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Abstract

Because of their recent success in other inversion tasks [{Ishi-
maru, 1990] application of an artificial neural network to the
development of an inversion algorithm for radar scattering from
vegetation canopies is considered. The inputs to the neural net-
work are the expected polarimetric backscatter from specific
canopies, while the outputs are the desired parameters, such
as tree height, crown thickness, leaf density, etc.

Two special cases were examined: (1) inversion of MIMICS
given Aspen stands of different ages; (2) inversion of measured
data from the Duke forest Loblolly pine stands. The MIMICS
inversion shows that neural networks are capable of accurately
inverting some parameters of such a complicated model. The
implication is that once MIMICS is made to model the radar
data for a specific application, then inversion of the radar data
may be accomplished. The measured data inversion shows that,
even without a model such as MIMICS, one may train a neural
network to invert several parameters of interest.

1 Purpose

The objective of this paper is the development of an efficient
algorithm permitting inversion of polarimetric radar measure-

ments for vegetation and underlying layer parameters. This

process is not straightforward because canopy scattering models
are complicated functions of the desired biophysical parameters.
In particular, for a classified radar image, one would like to be
able to find the characteristics for a particular stand in a par-
ticular image. In this paper the classification step is assumed to
have been accomplished already. Hence, we have, at best, mul-
tifrequency and multipolarization data averaged over a stand at
effectively a single incidence angle. Our inversion will deal with
this set of data as the likely inputs.

In the past few years, artificial neural networks have been
applied to several types of remote sensing problems [eg. Ishi-
maru, 1990]. Neural networks offer two major advances over
other inversion approaches, such as the statistical and optimiza-
tion methods. The first is the massive parallelism used in neural
networks, and the second advantage is that the algorithms for
the neural network are very general, allowing it to be used as a
black box for any desired model or sets of input-output data.

This paper shows the application of this idea to a very small
subset of all possible canopies: (1) Aspen stands modeled with
MIMICS [Ulaby, et al., 1988], and (2) measured Loblolly pine
stands. Inversion of several of the parameters that are used
to describe these stands is presented. The parameters, in the
case of the Aspen stands are: crown thickness, leaf number den-
sity, primary branch number density (thick branches), secondary
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branch number density (thinner branches), average trunk diame-
ter, average trunk height, leaf diameter, and the complex dielec-
tric constant (e,) of the trunk and branches at L and C bands.
These parameters were chosen because they vary the most in
the two Aspen stands that were measured. The parameters, in
the case of the Loblolly stands are: trunk number density, av-
erage trunk diameter, and average trunk height. There are so
few in comparison to the Aspen stands because of the lack of a
complete set of ground truth for all 53 Loblolly stands.

2 Method

The method used in this paper can be broken into two main
tasks: (1) generation of the appropriate training data, and (2)
development of a neural network with the appropriate archi-
tecture, and the use of that network with test data. For the
Aspen stands, the program MIMICS [Ulaby, et al., 1988] was
used to generate the training data given the ground truth data,
while the data as measured by the JPL AirSAR was used for
the Loblolly stands. A widely-available neural network software
package [McClelland and Rumelhart, 1988] was chosen to im-
plement the inversion algorithm.

2.1 Modeling Aspens with MIMICS

The generation of the appropriate test data started with ground
truth measurements of two Aspen stands for which polarimetric
measurements had simultaneously been collected. These two
Aspen stands were chosen for three reasons:

1. They were significantly different in age, giving a significant
difference in many of the ground truth parameters, as well
as in the polarimetric radar backscattered signals;

2, They were predominantly Aspen, rather than a complex
mixture of different types of trees;

3. Each was relatively uniform in age throughout the stand.

The next step was to run MIMICS four times: for each of the
two stands, at L- and C-bands (wavelengths of 24 cm and 5.66
c¢m, respectively). This was an iterative process because some
of the canopy parameters were not precisely known. Once a be-
lievable set of input parameters was established for each stand
at each frequency, three “interpolated” stands were created by
linearly interpolating the 9 or so parameters that changed the
most between the two stands. In this way, five stands of varying
ages were generated, along with the expected polarimetric radar
backscatter at the two frequencies, and for eleven different inci-
dence angles (20° - 70°, by 5°). This gave a total of: 5 stands
x 11 incidence angles = 55 training sets.
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2.2 Neural Network design: Aspen

