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Abstract— A new technique for calibrating a coherent-on-
receive polarimetric radar system is proposed. A coherent-on-
receive polarimetric radar is capable of measuring the Mueller
matrix of point or distributed targets directly by transmitting at
least four independent polarizations and measuring the vertical
and horizontal components of the backscatter signal simultane-
ously. The technique requires the use of two calibration targets,
a target with known scattering matrix (such as a metallic sphere
or a trihedral corner reflector) and any depolarizing target (for
which knowledge of its scattering matrix is not required) to
determine the system distortion parameters. The system dis-
tortion parameters, which include the channel imbalances, the
cross-talk factors of both the transmit and the receive antennas,
and the phase shifts and amplitude variations of the transmitter
polarizers, are determined by measuring the calibration targets
for four different transmit polarizations. The validity of the new
calibration technique is examined by measuring the scattering
matrices of spheres and cylinders as test targets using a coherent-
on-receive radar operating at 34.5 GHz. Excellent agreement
between the theoretical and the measured scattering matrices for
the test targets are obtained.

1. INTRODUCTION

NTEREST in retrieving information about the biophysical

parameters of natural targets from their backscatiering
properties has prompted intensive investigation in the use
of polarimetric radar techniques. Advances in polarimetric
radar techniques and the development of polarimetric imaging
SAR’s in the past decade has opened many opportunities in
the area of microwave and millimeter wave remote sensing.
Measurement accuracy and precision are critical elements of
any meaningful analysis or interpretation of the measured data.
For radar systems, it is customary to use external calibration
techniques to determine the overall system transfer function.
By measuring the backscatter from a set of calibration targets
with known scattering matrices, the radar distortion param-
eters, which include channel imbalances, antenna gain. and
antenna distortion parameters, can be determined. Then. by
applying an inverse algorithm to the data measured for a target
of interest, the errors introduced by these parameters can be
removed.

The applicability of a calibration technique depends on the
type and design of the polarimetric radar under consideration.
In general, polarimetric radars can be categorized into three
major groups: 1) coherent radars, 2) incoherent radars, and 3)
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coherent-on-receive radars. With coherent radars, which are
capable of measuring both the magnitude and the phase of
the scattered signal, the scattering matrix of a target can be
determined directly. This is accomplished by measuring the
scattered waves from the target using two receive channels
with orthogonal polarizations for two successive transmissions
at each of the two orthogonal polarizations. Several techniques
are available for calibrating coherent polarimetric radar sys-
tems, including those proposed by Barnes [1], Sarabandi er al.
[4], and Whitt et al. [8] and [9). Although capable of measuring
only the magnitude of the scattered wave, incoherent radars
can be used to determine the Mueller matrix of a target by
measuring the power received in the co-polarized channels
for each of six different, independent, transmit polarization
states [2]. At microwave frequencies, coherent radar systems
are often used because the coherence requirements of the
measurement technique can be met by available microwave
technology. The incoherent technique, on the other hand, is
used mostly at optical wavelengths. Neither of these two types
of radar systems is of interest to the present study.

This paper is concerned with the third type of polarimetric
radars, namely the coherent-on-receive configuration, which
is intermediate between the other two techniques in terms
of the coherence requirements imposed by the measurement
technique. In this configuration, which has been used suc-
cessfully at millimeter wavelengths ([3], [7]), the receiver
has two orthogonal polarization channels and is capable of
measuring simultaneously the magnitudes and phases of the
two signals. With this type of radar, the Mueller matrix of
a target can be obtained from four receiver measurements
corresponding to four different transmit polarization states.
System calibration is performed in two steps. First, the receiver
is calibrated using a wire grid placed in front of the receive
antenna at three different orientations. Then the polarization
states of the four desired transmitted waves are determined
by measuring the wave backscattered from a comer reflector
with the calibrated receiver. In this technique calibration errors
caused by the wire grid itself are not considered. The sources
of error introduced by the wire grid include: 1) the polarization
purity (axial ratio) of the wire grid, which is on the order of
that of the receiving antenna (20-30 dB), 2) the proximity
of the wire grid to the receiving antenna, which affects the
antenna radiation characteristics, and 3) errors associated with
the grid orientation angles.

