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Knowledge-Based Classification of Polarimetric SAR
Images

Leland E. Pierce, Fawwaz T. Ulaby, Kamal Sarabandi, and M. Craig Dobson

Abstract—In preparation for the flight of the Shuttle Imaging
Radar-C (SIR-C) on board the Space Shuttle in the spring of
1994, a Level-1 automatic classifier was developed on the basis
of polarimetric SAR images acquired by the JPL AirSAR sys-
tem. The classifier uses L- and C-Band polarimetric SAR mea-
surements of the imaged scene to classify individual pixels into
one of four categories: tall vegetation (trees), short vegetation,
urban, or bare surface, with the last category encompassing
water surfaces, bare soil surfaces, and concrete or asphalt-cov-
ered surfaces. The classifier design uses knowledge of the na-
ture of radar backscattering from surfaces and volumes to con-
struct appropriate discriminators in a sequential format. The
classifier, which was developed using training areas in a test
site in Northern Michigan, was tested against independent test
areas in the same test site and in another site imaged three
months earlier. Among all cases and all categories, the classi-
fication accuracy ranged between 91% and 100%.

I. INTRODUCTION

YNTHETIC aperture radar (SAR) is capable of gen-

erating high-resolution images of terrain, and, when
operated in a polarimetric mode, it records the scattering
matrix of each pixel in the imaged scene [1]. To reduce
the effects of speckle, which is characteristic of fully fo-
cused SAR images, multiple pixels are averaged together
prior to using the image for the extraction of quantitative
information. The images used in the present study were
generated by the JPL AirSAR system, which operated at
P-, L-, and C-Bands [2]. Each image consisted of 1024
X 750 pixels, each representing nominally an area 12 m
in azimuth X 6.6 m in slant range, or 12 m X 10 m av-
erage on the ground surface (Table I), with each such pixel
being an average of four looks (or, equivalently, four fully
focused pixels). The incidence angle ranged from approx-
imately 30° at the near range (top) of the image to 60° at
the far range (bottom).

The motivation of the present study is to develop a
Level-1 classifier capable of accurately classifying the
pixels in the imaged scene into four terrain categories
(classes): tall vegetation (trees), short vegetation, urban,
and bare surfaces (which includes water surfaces, bare soil
surfaces, and road surfaces). In an earlier SAR classifier
[3] all vegetation was lumped into one class: insufficient
for our future needs.
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TABLE 1
SAR IMAGE ATTRIBUTES

JPL AirtSAR | L-Band: 1.25 GHz, C-Band: 5.3 GHz
Test Sites Pellston, MI; Raco, MI
Pixel spacing | 12 m azimuth, z x 6.6 m slant range, y
Image sizes 1024 pixels az. x 750 pixels range

12.4 Km az. x 7.5 Km range

Each is nominally a 4-look pixel

Simulated annealing was used by Rignot and Chellappa
in an attempt to post-process the results of an MLE clas-
sifier [4] and performed quite well, yielding better than
95% classification accuracy for up to 13 classes. How-
ever, simulated annealing is a complex and time-consum-
ing procedure to apply over an entire image. Wong and
Posner [5] developed a clustering technique that can au-
tomatically devise the best number of classes and their
means in feature space using a simulated annealing pro-
cedure. The classifier was based on the Mahalonobis dis-
tance [6] from each of these class means. While classifi-
cation accuracies were not given, the procedure performed
quite well, visually.

Another classifier, similar in methodology to the pres-
ent work was presented by Moghaddam and Freeman [7].
A set of hierarchical decision rules was used to distin-
guish between basic land cover types. No published ac-
curacies were given, and our own experience with their
code has been disappointing.

The classifier developed here is to use only L- and C-
Band data as input because the classifier is part of a
broader program at the University of Michigan aimed at
the development of an automatic information extraction
processor that can be applied to the image data expected
from the Shuttle Imaging Radar-C/X-SAR system, that is
scheduled for flight on the Space Shuttle in April 1994.
The SIR-C/X-SAR system has been designed to produce
polarimetric radar images at L- and C-bands, and VV-
polarized images at X-Band.