This neural network was designed to use as input the incidence
angle, and the polarimetric radar backscattered terms (hh, vv
and hv in dB), at L and C band. Also included were ratios of
some of these terms. Specifically, the inputs consisted of the
following 10 real numbers:

e Incidence angle, degrees,

e o3, (L band), 62 (L band), o2,(L band),

¢ 09,(C band), ¢2 (C band), op,(C band),

. opy (L band) 2 (L band) of, (L band)
o9, (C band)’ 09, (C band)’ o, (C band)

The outputs consisted of the nine parameters mentioned in sec-
tion one, using only the real parts of the dielectric constants,
because there was so little variability in the imaginary part in
the five stands used.

2.3 Neural Network design: Loblolly

This neural network was designed in a slightly different manner
than that for the Aspen stands. The inputs consisted of ten real
numbers: incidence angle, and the polarimetric backscattered
terms (hh, vv, and hv in dB) at P, L, and C bands (wavelength
of 66 cm, 24 cm, 5.66 cm, respectively). The outputs were the
three real parameters mentioned in section one: trunk number
density, average trunk diameter, and average trunk height. It
was felt that with so few outputs the ratios, as used in section
2.2, were not necessary.

2.4 General Neural Network considerations

The neural network was designed to work with real numbers
from zero through one, however, it does poorly when it must
learn numbers near the extremes of this range, hence all inputs
and outputs have been scaled to fit between 0.1 and 0.9.

The architecture of the network is largely governed by the
constraints of the backpropagation algorithm [McClelland and
Rumelhart, 1988]. This allows for several layers of several neu-
rons, with each layer connecting fully to the adjacent layers, and
no other layers, with different multiplication factors (or weights,
wy) connecting each pair of nodes. The inputs are presented to
the input layer, with the outputs available on the output layer,
and any number of so-called hidden layers may intervene (Fig.
1). The input and output layers are fully specified by our re-
quirements as stated previously, but the number and size of the
hidden layes are free parameters. After trying various numbers
and sizes of hidden layers, a network that gave the least error
with the least amount of training was chosen. The number of
hidden layers in each of the resultant networks was 3, with 33
neurons (or nodes) in each layer for the Aspen network, and 30
neurons per layer for the Loblolly network.

A number of other parameters control the performance of
the network while it is learning, and they were set as follows:

¢ learning rate: A measure of how much to change a given
weight when an error is detected. Slow is near zero, with
the rate increasing as this number increases , we used 0.1.

e momentum: A measure of how much the previous cycle
of learning will affect this cycle. Small effect is near zero,
large effect is near 1; 0.9 was used here.
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Figure 1: A typical multi-layer perceptron (MLP) type of neu-
ral network, the type that is used in this paper. Note that two
of the many weights are labeled.

A description of the back propagation algorithm for learning
in this type of neural network is beyond the scope of this pa-
per. Numerous introductory papers and books exist on the sub-
ject and should be consulted for a detailed understanding of the
above parameters and the learning process in general [Rumel-
hart and McClelland, 1986; Lippmann, 1987].

The learning process proceeds as follows:

1. A file is prepared containing the training sets,

2. The neural network architecture is defined and built,

3. The weights specifying the connection strengths between
every pair of neurons are randomized,

The training sets are presented in a random order, but all
are presented once for each cycle,

The weights slowly adapt to produce the desired output,
The weights are saved when the error is low enough.

4.

5.
6.

Next, the testing process:

1. The network is restarted, with learning turned off, and the
previously-saved weights are loaded,

2. A file with the test sets is then read and presented to the
network,

3. The detailed results of the test sets are displayed with
expected and actual outputs, and with the errors.

The results of this testing process are presented in the next
section.

3 Results

Both attempts at inversion worked well for some parameters and
poorly for others. This section presents the results for each of
the two attempts.