This paper proposes an alternate technique with which cali-
bration can be performed in two steps and requires measuring
the backscatter response of a metallic sphere (or trihedral
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reflector) in addition to any depolarizing target for four and two
transmitted wave polarizations, respectively. In this algorithm
the knowledge of the scattering matrix of the depolarizing tar-
get is not required. By applying this technique, it is possible to
determine the polarization states of the transmitted waves, the
antennas cross-talk factors and receiver channel imbalances,
while avoiding the use of the wire grid.

II. COHERENT-ON-RECEIVE POLARIMETRIC RADARS

The main advantage of the coherent-on-receive radars is
in the measurement of random fluctuating targets or when
the radar platform is not stable. In this section we briefly
introduce the basic concepts of this system to guide the reader
in understanding the calibration procedure.

By defining a set of orthogonal directions (%, ﬁ) in a plane
perpendicular to the direction of propagation, the components
of the scattered field E® from a given target can be related to
the components of the incident wave E through the scattering
matrix of the target, i.e.,

e—ikgr [va

B = Shv

Svh]Ei (1)

San

r

where kg is the propagation constant and r is the range from
the target to the receive antenna. In general, the polarization
state of the transmitted wave can be any arbitrary elliptical po-
larization. An elliptically polarized wave can be characterized
by two angles known as the rotation angle (1) and ellipticity
angle (x) {6]. The modified Stokes vector F,,,(¢, x) provides
an alternate but equivalent representation of wave polarization
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Upon using (1) the scattered (received) modified Stokes vector
F7, can be related to the incident (transmitted) Stokes vector

via the modified Mueller matrix £,,, by
1 =
Frn = ) crnFin (3)
r

where £, is a 4 X 4 matrix whose entries in terms of the
scattering matrix elements are given by
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Fig. 1. Block diagram of the coherent-on-receive radar system operating at
34.5 GHz.

When dealing with natural targets, such as soil surfaces
and vegetation canopies, the quantity of interest is L),
the ensemble average of L,,. Given (L), the technique of
polarization synthesis can be used to compute the polarization
response of the target under consideration [6, Chapter 2]. With
a coherent polarimetric radar, the process starts by measuring
the scattering matrix for many statistically independent sam-
ples of the target. Each scattering matrix is converted to its cor-
responding modified Mueller matrix £,,, and then all the £,
matrices are averaged together. With incoherent and coherent-
on-receive polarimetric radars, (£,,) is measured directly. To
examine how the coherent-on-receive radar functions, consider
the two-antenna system shown in Fig. 1. The transmitter part
of the system consists of an upconverter followed by an RF
amplifier with a rectangular waveguide as its output port. The
rectangular waveguide is connected to a circular waveguide
through a transition, followed by two waveguide polarizers
which are connected to the antenna structure. The waveguide
polarizers are independently rotatable in a plane perpendicular
to the direction of propagation. The dielectric card inside a
waveguide polarizer enforces two different wave velocities for
waves with polarization vectors parallel and perpendicular to
the card’s surface. The position of the dielectric card with
respect to the polarization of the incoming wave determines
the polarization of the outgoing wave from the waveguide
polarizer. To minimize refiection by the card, the dielectric
constant of the card must be chosen to be relatively smail.
The dielectric cards are designed such that the phase difference
between two outgoing waves corresponding to two incoming
waves whose electric fields are parallel and perpendicular to
the card is 90 degrees. This feature allows the generation of
any polarization configuration of interest including vertical
(V), 45-degree linear (45), left-hand circular (LHC), and right-
hand circular (RHC), which together are used to obtain the
elements of the Mueller matrix.

The receiver part of the radar includes a dual polarized
antenna capable of receiving the vertical and horizontal po-
larization components of the scattered wave simultaneously.
After down-converting the frequency of the received signals,
the two IF signals are measured in both magnitude and
phase. The Stokes vector corresponding to the transmitted
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polarization is computed from the coherent measurement of
the scattered field components as given by (2). For coherent
systems, phase coherence must be maintained during the
measurement of the scattering matrix elements. Therefore, if
the relative position of the radar platform with respect to
the target is not fixed to within a very small fraction of a
wavelength, the phase information will be lost. This is not
the case for coherent-on-receive systems, however, since each
column of the Mueller matrix is completely determined from
a single pulse.

