is measured. Finally,
the second step is repeated for the same bistatic angles after
attaching the anisotropic slab to the ground plane. Care must be
taken so that the position of the ground plane is not disturbed.

III. CALIBRATION TECHNIQUE

Characterization "of measurement accuracy and precision
are the critical elements of any meaningful measurement
procedure. Imperfections in the radar system components,
such as antenna polarization contamination (coupling between
the orthogonal polarization ports of the antenna) and channel
imbalances (variations in magnitude and phase of the system
transfer function for different ports of the receiver), can lead
to serious errors in the measured scattering matrix. The role
of -a calibration procedure is then to remove the systematic
errors from the measured target response. In this section,
the imperfections of the monostatic radar system is modeled
mathematically and a procedure for determining the system
distortion parameters is outlined. Basically, a metallic sphere is
used as the external calibration target and the radar distortions
are obtained using the mathematical model.

A. System Distortion Model

Depending on the distance between the target and the
radar, the direction of the transmitted and received rays, with
respect to the antenna’s boresight, can be quite different.
The complementary bistatic terms propagate along directions
defined by angles 61 and 62,,.as shown in Fig. 3(a). These rays
experience different transfer functions since the systematic
errors vary over the mainlobe of the antenna. Thus, it is
important to first, characterize the systematic errors of the radar
antenna over its mainlobe and construct a system distortion
model; and second, remove these errors from the measured
bistatic response using an appropriate calibration procedure.
The proposed system distortion model is an extension of the
model developed for single-antenna polarimetric radars [6]. In
this paper [6], it is shown that the measured scattering matrix
(M) of a point target in terms of the actual scattering matrix
and the radar distortions can be obtained from
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where §, is an angle representing

with respect to the antenna. In (3), R, T,C, and D are 2 x 2
matrices representing the radar distortions and are given by
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Here, the parameters (7,,7%) and (R, Rp) are the channel
imbalances due to the active components in the transmit and
receive branches of the radar, respectively, ¢(6,) is the antenna
cross-talk factor, and (d1(6,),d2(0,)) are the channel imbal-
ances of the antenna system. It should be noted that the channel
imbalance parameters (T, 7%) and (R,, Ry,) are independent
of the target angle #,. As mentioned before, the measured
bistatic scattering matrix is comprised of two complementary
components that arrive at the radar simultaneously and thus
are inseparable in the time domain. These components are
designated by the solid and dotted lines in Fig. 3(a). The
system distortion model described in (3) is modified to include
the possible differences in the radar distortion parameters for
the transmit and receive rays. Thus, the distortion model for the
second component of the measured radar response is given by

e—tk(ritrotra) — _ _T T
= g ra) FD(0)C02)S (41, 42)D 0(0_1)

-D(61) + D(6:)C(0:1)T 5(41,42)C(62)D(62)}T
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The first term -in the bracket corresponds to the bistatic
scattering of the target when illuminated by the image wave
and the second term corresponds to the bistatic scattering
of the image target when illuminated by the image wave. It
should be noted that in the derivation of (4), the reciprocity
theorem has been used to express the bistatic scattering matrix
of the target when illuminated by the image wave S(1z, 1) in
terms of the scattering matrix of the target when illuminated

= = =T

by the incident wave S(t1,%2)(8(¥2,%1) = S (¢1,12)).
Once the radar distortion parameters are determined, the
elements of the bistatic scattering matrix S can be computed
by inverting (4). These unknown terms can be determined by
measuring the polarimetric response of a metallic sphere in
the backscattering configuration over the entire mainlobe of
the antenna (no ground plane). By applying the single target
calibration technique (STCT) [6], the cross-talk factors and
channel imbalances can be determined from the polarimetric

—
sphere measurements (M ) and are given by

.t ms, ms
c(fo) =t—=(1~v1—a), a=-—2htv
\/a mzswmhh
/ Tvd 90 =7, 1krs mfw/‘go
RU 1( ) Ts€ 1 +02(90)
R, T d L) =7 tkrg mih/‘go
VIR 2(00) = e [T 5

S
/25 - o
hly My,
In (5), the superscript s refers to the measured sphere response,
S, 18 the theoretical backscattering amplitude of the metallic
sphere, and 6, can be either 61 or 5. It should be noted that
the antenna’s distortion parameters (c,d;, and dp) are time
invariant and therefore, the elaborate backscatter measurement
of the metallic sphere over the entire mainlobe of the antenna
need to be performed only once. However, elements of R and
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T which are influenced by the active elements of the radar
must be characterized often. This can be done by measuring
a sphere positioned at the boresight of the antenna noting that
the elements of B and T are independent of the target angle 6.
Once the distortion parameters at boresight are determined, the
expressions given by (5) must be modified by the following
factors in order to update the distortion parameters over the

entire mainlobe
_WETGE) _ (RTS0)
(\/RhTh d2(0°)) ’

o] = s
(VR,T, d1(0°))
R.T, | [R.T
R,T! RuT,
where the primed parameters (R),, R;,, T, ,T},) correspond to
the last sphere measurement at boresight.
For the sake of completeness, expressions for 71, g, 73, 01,