Fig. 1 depicts the eventual structure of the information
processor. Following full calibration of the SAR images,
a Level-1 classifier is used to classify the scene into the
four aforementioned classes. For the bare surfaces, con-
textual information is to be used when separating water
surfaces from bare ground surfaces. For the latter, an in-
version algorithm [8] is applied to determine the soil
moisture content and surface roughness. In practice, bare
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Fig. 1. Eventual structure of the SAR image information processor.
soil surfaces include surfaces with very short vegetation
cover (less than 15 cm in height).

For the short vegetation and tall vegetation classes,
Level-2 classifiers are to be applied for further discrimi-
nation on the basis of the structure of the vegetation. For
trees, for example, the Level-2 classifier is intended to
classify trees as excurrent, decurrent, or columnar. For
each type of tree, a biophysical estimator, possibly in the
form of a trained neural network, is to be used to estimate
some of the biophysical parameters of the forest canopy,
such as woody biomass and tree density. The Level-2
classifiers and biophysical estimators are in the final states
of development and will be the subject of future papers.
The present paper focuses on the design and operation of
the Level-1 classifier.

II. IMAGE ATTRIBUTES

As mentioned earlier, the classifier uses polarimetric L-
and C-Band images. Each pixel is characterized by four
measured quantities at L-Band: a%, (L), o (L), . (L),
and {(L), and a similar set at C-Band where ag,,, ¢%,, and
a9, are the backscattering coefficients and { is the co-po-
larized phase difference (¢4, — ¢,,) [9]. Although the
cross-polarized phase difference (¢, — ¢,,) is also avail-
able from the measured polarimetric response, it contains
no useful information about the target because it is uni-
formly distributed over [0, 2#] for most distributed tar-
gets [10].

In addition to these eight image attributes, the classifier
uses textural information by computing the normalized
variance for each pixel. Using a5 X 5 pixel window cen-
tered at the pixel of interest, the mean, u, and standard
deviation, o, of the 25 pixels is computed for each mag-
nitude (VV, HH, and HV). The measured normalized
variance (0/;1,)2, for a given polarization, is comprised of

two components: a component due to specke, (o/ w2, and
a component due to scene texture (spatial inhomogeneity)
at the SAR resolution scale [11]. The latter is denoted
(0/w)?. The measured normalized variance is related to the
individual variances through [11]:

(olp)? = (ol + (olp)} + (a/wiolwy. (1)

Denoting M = (a/p.)2 as the measured variance, S = (o/
u)f as the speckle variance, and T = (o/ u)? as the texture
variance, (1) can be rewritten as

M=S§S+T+ ST. 2)

The speckle variance S is target-independent and is a
function of the number of independent samples, N, con-
tained in the processed measurements represented by each
image pixel:

S = (a/w)? = UN 3)

The value of N can be determined from knowledge of the
multilook processing algorithm, or it can be estimated di-
rectly from the image by calculating the variance for a
textureless target (T = 0), such as a calm water surface.
In the present study, a portion of one of the lakes in the
imaged scene was used for that purpose, which provided
the result S = 0.195, or equivalently N = 5. It should be
noted that the speckle variance is the same for all polari-
zations. With S known and M calculated from the 5 X 5
pixel window, (2) was then used to compute the image
texture, T, for each pixel:
M-S

T="7T% 4

Thus, in addition to the original eight image attributes,
texture provides an additional set of six attributes, (three
polarizations X two bands). For notational purposes, the
texture for VV polarization at L-Band is denoted T, (L),
and similarly for other frequency-polarization combina-
tions.