To measure the Mueller matrix with 16 unknowns, we are
required to perform at least four measurements. The entries
of the Mueller matrix can easily be obtained by transmitting
four different polarizations, namely, vertical, 45-degree linear,
right-hand circular, and left-hand circular, whose modified
Stokes vectors are given by

1
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The received Stokes vectors can also be computed using the
measured E7 and E}, in (2). By denoting the ith column of the
modified Mueller matrix by £}, it is a straightforward matter
to show that

1
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where F represents the received Stokes vector corresponding
to the transmit polarization p.

In case of distributed targets, measurements of F are
repeated many times to estimate the expected value (F;)
Then, ({,,) can be determined from (F7) following the
procedure outlined by (6), from which the radar cross section
can be computed for any desired combination of transmit and
receive antenna polarizations using the polarization synthesis
technique [6]. _

This procedure of computing (C,,) works well for an ideal
radar system with the transmitted Stokes vectors as given in
(5). In practice, the measurements required to compute (C,,)
are contaminated by two types of errors: systematic errors due
to imperfections in the radar components and nonsystematic

errors due to noise and finite sampling of the random process.
The systematic errors can be removed using the calibration
procedure described in Section IV, while the nonsystematic
errors can be reduced by estimating {C,,) using the received
Stokes vectors corresponding to N (>4) different transmit
polarizations. One possible computation procedure to estimate
(C,n), as suggested in [3], is to use the least mean squared
procedure for individual rows of the Mueller matrix.

Let V and W be 4 x N matrices whose columns represent
the received and transmitted Stokes vectors, respectively. It is

easy to show from (3) that v and W are related to Em through

(V) = (Lm) W. )

Here, the coefficient (1/r?) has been suppressed for simplicity.
The error in the ith row is defined by

N 4 2

€ = Z Vij — Zﬁikwk;‘
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and elements of ;5 are chosen such that e; is minimized.

This procedure ends up with the following expression for the
measured Mueller matrix

(L) = [(WW )1 (T)7]7.

A better estimation of the Mueller matrix from the measured
data is perhaps the global minimization instead of minimiza-
tion from individual rows. Moreover in backscattering there
are only nine independent parameters in the Mueller matrix.
The Mueller matrix in terms of the independent parameters
can be represented by

Tr1 I3 xrg —Tg
= _ I3 x9 Te —T7
(ﬁm) - < 2188 QIG (II}4 + .’l)g) —Ts
2z9 2z7 z5 (x4 — x3)
where r = |Sm,|2, Ty = |Shh’2, ry = |S;w'2, Ty =

Re[SvuSinl, o5 = Im[S.,Sh,], w6 = Re[ShoSt,), 7 =
Im[ShoS5,], 28 = Re[Su Sy, ], and zg = Im[S,, 5} ,]. Using
global minimization, elements of the Mueller matrix (£;;) are
obtained such that the global error

4 N 4 2
E=>3. (”i:‘ =D Law;
i=1 j=1 k=1
is minimized. Basically, a linear system of equations for the

nine unknown parameters is obtained by setting the partial
derivatives of E (with respect to z;) equal to zero.

III. SYSTEM DISTORTION MODEL

The technique described in the preceding section for mea-
suring the Mueller matrix is for a distortion-free radar system.
It minimizes the error due to random variations and finite sam-
ple size, but it does not correct for system biases. In practice,
however, the radar components are not perfect. For example,
it is not possible to construct antennas that are totally free of
polarization contamination (coupling between the orthogonal
polarization ports of the antenna). Also, the polarization state
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Fig. 2. Signal flow diagram of a coherent-on-receive radar.

of the transmitted wave depends primarily on the phase-shift
characteristics of the waveguide polarizers and the transmit
antenna polarization contamination. Another factor that affects
the measurement accuracy is the receive channel imbalances
which include the variation in magnitude and phase of the
system transfer function for different ports of the receiver.
A simplified block diagram of such a system is depicted in
Fig. 2. These imperfections in the radar system components
can lead to serious errors in the measured Muelier matrix.
The role of calibration is then to correct for these systematic
errors in the measured target response before constructing the
measured Mueller matrix.

In this section, the imperfections of the radar components
will be modeled and a mathematical system distortion model
will be constructed. This system distortion model will then
form the basis of the new calibration technique discussed in
the next section.