65, and ¥ in terms of the physical setup parameters 7, 3, dz,
and ¢, as defined in Fig. 3(a), are provided below

r1 =\/£+r2 — 2dsrcos 3,
d
gy = sin™* [r—t sinﬂ],

1

(ro+713) = \/(237)2 + 13 — 4zry cos (7 — O — ¢)

. 2% .
f; = —0y +sin! [m sin (7 — 02 — qS)]
0= sin_l ['(;:_17‘—3) sin (7'(' - 62 — QS)il
oz
2= s

\1’=7T—-(01+92)—29

where z = dycos(¢ — B). Refering to Fig. 3(a), r is the
distance between the antenna and the axis of rotation of the

" ground plane, ¢ denotes the rotation angle of the ground plane,
and 8 and d; specify the target’s position relative to the ground
plane. It is noted that the bistatic angle (V) and the direction
of propagation of the bistatic response (f1) can be computed
in terms of the rotation angle of the ground plane (¢).

B. Calibration Procedure

Following simple algabraic manipulations, (4) can be cast
into a matrix equation of the following form

=b

gslll

(6)
where
—5 = [mvv,mhh7mvh7 mhv]Taf = [vay Sh}w Svh, Shv]T

and A is a 4 x 4 matrix whose elements are a function of
the radar distortion parameters and the elements of T. Having
determined the elements of A from the external calibration,
it seems, the elements of the bistatic scattering matrix can be
obtained by inverting (6). However, the last two rows of (6) are
linearly dependent and in effect only three linearly indepen-
dent equations are available. Therefore, one of the dependent

equations in (6) must be replaced by another independent
equation acquired by repeating the experiment after loading
the ground plane with an anisotropic dielectric layer. It should
be noted that the second bistatic measurement (with loaded
ground plane) is not necessary for targets that do not depolarize
(Son = Sho = 0), such as spheres and vertical and horizontal
cylinders. In this case, the linear system of equations in (6)
reduces to two independent equations for the two unknowns
(Syy, Sni). After some algabraic manipulations, it can be
shown that

Zov — c(01)c(02)zhh
Ty(1 = ¢2(61)c?(62))
_zpn — c(01)c(02) 200
T Th(1 = c2(01)c%(02))

S’uv =

Shh @)

where
eth(r +T2+r3)7»1 (,,»2 + 7'3)
ORT, di(01) du(02) "
=Ty Svv + Tre(f1)c(82)Shn
Zhh = et trs)ey (ry +13)
TR Ty da(01) da(02)
=T,Snn + Tuc(01)c(82)Svo-

Byv =

®

IV. DESIGN OF AN ANISOTROPIC SURFACE

To acquire an additional .independent measurement to re-
solve the ambiguity in the measurement of the cross-polarized
components, use of an anisotropic dielectric slab to modify
the reflection matrix I" is required. Since the magnitude of
the second component of the received signal (the bistatic
term) is proportional to the reflection coefficient, the mag-
nitude of the reflection coefficient of the surface must be
chosen as high as possible to retain the system sensitivity.
Therefore, an anisotropic surface with reflection coefficients
having magnitude of unity, similar to those of the perfectly
conducting plane, and phases that are very different from those
of the ground plane are of interest. Two types of surfaces are
considered in this paper to accomplish this task: 1) Loading the
ground plane by a periodic corrugated dielectric slab, and 2)
loading the ground plane by dielectric loaded periodic strips.
If lossless dielectric materials are used, the magnitude of the
reflection coefficients will be unity.

A. Periodic Corrugated Dielectric Slab

The proposed one-dimensional periodic surface is shown in
Fig. 6(a). It has been demonstrated that a periodic corrugated
dielectric layer can be simulated by an anisotropic dielectric
layer of equal thickness when the period is small compared
to the wavelength [7]. The tensor elements of the equivalent
anisotropic layer are given in terms of the permittivity (e),
the period of surface corrugation (L), and the width of the
corrugation (d). In the low frequency regime, where L<0.2),
the tensor elements are given by

d
ey:€Z=1+(e—1)f
€

T - L ©

€x
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Fig. 7. Measured backscattered response from a sphere over the entire mainlobe of the monostatic radar.