3.1 Inversion of Aspen stand parameters

The purpose here was to show that a neural network can invert
the modled results of MIMICS. This means that after the neu-
ral network is trained with MIMICS input/output patterns from
several different Aspen stands, it is then presented with a new
Aspen stand and asked to invert it. Comparison with the MIM-



ICS input parameters for each stand then serves to quantify the
performance of the neural network inversion. The Aspen neu-
ral network was trained for a total of 12,914 cycles before being
tested, the results of which are presented here.

The range of parameters for the stands is shown in Table
1, along with the actual parameters for the test stand. The
test stand parameters are between those of stands 2 and 3, with
stands 1 and 5 representing the limits of these parameters. For
the 55 test input patterns the errors were tabulated for each pa-
rameter and the results are presented in Table 2. The worst and
average absolute percentage error are shown for each parame-
ter and it is clear that the inversion worked very well for every
parameter of interest, the worst error of 2.28% occurring for

leaf number density when the network estimated 84 leaves/m?
compared to the 82 that was used as the input to MIMICS.

Table 1: Range of parameters for Aspen stands.

Parameter 1 5 test

Crown Thickness (m) 690 | 11.50 | 8.63
Leaf # density / m® 48.46 | 138.74 | 82.32
Leaf diameter (cm) 6.76 459 | 5.95
Primary branch # density / m® 1.35 2.70 | 1.86
Secondary branch # density / m® [ 13.50 [ 27.00 | 18.60
Avg Trunk Diameter (cm) 14.50 | 32.50 | 21.30
Avg Trunk Height (m) 14.16 | 30.20 | 20.18
Trunk and Branch Re.¢,, L band | 31.86 | 41.76 | 35.55
Trunk and Branch Re.¢,, C band | 22.23 | 30.19 | 25.22

Table 2: Percent error in parameters for test Aspen stand.

Parameter

worst | average
Crown Thickness (m) 1.16 0.61
Leaf # density / m® 2.28 1.29
Leaf diameter (cm) 1.00 0.61
Primary branch # density / m? 1.61 0.81
Secondary branch # density / m®| 1.61 0.83
Avg Trunk Diameter (cm) 1.84 0.84
Avg Trunk Height (m) 1.67 0.91
Trunk and Branch Re.¢,, L band 0.63 0.40
Trunk and Branch Re.¢,, C band 0.74 0.34

3.2 Inversion of Loblolly stand parameters

The purpose here was to show that a neural network can invert
measured data without the need for a model, such as MIMICS.
This means that after the neural network is trained with the
measured backscatter for the 53 Loblolly stands in a particu-
lar JPL AirSAR image, it is then presented with the measured
backscatter for the same 53 Loblolly stands but at a different
time of day and different incidence angles and asked to invert
each of them. Comparison with the known ground truth data
then serves to quantify the performance of the neural network
inversion. The Loblolly neural network was trained for a total
of 19,160 cycles before being tested, the results of which are
presented here.

The range of parameters for the stands are shown in Table 3.
For the 53 test stands the errors are tabulated in Table 4. The
worst and average absolute percentage error are shown for each
parameter, and it is clear that the neural network could not
successfully invert trunk density, but inverted trunk diameter
and height reasonably well, with a worst-case error of 12% and
an average error of 2%.
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Table 3: Range of parameters for Loblolly stands.

Parameter min | max
Trunk # density / m? | 0.0067 | 0.227
Avg Trunk Diam (cm) | 6.8 45.1
Avg Trunk Height (m) | 8.9 39.6

Table 4: Percent error in parameters for test Loblolly stands.

Parameter worst | average
Trunk # density / m® | 105.3 | 11.9
Avg Trunk Diam (cm) | 12.2 2.2
Avg Trunk Height (m) 9.9 2.1

4 Conclusions

We have shown that an accurate inversion of several important
parameters of interest in canopy scattering can be obtained from
multi-frequency polarimetric radar data or through the use of a
neural network trained with MIMICS output. This has been
shown for two specific cases only, but may be easily extended
to other types of trees. No attempt was made to invert every
possible parameter, but future work must be directed toward
that goal in order to truly invert remotely-sensed data. The
extension to mixed forest types, and the extraction of other pa-
rameters is not straightforward and further effort needs to be
made in order to obtain better inversions over a greater variety
of forest stand types.
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