First, let us examine the effect of the phase shift intro-
duced by the dielectric cards on the polarization state of
the transmitted wave. As mentioned earlier the thickness and
dielectric constant of the dielectric cards are chosen such that
the reflected field is minimal and can be ignored. Suppose
the transmission coefficient of the card for the waves whose
electric fields are parallel (slow wave) and perpendicular (fast
wave) to the dielectric card are, respectively, denoted by the
complex quantities T,, and Y ¢. Further assume that the card
is oriented such that it makes an angle « with respect to a
specified horizontal direction as shown in Fig. 3. The unit
vectors parallel and perpendicular to the card are denoted by
§ and f which are given by

§=sinav—cosah
f=cosat+sinah’

If the wave incident on the card, is denoted by E = E}o +
E}jz, then by decomposing each component into components
along f and § and multiplying the resultant components, by
the corresponding transmission coefficients Yy and Y,, the
outgoing field through the polarizer can be obtained from

E° = TE
where T is the polarization transformation matrix given by

= cos? aTy+ sin? @Y, sinacos a(Tr-1,)
sinacosa(Y;—Y,) cos?aY, + sinfaYy |

Fig. 3. Orientation of the principal axes of the dielectric card with respect
to ¥ and h.

Now by cascading two polarizers and ignoring reflections from
the cards, the transmitted wave E? at the output of the second
polarizer is related to the wave at the input of the first polarizer
Ein by

E! = T,T,E™

Here T, and T, are the transformation matrices of the first
and second polarizers corresponding to the rotation angles o
and oo, respectively. It is assumed, without loss of generality,
that the electric field in the rectangular waveguide preceding
the polarizers coincides with the specified vertical direction
o (Ei® = T,(1, 0)). Introducing the phase-shift factor 7; =
%;f (i = 1,2) the transmitted wave through the polarizers
is  given in terms of the phase-shift factors and orientation
angles by

Et
{cos(@ — az)(cos oy cos ap + T1T2 sin o sin az)
+sin(a; — ag)(sin a; cos apT — cosa; sin az7e)}
=T
{cos(a; — a2)(sin ay cos ag — cos oy Sin @371 72)
—sin(ay — ag)(cos @ cos apry + sinay sinazm)}

@®

where T = T, Y 51T ¢2 includes the transmitter transfer func-
tion (7T}). The nominal value for the phase-shift factors (7;)
is e~%% and for this value Table I gives the rotation angles
for the desired polarizations. In general 7; is not exactly e %%
and is a function of frequency. Using the above rotation angles,
the actual polarizations of the waves transmitted through the
polarizers are

_ +n7m
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E = 0 3 E - 1
L 1-71712
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[ tm Lir
. P) _ 2
45 135
E = , E = 3
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2 2
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- 2 - 2
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) 2
where E*? = E'/T. Deviations of 7, and 7, from their

nominal values lead to errors in the presumed polarization
states.
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TABLE I

WAVE PLATES ROTATION ANGLES FOR THE DESIRED
POLARIZATION STATES OF THE TRANSMITTED WAVE
[Rotation Angle [[v | & | 45° [ 135° | LHC | RHC
o 6{45] 0 0 45 | 45

ag 0145 456 | -45 0 0

The physical structure of the antenna may modify the
polarization of the bounded wave as the wave transforms
into an unbounded wave and vice versa. The transmitted
unbounded wave in terms of the bounded wave at the input
is given by

E‘:T[l ‘33] E! (10)

° C3 1

where ¢3 (Jes| < 1) is the transmit antenna cross-talk factor.
The off-diagonal terms in (10) are assumed to be identical
because of the circular symmetry of the transmit antenna. It is
worth noting that the polarizers and the antenna structure are
passive devices, thus the phase-shift factors 7; and 75 as well
as the antenna cross-talk factor c3 are time invariant.