The first part of the study was conducted using L- and
C-Band AirSAR images of a test site located in northern
Michigan, which will henceforth be referred to as the
Peliston site. This test site consists of a variety of conifer
and deciduous trees, while the main agricultural crops are
grass-like (alfalfa, barley). There are also small urban
areas, as well as lakes. This provides sufficient variety to
train and test the classifier. Extensive ground truth mea-
surements have been conducted for biomass inversion
studies here. This effort has resulted in a good familiarity
with the area, which is very important during classifica-
tion for choice of training and test stands, as well as for
understanding its performance in other areas.

Specifically, Fig. 2 shows a color-composite L-Band
SAR image of the area from July 10, 1990. Training and
test stands are clearly marked. There is only one urban
region (Pellston), so no test/training division was possi-
ble. The tall vegetation category was trained with both
aspens and pines at low and high incidence angles, then
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Training Stands in magenta
Testing

Fig. 2. Pellston test site showing training and test stands used during clas-
sification.

tested with other stands of the same type but different in-
cidence angles. The short vegetation class was based
solely on grasslands, cultivated and fallow (airport).
Water was the only large bare feature in this image, and
so the bare class was trained and tested with water alone.
However, an apron and the runways at the airport were
successfully classified as bare.

ITI. CLASSIFIER DESIGN

The input data space consists of 14 channels, corre-
sponding to the image attributes described in the previous
section. All of these channels, however, are partially cor-
related with one another. Our initial attempt at developing
a classifier was based on the application of traditional pat-
tern recognition techniques such as the Bayesian estimator
and the principal components approach [12], [13]. Al-
though mathematically rigorous, these techniques did not
lead to classifiers with good classification accuracy. As
an alternative, we pursued a different approach that relied
very heavily on our understanding of the physics of the
scattering process and the experience gained from exten-
sive experimental measurements and theoretical analyses
conducted for various types of terrain media. We call the
result of this approach a ‘‘knowledge-based classifier.”’

Fig. 3 provides an outline of the classifier design pro-
cedure. The first step attempts to separate ‘‘urban’’ pixels
from everything else where an urban pixel refers to a
ground area containing man-made physical structures such
as buildings. Scattering by such structures is character-
ized by a double-bounce reflection mechanism resulting
in a co-polarized phase difference ¢ close to +180°. Ad-
ditionally, urban scenes exhibit higher values of image
texture than do other distributed targets. Fig. 4(a) shows
the boundaries of the urban/nonurban discriminator based
on {; and T,,(C). Urban pixels are classified as urban
with an accuracy of 100%, while a few percent of the
nonurban pixels are incorrectly classified as urban. This
was purposely done to make sure that all the urban pixels
were correctly classified to ensure that urban features were
not incorrectly identified as trees. The majority of the
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Fig. 3. Classifier design.

misclassified pixels are in areas close to the city of Pells-
ton and along roads and highways (Fig. 5), suggesting
that in reality these are ‘‘mixed’’ pixels including build-
ings along roads and lakefronts.

After removing all pixels classified as urban from fur-
ther consideration, the next step is to identify those that
are tall vegetation. The single most useful channel in this
regard is 0w, (L), the cross-polarized L-Band backscatter-
ing coefficient. This is evident in Fig. 4(b) which shows
that tall vegetation can be easily discriminated against the
other two remaining categories (bare surface and short
vegetation) using this channel. Physically, this is due to
large branches in the crown, which generate a much larger
cross-polarized return that do smaller leaves and grass.
The discrimination can be improved slightly with the ad-
ditional use of 02,, (L) (the final classification results are
summarized later in Section IV).

After removal of the tall vegetation pixels from further
consideration, classifying the remaining pixels among the
last two classes (bare surface and short vegetation) in-
volves a two-step process. In the first step, short vegeta-
tion pixels are identified on the basis of oY (C) and
T9,(L), as seen in Fig. 4(c). The remaining pixels are
classified as bare if both cross-polarized returns are very
low [Fig. 4(d)], while the remaining pixels with a higher
cross-polarized return are classified as short vegetation.
Physically, water and other bare surfaces are expected to
give very low cross-polarized returns due to a lack of large
angled features. Very rough water, however, has an in-
creased cross-polarized return, but also increased texture,
especially in ¢, (L).