The reflection coefficients of the stratified loaded ground
plane can easily be computed [7]. The higher order Bragg
modes decay exponentially away from the surface in the
low-frequency regime (L < 0.5A), thus, the target must be
placed far enough from the surface to avoid coupling with
the higher order Bragg modes. By appropriately choosing the
permittivity of the dielectric, the width, period, and depth of
the corrugated layer, the desired phase-difference between the
reflection coefficients can be achieved. For example, the phases
of the reflection coefficients as functions of the incidence angle
when € = 2.5,d = 0.1\, L = 0.2A,¢; = 0.1\, and ¢3 = 0.1A
at 9.5 GHz are shown in Fig. 6(a).

B. Dielectric Loaded Periodic Strips

The surface with dielectric loaded periodic strips also be-
haves as an anisotropic layer and is shown in Fig. 6(b). In

this structure, perfectly conducting strips of width w are pe-
riodically aligned over a dielectric substrate with permittivity
e and thickness d backed by a ground plane. The scattered
plane waves can be computed from

w/2

E(z,y) = ?(JC,.’IZ/) -J(z') da’ (10

—w/2

where J is the current distribution over a strip and E’p is the
2-D periodic dyadic Green’s function. The details of deriving
G can be found in [8]. By enforcing the boundary conditions
on the surface of the strip, thatis, § x (B +E )= —gx E’,
an integral equation for the unknown current distribution can
be obtained. The electric field & refers to the incident plane
wave and E  refers to the field reflected from the stratified
medium in the absence of the strips. The current can be
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computed by solving the integral equation using the method of
moments. Once the surface current on the strip is determined,
the scattered electric and magnetic fields, as well as the
reflection coefficients for TE and TM polarizations can be

computed from

_EI+E;

H! + H;
E E; ’

Hz

z

Un an

where 'z and I'y are the reflection coefficients for TM and
TE polarizations, respectively. As before, when w < 0.5\ only
the zeroth order Bragg mode is propagating. The phases of I'e
and Ty of the dielectric loaded periodic strips are shown in
Fig. 6(b) at 9.5 GHz when d = w = 0.1\ and € = 2.5.

V. EXPERIMENTAL VERIFICATION

To demonstrate the accuracy of the new bistatic mea-
surement technique, the measured bistatic responses of three
canonical targets (two metallic spheres with different diameters
and a tilted metallic cylinder) are compared with their theoreti-
cal bistatic responses. A network analyzer-based, polarimetric,
monostatic radar was used in these measurements [9]. The
radar operates at 9.5 GHz with a 1.5 GHz bandwidth which
corresponds to a spatial resolution of about 10 cm. A perfectly
conducting circular disc with diameter 1.2 m was used as
the ground plane. The ground plane was positioned inside the
anechoic chamber at a distance 7 = 15 m away from the radar
system and the target was located at § = 45° and dy = 0.6 m,
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with respect to the ground plane as depicted in Figs. 2 and
3. The ground plane was aligned with the radar using a
laser system and by maximizing its radar return at normal
incidence. Precise rotation of the ground plane was facilitated
using a computer-controlled stepper motor. To characterize the
system distortion parameters of the radar system, polarimetric
measurements of a metallic sphere (without a ground plane)
were conducted over the entire main lobe of the antenna
system. The measured backscatter response of the sphere for
the X-band radar is shown in Fig. 7 in an azimuth-over-
elevation coordinate system (v, £).

Two metallic spheres with diameters 4.45 cm and 8.1 cm
were measured and compared with their theoretical responses
over a number of bistatic angles including the backscatter
direction to demonstrate the capability of the calibration tech-
nique in removing the systematic errors. As mentioned before,
the spurious responses of the finite ground plane were removed
by subtracting the backscatter response of the ground plane

in the absence of the target from that of the combination
of the target and the ground plane. Figs. 8 and 9 show the

measured and computed bistatic radar cross sections (T

and oyp,) and the copolarized phase difference (Pnh—wv) Of
the 4.45 cm and 8.1 cm spheres, respectively. The measured

bistatic radar cross sections and phase differences, for both

spheres, were, respectively, within +0.5 dB and +5° of the

theoretical computations.