Now we can turn to study the distortions caused by the
receiver. In a recent study reported by Sarabandi and Ulaby
[5], it was shown that for a dual polarized receiver the
measured signal E” is related to the wave incident upon the
receive antenna by

=y sl ol

0 HRpllca 1
where ¢; and ¢y are the receiver cross-talk factors and R, and
R}, are the vertical and horizontal system transfer functions of
the receiver ports. It was also shown that ¢; and ¢p are only
a feature of the passive devices in the antenna system and
hence are not affected by instability of active components in

the radar system. On the other hand, the unbounded transmitted
and received waves at the antennas are related by

(1D

e—2ikgr

[¢,1]

E'=——SE (12)

where r is the range between the radar antenna and the target.
By inserting (10) and (12) into (11), we can relate the measured
signal E” to the bounded wave at the output of the polarizers

E' by
— e—2ikgr Rl 0 1 a1
g2 0 Rofles 1

S'UU Svh 1 s t
X E
[Shu Spn]les 1
where we have included the transmitter transfer function into

the receiver transfer functions, i.e., By = TR, and Ry =
T Ry,. Furthermore, let

5 Rl 0 1 C1
Rd;[o RQ]I:CQ 1:"

T 1 C3
Td_l:(:;g 1:]'

(13)

(14)

The system distortion model for the coherent-on-receive radar
shown in Figs. 1 and 2 can be expressed in matrix format by

—~2ikoT
e .
¢ B

w
=Ll

E = Ry

= (1s)

IV. CALIBRATION PROCEDURE

So far the system distortions have been modeled mathemat-
ically. The next step is to determine the distortion parameters
and then, by applying a correction algorithm, calculate the
actual Mueller matrix. The standard approach used to find
the distortion parameters is to measure a target with a known
scattering matrix. A metallic sphere is an excellent candidate
for this purpose because its scattering matrix is orientation-
independent and its radar cross section is known theoretically.
As will become apparent later on, however, the measurements
of only a metallic sphere with any combination of transmitted
polarizations is not sufficient to determine the seven unknown
distortion parameters of the radar system. The measurement
of an additional independent depolarizing target is needed to
determine all distortion parameters. Fortunately, the scattering
matrix of the additional target need not be known. It should
be noted that once the distortion parameters are determined
carefully using the two calibration targets, a simpler procedure
using only a sphere can be used to find the time variant
parameters R; and R in subsequent calibration of the radar.

The fields, detected at the V-channel of the receiver, that
are scattered from a sphere with a radar cross section o =
4| S°|? due to vertical, 45-linear, right-hand circular, and left-
hand circular polarizations can be expressed in terms of the
distortion parameters as follows

ESV = R15°(1 + ¢1c3)

R, 8°
ECLHC — 17[(1 +e1e3)(14711) + (1 + e3)(1 = 71)]
Ry S°
EFHC = = [(14 crea)(1 4 71) = (1 + ca)(1 = 7))
o RyS8°
E¥ = -—-——12 (14 crea)(1 + 72) + 71 (1 = 72)(e1 + ¢3))-

(16)

Here, the quantities on the left-hand side are the components
of the received signal modified by r2e?*o%> and the first
superscript denotes the sphere and the second one denotes
the polarization of the transmitted wave. Solving (16) simulta-
neously provides the following expressions for the distortion
parameters 7; and 7o

T1=Al;+Bv—1

_ A =D+(2-A - B)D, + B
e (1- 4%+ (1- B,
where
EoLHC EoRHC
A'v - E.?,V s v = ESV
Eo45
D, = S an
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The field E* can now be determined from (9) for any given
rotational angles a; and a9 of the dielectric cards. The system
distortion model given by (15) can be cast into a matrix
equation by juxtaposing the measured responses due to two
transmitted polarizations; for example for the transmit V' and
45-degree linear polarizations

r e~2ikor
= d
r2

=t
a E

=
wn
=3t

(18)

where B = [E*V, Et%] and E" = [E"V, E"5]. Noting that
the scattering matrix of the sphere is diagonal, the following
equation can be obtained from (18)

e—2ik0ro

A=E" @)= sRT. w9
where £ is the matrix of the measured response of the sphere
for two transmitted polarizations. Equation (19) shows that the
sphere measurements can provide at most four independent
equations. Since there are five unknowns in Ry and Ty
matrices (R;, Ra, ¢1, ¢z, and c3), an additional independent
equation is needed. This can be accomplished by measuring
any depolarizing target for any two transmit polarizations and
then Srrlforcing the reciprocity theorem.