Pixels that are not classified initially as short vegeta-
tion, nor later as bare, are reclassified as short vegetation.
This final assignment rule was used because most of the
“‘unclaimed’’ pixels did indeed belong to the short-veg-
etation class.

In order for other investigators to try out this classifier
on their own images, the equations used for each rule are
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Fig. 4. Decision Rules: (a) Urban versus remaining. (b) Tall Vegetation
versus remaining. (c) Short Vegetation versus remaining. (d) Bare Surface
versus Short vegetation.

Fig. 5. Fully classified Pellston test site. Urban is in white, tall vegetation
is green, short vegetation is light brown, bare is blue.

given here. The first rule, to classify urban, uses textures
and a phase difference [see Fig. 4(a) for a graphical rep-
resentation of half of this rule]. If the following condi-
tions are all true, then the pixel is classified as urban:

T, (L) > 0.5, T,,(L) > 0.95,

Tw(C) > 0.4 and  |£(L)| > 120°. )

The second rule to classify tall vegetation, uses L-Band
powers and draws a line to separate the two clusters [see
Fig. 4(b)]. If the following condition is true, then the pixel
is classified as tall vegetation:

0%, (L) > —0.91[oy,(L) + 5dB] —33dB  (6)

where ¢° is expressed in dB. The third rule, to classify
short vegetation, uses C-Band power and L-Band texture
[see Fig. 4(c)]. If the following conditions are true, then
the pixel is classified as short vegetation:

69,(Cy > —27dB, and T, (@) < 125. (7

The fourth rule, to classify bare surfaces and short vege-
tation, uses cross-polarized L- and C-Band powers [see
Fig. 4(d)]. If the following conditions are true, then the
pixel is classified as a bare surface, while if false it is
classified as short vegetation:

6% (C) = —27dB, and op,(L) < —27dB. (8)

Fig. 5 shows the first step of the classification. As seen
in Fig. 5, there are many pixels that were classified as
urban in areas where houses are expected: the city itself,
major roads, and the lakefront. However, there are also a
few in unexpected places, like in the middle of a forest.
These pixels are very likely due to a large double-bounce
from the edge of a small clearing in the forest. This would
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explain both large texture and a high double-bounce con-
tent in the backscattered signal. In a future version of this
algorithm a context-sensitive post-processing step will be
used to remove anomalous classifications such as these.

IV. REsuLTS

The classifier was developed on the basis of SAR data
for the training areas shown in Fig. 2. The classification
results for pixels in the training areas are given in Table
11, and the results for independent test areas are given in
Table III. For both training and test areas, the classifica-
tion accuracy exceeds 98% for three of the four classes,
and for the fourth (short vegetation) the classification ac-
curacy is better than 90%.

Note that classification accuracies are not given for the
urban class. This has been done for two reasons: 1) since
there is only one urban area, testing with the training area
is unfair and misleading; and 2) since the urban area is
not uniformly filled with urban features, but also contains
trees, short vegetation, and surfaces, the classification ac-
curacy calculated over the rectangular urban training stand
will be inaccurate. The other three classes have accurate
and uniform testing areas and so classification accuracies
can be evaluated accurately. The urban class has been op-
timized so that it appears wherever buildings are known
to occur, and does not appear within forested areas.

The classified image, shown in Fig. 5, contains a cer-
tain amount of ‘‘speckle,’” which presumably is a result
of misclassification. These areas may also be correctly
classified areas that are just areas of sparse vegetation sur-
rounded by denser areas. In either case, one may want to
apply an ‘‘aggregator’’ to the classified image. In com-
paring this image to a map produced through air photos,
a certain amount of aggregating has already been per-
formed on that data. In order to perform a fair compari-
son, the SAR classifier should apply a similar aggregation
step. The aggregation algorithm used here is very simple:
examine a 3 X 3 pixel region surrounding the pixel of
interest and if over 70% of these pixels are a particular
class, then the center pixel is assigned that class. Appli-
cation of this aggregator improves the classification ac-
curacy somewhat, but the image has dramatically less
“‘speckle’” (Fig. 6).