Spheres are nondepolarizing targets and in their measur-
ments the anisotropic dielectric layer was not used. Next, the
bistatic scattering matrix of a tilted metallic cylinder was mea-
sured to demonstrate the accuracy and feasibility of measuring
the cross-polarized components of the scattering matrix. The
length and diameter of the metallic cylinder were 15 cm and
1.5 em, respectively. The cylinder was positioned in a plane -
perpendicular to the direction of propagation of the: incident
wave with a tilt angle of 30°, with respect to the vertical
direction. A set of measurements were conducted first with




SARABANDI AND NASHASHIBI: NOVEL BISTATIC SCATTERING MATRIX MEASUREMENT TECHNIQUE 49

0 T T T T T T
SE o,, Theory 7
S0 % e oy, Theory
@ -15F © o, Measured
; 20F | B Sy, Measured
g st .
30
35F
-40 1 1 .
0 30 60 120 150 180
Bistatic Scattering Angle (deg)
()
180 R T
@ 120F
g
g o
§ 0
£
a
Q 60F
8
& 120} Sy Theory
A4 By Measured
_180 1 1 P A
0 30 60 90 120 150 180

Bistatic Scattering Angle (deg)

()

Fig. 11. The average magnitude (a) and the average phase-difference (b) of
the copolarized bistatic scattering matrix elements of the collection of sand
particles confined in a sphere with radius 3.87 cm measured at 9.5 GHZ.

the perfectly conducting plane as the reflecting surface. Then,
the measurements were repeated after overlaying the dielectric
loaded periodic strips (DLPS) slab on the ground plane.
The DLPS slab was oriented so that its strips were aligned
along the vertical direction. The phases of the reflection
coefficients of the DLPS slab were computed from the method
of moments solution and used in the calibration procedure.
The method of moments phase calculation for the reflection
coefficients was verified experimentally by measuring the
phase difference between the reflection coefficients of the
vertical and horizontal polarizations at normal incidence. The
bistatic scattering matrix of the tilted cylinder was computed
numerically using the method of moments specialized for
scatterers with axial symmetry (body of revolution) [10]. As
shown in Fig. 10, excellent agreement was obtained between
the theoretically computed and the measured bistatic cross
sections (Cyy, Ohh, Ohy, and oyp) and the copolarized phase
difference (¢pp—vo) Of the tilted cylinder.

After building confidence in the ability of the new technique
through measuring the bistatic scattering matrix of point
targets, an attempt was made to estimate the effective dielec-
tric constant of a dense random medium. For this purpose,
bistatic measurements were performed on a collection of
silica particles with mean diameter of 2 mm and volume
fraction of 0.6 confined in a spherical boundary with average

diameter of 7.74 cm. A computer controlled servomotor was
used to rotate a styrofoam pedestal holding the spherical
collection of random particles. Overall, 100 independent sam-
ples were collected for each bistatic scattering angle. The
bistatic responses were calibrated following the procedure
outlined in Section III and the coherent components of the
scattered waves (mean fields) were extracted by averaging
coherently the scattered fields of all independent samples.
The bistatic scattering cross sections (o, and op) and the
phase difference (¢pn—_yy ), derived from the measured mean
fields, are shown in Fig. 11. These data are then used to fit
the bistatic scattering response of a homogeneous dielectric
sphere in order to characterize the effective dielectric constant
of the dense random medium. In this process, the conjugate
gradient optimization technique [11] was used to minimize the
difference between the measured and the theoretical responses.
Using the real and imaginary parts of ¢.¢¢ as free parameters,
the following error function was defined and minimized

= S (H0) - (B

. ( (i) = zh_wu))?]

;th—mv(?;)

where superscripts m and ¢ refer to measured and theoretical
responses, respectively. The best fit was achieved for e.f¢ =
3.113 4 50.125 and the results are shown in Fig. 11. The real
part of the estimated €.y is higher than the value estimated
from the dielectric mixing formulas for a mixture of silica
particles and air. This can be attributed, in part, to the presence
of glue that holds the particles together. A hollow spherical or
cylindrical shell made up of styrofoam can be used in future
measurements.

a2

VI. CONCLUSION

A convenient technique for the bistatic scattering measure-
ment of point targets was developed. In this technique, a
monostatic radar with fine spatial resolution in conjunction
with a rotatable ground plane was used to measure the bistatic
scattering matrix. The new technique circumvents some lim-
iting aspects of the traditional measurement technique. For
example, since the transmitter, receiver, and the target are
stationary, retaining the phase-coherence is no longer a prob-
lem (no moving cables) and a very accurate calibration can
be performed. Also, construction of a complicated bistatic
measurement setup for supporting and positioning the transmit
and receive antennas, with respect to the target, is avoided.
It was shown that for depolarizing targets, an independent
radar measurement after loading the ground plane with a
dielectric slab is required for determining the cross-polarized
components of the bistatic scattering matrix. The accuracy
of the new method was demonstrated by comparing the
measured bistatic scattering matrices of cylinders and spheres
with the theoretical ones over a wide range of scattering
angles. Also, the application of this technique in estimating
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the effective dielectric constant of a dense random medium
was demonstrated.
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