If E  represents the matrix of the measured response of the
depolarizing target for two given transmit polarizations, using
(18) and defining B = §rd(f3 )1, the scattering matrix of the
depolarizing target can be obtained from

d -1

=2 2o R BT, (20)
Obtaining ﬁ;l from (19) and substituting in (20), the scatter-
ing matrix of the depolarizing target can be expressed by

=d 2. = =-1= =-1
§'=1d 2ikotra=re) g0 B, AT BT, 1)
r()
which is only a function of c3. Enforcing the reciprocity
condition (5%, = 5S¢, ), the following quadratic equation for

c3 can be obtained

3 +2—g—(1)(;3 +1=0 22)

where

Qo = az1bi1 — a11byy + agebia — a12b
Q1 = a12ba1 — azebiy — a21biz + a11bo2.

Parameters a;; and b;; (¢,j = 1,2) are the elements of A
and B matrices, respectively. The acceptable root of (22)
is the one that satisfies the condition |c3| < 1. The only
restriction on choosing the depolarizing target is that its
scattering matrix must have nonzero eigenvalues; otherwise
c3 cannot be computed from (22). Once c3 is found, the other
system distortion parameters can be obtained systematically

from (19) and are given by
cs(a11/arz) — 1

€3 — (a11/a12)
_ ca(aza/ag) -1

Co =
c3 — (a2/a21)
_ pr 2 2ikgre ;1 e
o= B R,
— pl 2, 2ikoro , 1 an
RQ—RZTOe oTe, Rz_—S—"CQ-f'Cg‘ (23)

A. Special Cases

If the transmit antenna cross-talk factor is very small (c3 ~
0), the depolarizing target is not required and the distortions
can be determined from the sphere alone. The phase-shift
factors 71 and 75 can be determined as before while the other
parameters can be determined as follows

o = A, — B,
17274, - B,
. _2—-A,-B,
2= A — By
E°Y EV A, - By
= Y Ro=—h 2R 7h
Bi=—gr 2T % '2-4,-8B,
where
Ah _ EI?LLHC - E,‘:RHC
oV ! oV °
Eh‘ Eh‘

If in addition, the receive antenna cross-talk factors are very
small, then measurements of Ay, and B}, are very noisy and
unreliable. In such cases where ¢; = ¢g ~ 0, (16) reduces to

EY = RS
EsLHC — Rl Se ll;l_
E;:LHC — stol_—z_‘g_

Eo% R S°ktn,

These equations can be solved to obtain

EoLHC

v
-1
Egv

045

T1=2

7‘2:2ﬁ—1

EV
So ’

oLHC oV
Eh Ev

Ry = (E2V — EoLHC) T

Ry =

B. Correction Schemes

Now we are in a position to correct for the distortions
in the measurements of an unknown target. For a coherent-
on-receive radar, two correction schemes are considered: 1)
coherent and 2) incoherent. The coherent correction scheme
can be used whenever the relative distance between the target
and the radar remains constant during the measurements as it
is usually the case for indoor measurements. In this case, the
scattering matrix is determined from the scattered fields when

T SR AR A
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the target is illuminated by two independent polarizations, for
example V and 45-degree linear. The incoherent correction
scheme must be used whenever the relative distance between
the target and the radar changes during the measurements
(unstable platform or moving target) as it is usually the case
for outdoor measurements. In this case, the received stokes
vectors for at least four different transmitted polarizations are
used to construct the modified Mueller matrix directly, as was
discussed in Section II

In the coherent correction scheme the scattering matrix of
the unknown target can be determined from (18) directly

= =-1

§" =r2 o Ry O T, (24)

= =TU =t =TU
where U =E -(E)™", and E = [E}Y,E}*] is the
measured target response and 7, is the range to the unknown
target.

In the incoherent correction scheme the unbounded trans-
mitted wave, ]732, can be determined from (8) and (10) for
any prescribed rotation angles «; and as of the dielectric
cards. Furthermore, the unbounded received wave, E', can
be obtained from the measured field E” and is given by

E" = 2 (ko ﬁ;l E". (25)
The transmitted and received Stokes vectors, needed to com-
pute the modified Mueller matrix, can be determined by
substituting E! and E7, respectively, into the definition of
the Stokes vector given by (2).