To allow a visual comparison of classification accu-
racy, a classification map from 15 years ago [14] is shown
in Fig. 7. This map was manually interpreted from air
photos. We have reclassified it so that only the four classes
that our classifier uses are visible. Note that the airport
was classed as an airport (land use) and that we have col-
ored it as short vegetation since that is the majority of the
land cover there. The city of Pellston is also a solid poly-
gon because it is a land use rather than land cover map.
The remainder of the map shows remarkable similarity to
our classified image, except for the few new clear cuts.

The classification algorithm was also applied to a com-
pletely different site, Raco, imaged three months earlier,
April 1. There are no large urban areas at this site, but
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Fig. 6. Fully classified Pellston test site with aggregation. Urban is in
white, tall vegetation is green, short vegetation is light brown, bare is blue.

Fig. 7. Manually classified Pellston test site. Abstracted from Michigan
DNR MIRIS data [14]. Urban is in white, tell vegetation is green, short
vegetation is light brown, bare is blue.

TABLE II
CLASSIFICATION ACCURACY, NO AGGREGATION, PELLSTON SITE, TRAINING
AREAS, JULY
True Class
Classified As | Tall Veg | Short Veg | Bare
Tall Veg . 98.32 0.00 [ 0.00
Short Veg . 1.46 94.74 | 0.87
Bare 0.00 5.26 1 99.07
TABLE III
CLASSIFICATION ACCURACY, NO AGGREGATION, PELLSTON SITE, TESTING
AREAS, JULY
True Class
Classified As | Tall Veg | Short Veg | Bare
Tall Veg 98.04 2.84 1 0.01
Short Veg 1.96 90.77 | 0.18
Bare 0.00 5.54  99.80
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TABLE IV
CLASSIFICATION ACCURACY, NO AGGREGATION, RACO SITE, APRIL
True Class
Classified As | Tall Veg [ Short Veg | Bare
Tall Veg 100.0 00 0.0
Short Veg 0.0 99.12 | 2.06
Bare 0.0 0.88 [ 97.94

there are scattered buildings that are expected to be visi-
ble. Most of the area is a national forest and is largely
pine trees. There are also many clearcuts visible with
rough ground and many random logs strewn about. These
are generally classified as short vegetation due to the small
amount of biomass still present, but without vertical
trunks. There is a large abandoned airport that provides
the only smooth surface via its runways. When applied to
this new image, the classification was equally successful,
as seen in Table IV.

V. CONCLUSIONS

A polarimetric SAR image classifier has been designed
and implemented that provides very good classification
accuracies for the four classes: urban, tall vegetation,
short vegetation, and bare surfaces. This classifier was
developed with expert knowledge, with each class having
its own classification rule, and proceeding in a sequential
fashion. The classification rules are easy to understand
and implement. Modification of the algorithm for special
circumstances is therefore quite simple. The classifier uses
rules that are as universal as possible, based on physical
principles that are true for all incidence angles.

The aggregator is also a very simple context-sensitive
addendum to the per-pixel classifier. The meaning behind
its threshold is also quite clear: when over a certain per-
centage of one class, then it is all that class. This algo-
rithm is also easily modified for special circumstances.

Future improvements to this algorithm may include a
better way to distinguish urban pixels, and possibly a con-
text-sensitive aggregator made specially for urban areas:
so that a city park is classed urban rather than vegetation.
Obviously, this kind of classification is user-driven: some
investigators may want to know that there is a park in the
city. Level-2 classifiers for each of the classes from this
level-1 classifier are in the final stages of development.
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