V. COMPARISON WITH MEASURED DATA

The validity of the new calibration technique is examined
by measuring the scattering matrices of cylinders and spheres
as test targets using a coherent-on-receive network analyzer-
based scatterometer operating at 34.5 GHz. A block diagram
of the system is shown in Fig. . For each transmitted polariza-
tion, the network analyzer sweeps over a bandwidth of 1 GHz
in 401 steps and collects simultaneously the received fields at
the V' and H channels. Using the time domain capability of
the network analyzer, the target return can then be separated
from the unwanted short-range returns and nearby objects. The
received signal at the target range includes the target response
in addition to disturbances due to the thermal and background
noises. The effects of the thermal noise, which is a zero-mean
random process, can be minimized by averaging over many
samples and the effects of the background, which is due to
returns adjacent to the target can be eliminated by subtracting
the background response (in the absence of the target) from
the response of the target and background.

Target orientation was facilitated by an elevation over
azimuth stepper motor positioner. An 8.1 cm sphere and a
finite array of parallel wires were used as the calibration
targets. The test targets include a 4.45 cm sphere and a
conducting cylinder with a diameter of 0.552 cm and a length
of 6.045 cm. The cylinder is measured for two different
orientations: vertical and 45 degrees in a plane normal to
the direction of incidence. The measured scattering matrices
using (24) are compared with those computed using the exact
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Fig. 4. The measured variations of the magnitude (a) and phase (b) of the
phase-shift factors, 71 and 73, as function of frequency.

eigenfunction expansion solution and the method of moments
in conjunction with the Fourier transform technique (body of
revolution) for the sphere and cylinders, respectively.

Using averaging and background subtraction, a signal-to-
noise ratio of better than 65 dB was achieved. For targets with
Suh = Shy = 0 (sphere and vertical cylinder), the signal-
to-noise ratio in the cross-polarized channels was better than
40 dB.

Applying the calibration technique, the magnitude and phase
of the phase-shift factors of the two polarizers, 71 and 7 are
measured and shown in Fig. 4 as a function of frequency.
As expected, both polarizers exhibit negligible transmission
losses as the magnitudes of the transmission coefficients vary
between 0.968 and 0.98 over the measured bandwidth. The
phases of 7, and 75 are measured to be around —92 degrees,
which is very close to the expected phase shift of —90.0
degrees. The measured antennas cross-talk factors of the
system as computed by (22) and (23) are shown in Fig. 5.

Fig. 6 compares the theoretical and measured scattering
matrix elements of the 4.45 cm sphere. The error in the
magnitudes of co-polarized terms is less than 0.5 dB and the
error in the phase-difference between the copolarized terms
is less than 4 degrees. The cross-polarized term is shown
in Fig. 6(a) and shows that an effective cross-polarization
isolation of at least —40 dB is obtained which represents a
20 dB improvement in the system cross-polarization isolation.

Excellent agreement is also achieved between the theoretical
and measured scattering matrix elements of the cylinder ori-
ented at vertical and 45 degrees. The comparisons are shown
in Figs. 7-8, which show a maximum discrepancy of about
0.4 dB in magnitude and 4 degrees in phase. In Figs. 7(a)
and 8(a), the values of o,, and o), are overlapped. The
experiments were repeated many times and consistent results
were achieved.
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Fig. 5. The measured variations of the magnitude (a) and phase (b) of the
antenna cross-talk factors, ¢;, ¢z, and c3 as function of frequency.
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Fig. 6. The magnitude (a) and phase-difference (b) of the scattering matrix
elements of a 4.45 cm sphere.

VI. CONCLUSION

Practical aspects of a calibration procedure for a coherent-
on-receive polarimetric radar system are discussed. The polar-
ization state of the transmitter is related to the transmit antenna
cross-talk factor and the phase-shift factors of the waveguide
polarizers in the radar system. Distortions in the receiver,
such as channel imbalances and cross-talk factors, together
with the transmitter distortion parameters are obtained from
measurements of a metallic sphere and a depolarizing target
with unknown scattering matrix for four and two transmit
polarizations, respectively. The validity and accuracy of the
calibration technique is verified by measuring the scattering
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Fig. 7. The magnitude (a) and phase-difference (b) of the scattering matrix

elements of a vertical cylinder.
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Fig. 8. The magnitude (a) and phase-difference (b) of the scattering matrix
elements of a cylinder oriented at 45 degrees from vertical.

matrix of independent point targets with known scattering

matrices.
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